Max-Planck-Institut für Informatik
max planck institut
informatik
mpii logo Minerva of the Max Planck Society
 

MPI-INF or MPI-SWS or Local Campus Event Calendar

New for: D1, D2, D3, D4, D5
<< Previous Entry Next Entry >> New Event Entry Edit this Entry Login to DB (to update, delete)
What and Who
Title:Commonsense Knowledge Acquisition and Applications
Speaker:Niket Tandon
coming from:Max-Planck-Institut für Informatik - D5
Speakers Bio:
Event Type:Promotionskolloquium
Visibility:D1, D2, D3, D4, D5, SWS, RG1, MMCI
We use this to send out email in the morning.
Level:Public Audience
Language:English
Date, Time and Location
Date:Friday, 19 August 2016
Time:16:00
Duration:60 Minutes
Location:Saarbrücken
Building:E1 4
Room:024
Abstract
Computers are increasingly expected to make smart decisions based on what humans consider commonsense. This would require computers to understand their environment, including properties of objects in the environment (e.g., a wheel is round), relations between objects (e.g., two wheels are part of a bike, or a bike is slower than a car) and interactions of objects (e.g., a driver drives a car on the road).

The goal of this dissertation is to investigate automated methods for acquisition of large-scale, semantically organized commonsense knowledge. Prior state-of-the-art methods to acquire commonsense are either not automated or based on shallow representations. Thus, they cannot produce large-scale, semantically organized commonsense knowledge.
To achieve the goal, we divide the problem space into three research directions, constituting our core contributions:
1. Properties of objects: acquisition of properties like has Size, has Shape, etc. We develop WebChild, a semi-supervised method to compile semantically organized properties.
2. Relationships between objects: acquisition of relations like largerThan, partOf, memberOf, etc. We develop CMPKB, a linear-programming based method to compile comparative relations, and, we develop PWKB, a method based on statistical and logical inference to compile part-whole relations.
3. Interactions between objects: acquisition of activities like drive a car, park a car, etc., with attributes such as temporal or spatial attributes. We develop Knowlywood, a method based on semantic parsing and probabilistic graphical models to compile activity knowledge.
Together, these methods result in the construction of a large, clean and semantically organized Commonsense Knowledge Base that we call WebChild KB.

Contact
Name(s):Petra Schaaf
Phone:5000
Video Broadcast
Video Broadcast:NoTo Location:
Tags, Category, Keywords and additional notes
Note:
Attachments, File(s):

Created by:Petra Schaaf/AG5/MPII/DE, 02/22/2017 09:43 AMLast modified by:Petra Schaaf/AG5/MPII/DE, 02/22/2017 09:48 AM
  • Petra Schaaf, 02/22/2017 09:48 AM -- Created document.