MPI-INF Logo
Campus Event Calendar

Event Entry

What and Who

Bounded Weighted Edit Distance

Tomasz Kociumaka
Max-Planck-Institut für Informatik - D1
AG1 Mittagsseminar (own work)
AG 1  
AG Audience
English

Date, Time and Location

Thursday, 25 May 2023
13:00
45 Minutes
E1 4
024
Saarbrücken

Abstract

The edit distance, also known as Levenshtein distance, is the minimum number of character insertions, deletions, and substitutions needed to transform one string into another. The textbook dynamic programming algorithm computes the edit distance of two length-n strings in O(n²) time, which is optimal up to sub-polynomial factors and conditioned on the Strong Exponential Time Hypothesis (SETH). In a bounded setting, where the running time is parameterized by the edit distance k, the celebrated algorithm by Landau and Vishkin (JCSS'88) achieves a running time of O(n+k²), which is optimal as a function of n and k (again, up to sub-polynomial factors and conditioned on SETH).


While the theory community thoroughly studied the Levenshtein distance, most practical applications rely on a more general weighted edit distance, where each edit has a weight depending on its type and the involved characters from the alphabet Σ. This is formalized through a weight function w : Σ∪{ε} × Σ∪{ε} → ℝ normalized so that w(a,a) = 0 for a∊Σ∪{ε} and w(a,b) ≥ 1 for a,b∊Σ∪{ε} with a ≠ b. The classic O(n²)-time algorithm supports this setting seamlessly, but for many decades only a straightforward O(nk)-time solution was known for the bounded version of the weighted edit distance problem.

In this talk, I will present an O(n+k⁵)-time algorithm (joint work with Das, Gilbert, Hajiaghayi, and Saha; STOC'23; arXiv:2302.04229) and a very recent Õ(n+√{nk³})-time algorithm (joint work with Cassis and Wellnitz). I will also sketch a lower bound that proves the optimality of the latter algorithm for √n ≤ k ≤ n (up to sub-polynomial factors and conditioned on the All-Pairs Shortest Paths Hypothesis).

Contact

Roohani Sharma
+49 681 9325 1116
--email hidden

Virtual Meeting Details

Zoom
527 278 8807
passcode not visible
logged in users only

Tags, Category, Keywords and additional notes

If you wish to attend the talk online but do not have the zoom password, contact Roohani Sharma at rsharma@mpi-inf.mpg.de

Roohani Sharma, 05/21/2023 12:17
Kurt Mehlhorn, 05/19/2023 13:15
Roohani Sharma, 05/08/2023 15:55
Roohani Sharma, 05/08/2023 05:51
Roohani Sharma, 05/05/2023 20:54 -- Created document.