Max-Planck-Institut für Informatik
max planck institut
mpii logo Minerva of the Max Planck Society

MPI-INF or MPI-SWS or Local Campus Event Calendar

<< Previous Entry Next Entry >> New Event Entry Edit this Entry Login to DB (to update, delete)
What and Who
Title:Detecting Algorithmic Bias
Speaker:Carlos Castillo
coming from:Universitat Pompeu Fabra (UPF), Barcelona
Speakers Bio:Carlos Castillo is a Distinguished Research Professor at Universitat Pompeu Fabra in Barcelona. He is a web miner with a background on information retrieval, and has been influential in the areas of web content quality and credibility, and adversarial web search. He is a prolific researcher with more than 80 publications in top-tier international conferences and journals, receiving 13,000+ citations. His works include a book on Big Crisis Data, as well as monographs on Information and Influence Propagation, and Adversarial Web Search.
Event Type:INF Distinguished Lecture Series
Visibility:D1, D2, D3, INET, D4, D5, SWS, RG1, MMCI
We use this to send out email in the morning.
Level:Public Audience
Date, Time and Location
Date:Monday, 1 April 2019
Duration:60 Minutes
Building:E1 4
Algorithms and decision making based on Big Data have become pervasive in all aspects of our daily (offline and online) lives. Social media, e-commerce, professional, political, educational, and dating sites, to mention just a few, shape our possibilities as individuals, consumers, employees, voters, students, and lovers. In this process, vast amounts of personal data are collected and used to train machine-learning based systems. These systems are used to classify and rank people, and can discriminate us on grounds such as gender, age, or ethnicity, even without intention, and even if legally protected attributes, such as race, are not explicit in the data. Algorithmic bias exists even when there is no discrimination intention in the developer of the algorithm. Sometimes it may be inherent to the data sources used (software making decisions based on data can reflect, or even amplify, the results of historical discrimination), but even when the sensitive attributes have been suppressed from the input, a well trained machine learning algorithm may still discriminate on the basis of such sensitive attributes because of correlations existing in the data.
Name(s):Daniela Alessi
EMail:--email address not disclosed on the web
Video Broadcast
Video Broadcast:NoTo Location:
Tags, Category, Keywords and additional notes
Attachments, File(s):
Daniela Alessi/MPI-INF, 03/25/2019 12:25 PM
Last modified:
Uwe Brahm/MPII/DE, 04/01/2019 07:01 AM
  • Daniela Alessi, 03/25/2019 12:32 PM -- Created document.