MPI-INF Logo
Campus Event Calendar

Event Entry

What and Who

Information-theoretic causal discovery

Alexander Marx
MMCI, CISPA
Promotionskolloquium
AG 1, AG 2, AG 3, INET, AG 4, AG 5, SWS, RG1, MMCI  
Public Audience
English

Date, Time and Location

Tuesday, 29 June 2021
14:00
90 Minutes
Virtual talk
Virtual
Saarbrücken

Abstract

It is well-known that correlation does not equal causation, but how can we infer causal relations from data? Causal discovery tries to answer precisely this question by rigorously analyzing under which assumptions it is feasible to infer directed causal networks from passively collected, so-called observational data. Classical approaches assume the data to be faithful to the causal graph, that is, independencies found in the distribution are assumed to be due to separations in the true graph. Under this assumption, so-called constraint-based methods can infer the correct Markov equivalence class of the true graph (i.e. the correct undirected graph and some edge directions), only using conditional independence tests.


In this dissertation, we aim to alleviate some of the weaknesses of constraint-based algorithms. In the first part, we investigate causal mechanisms, which cannot be detected when assuming faithfulness. We then suggest a weaker assumption based on triple interactions, which allows for recovering a broader spectrum of causal mechanisms. Subsequently, we focus on conditional independence testing, which is a crucial tool for causal discovery. In particular, we propose to measure dependencies through conditional mutual information, which we show can be consistently estimated even for the most general setup: discrete-continuous mixture random variables. Last, we focus on distinguishing Markov equivalent graphs (i.e. infer the complete DAG structure), which boils down to inferring the causal direction between two random variables. In this setting, we focus on continuous and mixed-type data and develop our methods based on an information-theoretic postulate, which states that the true causal graph can be compressed best, i.e. has the smallest Kolmogorov complexity.

Die Arbeit wurde von Prof. Dr. Jilles Vreeken betreut.

Contact

Petra Schaaf
+49 681 9325 5000
--email hidden

Virtual Meeting Details

Zoom
994 9379 7196
passcode not visible
see notes

Petra Schaaf, 06/18/2021 10:49 -- Created document.