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1. Introduction 

We s tudy the  cons t ruc t ion  o f  pref ix  codes  in the  case o f  u n e q u a l  p robab i l i t i e s  a n d  u n e q u a l  
letter costs. T h e  inves t iga t ion  is m o t i v a t e d  by  a n d  o r i en ted  toward  the  fo l lowing prob lem.  
Cons ide r  the  t e r na r y  search  tree in F igu re  1. It has  three  in te rna l  nodes  a n d  six leaves.  The  
in terna l  nodes  con ta in  the  keys {3, 4, 5, 10, 12} in sor ted order ,  a n d  the  leaves represen t  
the open  in te rva ls  be tween  keys. T h e  s t a n d a r d  s t ra tegy to locate X in this  t ree is best 
descr ibed by  the  fo l lowing recurs ive  p r o c e d u r e  S E A R C H .  

proc SEARCH(int X; node v) 
if v is a leaf 
then "'X is not in the tree" 
else begin let K, K2 be the keys in node v; 

if X < K~ then SEARCH(X, left sou of v) 
if X = K~ then exit (found); 
if K2 does not exist 
then SEARCH(X, right son of v) 
else begin if X < K2 then SEARCH(X, middle son of v); 
if X = K2 then exit (found); 
SEARCH(X, right son of v) 
end 

end 
end 

A p p a r e n t l y  the  search  s t ra tegy is unsymmet r i c .  It is c h e a p e r  to fol low the  po in t e r  to the 
first subt ree  t h a n  to the  second  subtree ,  a n d  it is c h e a p e r  to locate K1 t h a n  K2. 

We also assume tha t  the  p robab i l i t y  o f  access is g iven  for each  key and  each  in terval  
be tween keys. M o r e  precisely,  suppose  we h a v e  n keys B1 . . . . .  Bn out  o f  an  o rdered  

universe,  wi th  BI < B2 < . . .  < Bn. T h e n  fli deno te s  the  p robab i l i t y  o f  accessing Bi, 
1 _< i _< n, a n d  c~ i deno te s  the  p robab i l i t y  o f  accessing e l ement s  X, wi th  Bi < X < Bi÷t, 
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0 ~ j -< n. ao and fin have obvious interpretations. In our example n = 5, fls is the 
probability of  accessing 4, and a4 is the probabili ty of  accessing X E (4, 5). We always 
write the distribution of  access probabilities as ao, fla, eta . . . . .  ft,, an. 

Ternary trees, in general, (t + l)-ary trees, correspond to prefix codes in a natural  way. 
We are given letters ao, al, a2 . . . . .  a2t of cost Co, cl, cs . . . . .  cst, respectively; ct > 0 for 0 _< 
l -< 2t. Here letter ast corresponds to following the pointer to the (l + l)st subtree, 0 _< l 
_ t, and letter ast+l corresponds to a successful search terminating in the (l + l)st key of  a 

node, 0 -< l < t. 
In our example, t = 2. The code word corresponding to 4, denoted I4"2, is aoa3. The code 

word corresponding to (10, 12), denoted II4, is a4ao. 
In general, a search tree is a prefix code 

C = { V0, W~, 1"1 . . . . .  W,, V,} with ~ ~ Z* and W / ~  '~'*~"end, 

where Z = {ao, as, a4 . . . . .  as,} and Ze,d = {al, a3 . . . . .  as,-l}, 0 <_j --< n, 1 _< i <-- n. Z* 
denotes the set of  all words over alphabet ~,  IV, describes the search process leading to key 
B/, and Vj describes the search process leading to interval (Bi, Bi+~). 

R e m a r k .  In the binary case t = 1, letters ao, al, as have the natural interpretation <,  
=, and >. Letter al (=) ends successful searches and letter al is never used in unsuccessful 
searches. In signaling-codes applications, alphabet Ze,d might serve synchronizing purposes 
(of. the example of an alphabetic Morse code at the end of  Section 3). 

Note that the use of  the letters in ~]end is very restricted. They can only be used at the 
end of  code words, and they can only be used in words W/. Furthermore, the code words 
must reflect the ordering of  the keys, i.e., 

(,) ~ <  w/< ~. 

for j < i _< j ' ,  and < denotes the lexicographic ordering of  strings based on the ordering 
a o  < a l  < a 2  < • • • < a s t  o f  letters. The cost of  a word a i  a i , a i : ,  • • • a l ,  is equal to ci, + 
e,~ + • • • + c,,, i.e., the sum of  the costs of the letters. The (expected) cost of  code C is then 

defined as 
n n 

Cost(C) = ~ /3i Cos t (W/)+  y~ aj Cost(~) .  
iml j~0  

R e m a r k .  In the binary equal cost case (t = 1, Co = ca = cs = 1) this definition coincides 
with the definitions of  weighted path length used in the literature [e.g., 4, 11, 13, 15, 16]. 

We will address the following two problems: 

(I) Given letters, their costs, and a probabili ty distribution, find a code with nearly 
minimal cost. 

(2) Give good a priori bounds for the cost of the optimal code. 

We refer to these problems as the alphabe t ic  cod ing  prob lems .  We will also have to 
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consider nonalphabetic codes, i.e., codes which do not have the ordering requirement (,)  
on the code words and which have unlimited usage o f  letters. Formally, given letters 
a0 . . . . .  as, their costs co . . . .  , cs, and a probability distribution pl . . . . .  pn, we want to find 
a prefix code C = { UI . . . . .  Un) such that 

Cost(C) - ~ pi Cost(U/) 
i--I 

is minimal. 

Remark. We use the notation p~ . . . . .  pn for the probability distribution in the 
nonalphabetic case and c~0, fla . . . . .  fin, a ,  in the alphabetic case. This should help the 
reader keep things apart. 

We show that the cost of  an optimal alphabetic code Coot satisfies the following 
inequalities. Here H = H(ao, ill, al . . . . .  fin, a~) = - ~ 8 i  log fli - ~aj log a~ is the entropy 
of  the probability distribution, B = ~8~, and c, d ~ ~, are such tha t~_o  2 -de2• - 1 and 
~k2t=o 2 -cck --- 1. Numbers 2 -a, 2 -c are sometimes called the "roots o f  the characteristic 
equation of  the letter costs" [cf. 6]. Also, log denotes logarithm base 2, and In denotes 
natural logarithm. 

1 1 
H _< d .  Cost(Coot) + - c.  B max ci[l + In(u. v. Cost(Coot)] + - -  (1) 

u io~d (e. u) 

for some constants u, v and e = 2.71...  ; 

] ,[max 1 Cost(Coot) -< -~ + (~ai) + max ek + (YBi ck . (2) 
k even 

Note that the lower and upper bound differ essentially by In Cost(Copt). Inequality (1) 
is proved in Corollary 1. Theorem 2 gives a better bound than Corollary 1, but the bound 
is harder to state. Inequality (2) is proved in Theorem 3 by the explicit construction of  a 
code C satisfying (2). Moreover, this code can be constructed in linear time O(t. n) 
(Theorem 4). 

Inequalities (1) and (2) provide us with a "noiseless coding theorem" for alphabetic 
coding with unequal letter costs and unequal probabilities. 

The construction of  prefix codes is an old problem. We close this introduction by briefly 
reviewing some results. 

Case 1. Equal Letter Costs (i.e., c~ = 1 for all i, 0 _< i _< s). In the nonalphabetic case an 
algorithm for the construction of  an optimal code dates back to Huffmann [10]; it can be 
implemented to run in time O(n log n) [19]. The noiseless coding theorem (due to Shannon 
[18]) gives bounds for the cost of  the optimal code, namely, 

1 1 
log(s + 1) H(p~ . . . . .  p,)  <- Cost(C)_< log(s + 1) [H(pl . . . . .  pn) + 1], 

where H(p~ . . . . .  pn) = - ~ p i  log p, is the entropy of  the distribution. 
The binary alphabetic case was solved by Gilbert and Moore [8], Knuth [13], and Hu 

and Tucker [9]. The time complexity of  their algorithm is O(n 2) and O(n log n), respectively. 
Cost is usually called weighted path length in this context. Bounds were proved by Bayer 
[4] and Mehlhorn [16], namely, 

H(ao, fll . . . . .  B~, an) <-- Cost(Coot) + (loge) - 1 + logCost(Coo,), 
Cost(Coo,) _< H(a0, B, . . . . .  B., o~) + l + y,~j. 

Various approximation algorithms exist which construct codes in linear time in the binary 
case. The cost of  these codes lie within the above bounds [4, 7, 15, 16]. 

Case 2. Equal Probabilities (i.e., pi = l /n for ! _< i _< n.) The problem was solved by 
Perl, Garey, and Even [17]. The time complexity of  their algorithm is O(min(t"n, tnlogn)). 
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The alphabetic case is identical to the nonalphabetic case, and no a priori bounds exist for 
the cost of an optimal code. 

Case 3. Unequal Probabilities, Unequal Letter Costs. This case was treated by Karp 
[12]. He reduced the problem to integer programming and thus provides us with an 
algorithm of exponential time complexity. No better algorithm is known at present. 
However, it is also not known whether the corresponding recognition problem (is there a 
code of cost -<m) is NP-complete. A priori bounds were proved by Krause [14], 
Csiszar [5], and Cot [6]. 

The alphabetic case was treated by Itai [I 1]. He describes a clever dynamic programming 
approach which constructs an optimal alphabetic code in time O(t 2.n3). No a priori 
bounds are known. 

2. The Lower Bound 

In this section we want to prove a lower bound on the cost of  every prefix code. We first 
treat the nonalphabetic case and then extend the results to the alphabetic case. 

2.1 THE NONALPHABETIC CASE 

2.1.1 Preliminary Considerations. Consider the binary case first. There are two letters 
of cost cl and c2, respectively. In the first node of  the code tree we split the set of  given 
probabilities into two parts of  probability p and 1 - p, respectively (Figure 2). The local 
information gain per unit cost is then 

H(p ,  1 - p)  
G(p) - cl .p  + e2(I - p ) '  

where H(p,  q) = - p  logp - q log q. This is equivalent to 

G ( p ) -  - p l o g p - ( l - p ) l o g ( l - p )  for all c ~ O .  
( - p .  log 2 . . . . .  (1 - p )  log 2 .... ). ( l /c)  

_ - - c o l  - -  , The following fact shows that G(p) is maximal f o r p - 2  , 1 - p  = 2  c% where c i s  
chosen such that 2 .... + 2 -cc~ -- 1. Hence G(p) <_ c for allp, and G(2 .... ) = c. 

FACT (CF., E.G., ASH [2]). Let xi, yi >-- O f o r  1 <_ i <_ n, ~x i  = 1 = ~yi. Then 

- ~ x i  log xi <-- - ~ x i  log yi. 

This shows that the maximal local information gain per unit cost is c. Hence every code 
for probabilities pl . . . . .  pn should have cost at least ( l / c ) .  H(p~ . . . . .  pn). This is made 
precise in the next section. 

The plausibility argument also suggests an approximation algorithm: Try to split the 
given set of  probabilities into two parts of  probability p and 1 - p, respectively, so as to 
make [p -2-"'1 as small as possible. We discuss this approach in Section 3. 

2.1.2 The Lower Bound in the Nonalphabetic Case 

THEOREM 1. Let pl . . . . .  pn be a probability distribution and let C = { U1 . . . . .  Un} be 
a prefix code over code alphabet {ao . . . . .  a~}. Let ci > 0 be the cost ofai,  0 <_ i <_ s. Let c be 
such that ~_,7=. 2 -m = 1. 

(a) [14] Cost(C) >_ H( p~ . . . . .  p~)/c, where H( p~ . . . . .  p,,) = -Y~pi log pi is the entropy o f  
the frequency distribution. 

(b) Let h E IR, h >_ O, and 

Lh = {i; cCost(U,) <_ logpi - h}. 

Then 5,~,~L,, p, <- 2 -h. 

Remark. Inequality (a) reads in its full form 
n n 

Y~ p,[cCost(U,)] >_ ~ p,[- logp,] .  
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p /  -p 

F1~URE 2 

:i 

It is an extension of  the noiseless coding theorem to arbitrary letter costs. Part (b) shows 
that this inequality is almost satisfied termwise by the expressions in square brackets. More 
precisely, the fraction of probabilities which violates the termwise inequality by more than 
h is less then 2 -h. 

PROOf. (a) Let Ui = a~ai.~ . . .  %. Define 

li 
qi := [ I  2-~", l < i <  n, 

k - I  
n 

O : =  Z q i .  
i - 1  

Then Q < I by a simple induction argument on max/~. The prefix property is needed here. 
Furthermore, 

tl 
log qi = - c .  ~ ci~ = - c C o s t ( U i ) ,  

k-- I  

and hence, by the fact above, 

H ( p l  . . . . .  p , )  = - ~ p i  log pi  
< - ~ J ~ i  l o g ( q i / Q )  
= c C o s t ( C )  + log Q 
__< c .  Cost(C). 

(b) Let h _> 0 and 

Then 

Lh = {i; cCost(Ui) < - l o g  pi  - h} .  

1 >_ Q = ~ 2 -cc°~ttv,, 
i-1 

--> ~ 2 -cc°~'~c;~ 
iEL~ 

~ 21°g'+h= 2 h. ~ P,. 
i ~ L  h i ~ L  h 

[]  

2.2 THE ALPHABETIC CASE. Every alphabetic code C = { Vo, W~ . . . . .  W,,, Vn) is a 
nonalphabetic code, and hence Theorem 1 applies. It shows that 

Cost(C) _ - .>  1 H(ao, 32 . . . .  . /3n, ~ ) ,  
C 

where ~ 0  2 -~ck =1. In this section we improve upon this lower bound and essentially 
show that for every a lphabe t i c  code C, 

Cost(C) ~ ~.  (~o, fl~ . . . . .  /?~, an) - c .  max ci .  In H(ao,  fl~ . . . . .  B . .  ~ , 
1/ i odd 
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where ~,~,=o 2 -a',~' = 1 and  u is some constant.  Note that only the letters in Z, and  not  those 
in Z,,,d, are used to define d, and  hence the new bound  is much better for large H. 

Example.  Consider  ternary trees with Co = c~ = c2 = c3 = c4 = !. Then  c = log 5 and  
d = log 3. 

The alphabetic case differs from the nona lphabe t ic  case in two respects: 

(1) The letters in X,,d can only  be used at the end of  code words IV, and  not  at all in 
words V~. 

(2) The lexicographic ordering of  code words must  reflect the under ly ing ordering of  
the keys. 

We will use only  restriction (1) to improve upon the lower bound.  There seems to be no 
way to incorporate this (combinatorial)  restriction into the proof  of  Theorem 1. Rather,  we 
turn the combinator ia l  restriction into a constraint  on costs by artificially increasing the 
cost of letters in ~E~end. Then  we use the fact that letters in Z~.d are used at most once in 
words W, and not at all in words ~ in order to relate the cost of  a code under  the old and  
the new cost function. Final ly,  we apply Theorem 1 to the new cost function.  Let 1 _< 
x < ~ . . .  be arbitrary,  let 

di = ci for i even, 
d g = x . c ~  for i o d d ,  

and let c(x) ~ IR be such that ~,~0 2 -~>4 = 1. 

Remark.  In the new cost funct ion d~, 0 _< i_< 2t, we increased the cost o f  letters in Z~,d 
by factor x. For  x = 1 the new cost funct ion is identical with the old, and  hence c( l )  = c; 
for x = ~ the cost of  letters in Z~,d is infinite, and  hence c(oo) = d. 

Let C = ( Vo, W~, V~ . . . . .  W, ,  V,} be an  alphabetic code for probabi l i ty  dis t r ibut ion 
(a,,. fij, o~ . . . . .  fl~, a , ) .  In particular,  Vj E Z* and  IVi E ~']'*'~end. Let Cos"~(C) be the cost 
of C with respect to (o, (~, (2 . . . . .  (2t, and let Cost(C) be the cost o f  C with respect to Co, 
Cl . . . . .  C2t .  

LEMMA I. C o ~ ( C ) < - C o s t ( C ) + ( x -  l ) . B . m a x i o a a c i f o r e v e r y x ,  l__ .x_<oo ,  B =  

PROOF. 

Then 

For IV, ~ Z* Zen d let 

Wi = W~. aj~, aj, ~ Zend. 

Cos'-~(w;) = ~ " g i ( w ; )  + 6, 
= Cost(W~) + x -  cj, 

= Cos t (W, )  + (x - l)cj,. 
Hence 

C ~ ( c / =  Eft, C~(w,) + E,~, C0~(v,) 
--< Cost(C) + (x - ! ) .  B max el. 

i odd 

We next use Theorem 1 for the costs dg, 0 _< i _ 2t. 

THEOREM 2. Let  c(x) be such that ~'~t=o 2 -~u~¢ = 1. Then 

Cost(C) > m a x ( H ( a o ,  fll . . . . .  f l , ,  o~) /c (x )  - (x - 1). B .  m a x  ci; 1 <_ x < oo). 
i o d d  

PROOF. By Theorem 1, 

H(ao, flj . . . . .  fin, an) c"~t~c) _> 
c(x) 

Substituting into Lemma 1 yields the result. [ ]  

[ ]  
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We were unable  to find a closed form expression for the maximal  value of  the right- 
hand side in Theorem 2. An  approximate  value can be found as follows. Recall that 
c(i)  = c, c(~)  = d, and c(x)  decreases for I <_ x _ oo. Write c(x)  = d + 6(x) .  

ii:1 

C . . . . . . .  

c ( x )  
d . . . . . . . . . . . . . . . . . . . . .  

X 

with 0 _-< 6(x) _< c - d. We show that 8(x)  <_ v ,  e - ~ - a ~  for some constants  u, v (see Lemma 
2 below). Then  Theorem 1 can be written as (we write H instead of  H(ao,  fl~ . . . . .  f l , ,  

an)): 

H <_ e ( x ) .  Cost(C) + (x - 1). c ( x ) .  B max cs 
i o d d  

__< d .  Cost(C) + 6(x) .  Cost(C) + (x - I ) .  c .  B .  max c, 
i odd 

_< d .  Cost(C) + v. e -"~-~) • Cost(C) + (x - 1). e .  B .  max ci. 
i o d d  

This inequali ty is true for all x, 1 _< x -< oo. 
The r ight-hand side is min imal  (differential calculus) for 

(In[u • v C o s t ( C ) / c .  B .  maxiodd ci]) 
(x  - I )  = 

U 

Hence 

[ / cost,c, l 
H < _ d .  C o s t ( C ) +  m a x c i  l + l n  u - v .  

u iodd \C .  B .  maxiodd c l / J "  

Finally, using y In ( l / y )  _< l / e  for all y > 0 (in particular,  y = (cB max c,) /u) ,  we obtain  

COROLLARY I. L e t  C be  an a lphabe t i c  code  f o r  d is t r ibut ion  C~o, i l l ,  aa . . . . .  fin, a ,  with 
respect  to costs  Co, ca . . . . .  c2t. L e t  c, d be  such  that  

2t t 

Y. 2 - ~  = 1, y~ 2 -~'~* = 1. 
k=O k=O 

L e t  B = ~ f l i .  Then  there  are  cons tan t s  u, v (depend ing  on co, ca . . . . .  c2, bu t  no t  on  C o s t ( C )  

a n d  ao, fla . . . . .  fin, an) such tha t  

c B  l 
H(a0, fla . . . . .  fin, trn) <-- d .  C os t (C )  + - - .  m a x  c,[l + l n (u .  v Cos t (C) ) ]  + . 

U i odd e • u 

PROOF. By the preceding argument.  [ ]  

Corollary 1 shows that the lower bound  for the alphabet ic  code is essentially the lower 
bound (d.  Cost(C)) for the nonalphabet ic  code where only  the letters of  even index are 
used, plus a small correction of order (c .  B .  maxi,,,~,~ c, In Cost(C)) which reflects the 
restricted usage of the letters in Ze,d. 

A special case of  Theorem 2 and Corollary 1 was proved by Bayer [4]. He considered 
the binary alphabetic case with equal letter costs, i.e., t = 1 and co = c2 -- ce = I. 
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It remains to prove L e m m a  2. We  will show the existence o f  constants u, v but  not  derive 
a bound for them. This  is just if ied since we r e c o m m e n d  always using Theo rem 2 and 
computing the maximal  value o f  the r ight-hand side by numerica l  methods.  Corol lary  I is 
only given in order  to indicate the order  o f  the bound  in Theo rem 2. 

LEMMA 2. Let 8(x) be defined as above. Then 

~(x) <_ v .  e - " ~ - "  

for  some constants u, v. 

PROOf. 6(x) <-- v .  e - ' (x-~ is equivalent  to (x -- I) <_ - - ln(8(x) /v) /u .  6(x) is def ined by 

~ 2 -(d÷~*))~k + 2 -~d÷e~*" . . . . .  '~-' = 1. 
k=O k = l  

Consider the lef t -hand side as a funct ion f ( x ,  8) of  two arguments  x and 8; i.e., replace 
6(x) by  8 in the lef t -hand side. Fo r  fixed ~ this funct ion is decreasing in x. Also, 
f ( x ,  6(x)) = 1. Suppose we know t h a t f ( z ,  6(x)) _< 1 for some z. T h e n  x _< z, since z < x 
impl i e s f (x ,  8(x)) < f ( z ,  8(x)) _< 1, a contradict ion.  It therefore suffices to show that there 
are constants u, v such that  for all x, 

' i Y,, 2 -(d+~(x))c2* + 2 -(d+~x))z~k-' _< 1, (3) 
k~O k=l 

where z := 1 - ln(8(x) /v) /u .  Replacing ci, 0 <_ i <_ 2t, by Cmin = min(ci;  0 --< i ----- 2t} > 0 in 
the left-hand side o f  (3) only increases the lef t -hand side. It therefore suffices to show that 

2--~t~)~,-~n. ~ 2-d~:* + t2-d ...... --< 1 (4) 
kzO 

for some constants u, v. Using Y.~-0 2 -d~* =1, the lef t -hand side o f  (4) is o f  the form 

g(y )  : =  b l  y + b 2 ( y / v )  b:', 

with b~ = 2 "m'" > 1, b2 = t2 -a . . . .  > 0, b3 = (dcmin In 2)/u  > 0, and y = 8(x). Hence  0 _< 
y _< c - d. C h o o s e  u Such that b3 = I. T h e n  

g(y )  = b-i -~ + b.,.(y/v). 

It remains to show that  we can choose v such that g(y )  _< 1 for 0 _< y _< c - d. Note  that 
g(0) = 1 and that 

b2 
g'(  y )  = ( - I n  bl)b'{ y + -  

V 

_ ( - I n  bx)b7 (c-a~ + _b2 since 0 _< y _< c - d 
V 

_<0 

for sufficiently large v. Hence  g(y )  _< 1 for 0 _ y _< d. This  shows the existence o f  u 
and v. [] 

3. The Upper Bound 

In this section we describe an a l g o r i t h m  for construct ing alphabet ic  codes and derive a 
bound on the cost o f  the code constructed.  The  a lgor i thm is a general izat ion o f  the one in 
[8. 16]. 

The code is constructed top-down by repeated splitting o f  the ordered set {a0, ill, al ,  
. . . .  c~,,_ ,, fl,,, a ,} o f  probabili t ies.  In each step we try to split the set as described in 2.1.1. 
Let d be such that 

2 -dc'-'~ = I, 
k=O 
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a n d  let 

s - l  = - ~ ,  s,+a = ~ ,  so - ao/2,  

si = ao + fl l  + . . .  + fl i  + a i / 2  for  l _ < i _ < n .  

s - t  a n d  S,+l are  def ined  as " s toppers . "  

E x a m p l e .  Let Co = 1, Cl = 3, c2 = 2, c3 = 1, c4 = 2. T h e n  d = 1. Let  ao = ai = fli = ~ for 
1 ~ i _< 3. T h e n  si = (4i + 1)/14 for  0 _< i ~ 3. W e  d raw  the  d i s t r ibu t ion  (ao, ill, a l  . . . . .  
a , - a , /~ , ,  a , )  as a pa r t i t ion  o f  the uni t  in te rva l  a n d  split  the  un i t  in te rva l  in the  ra t io  2-at": 
2-de2.2-dc4. 

F r o m  F igu re  3, it appea r s  r easonab le  to assign let ter  ao to ao, ill, a l ,  to assign let ter  a2 to 
a2, le t ter  a4 to aa, le t ter  a~ to fl2, a n d  le t ter  a3 to fla. In  o the r  words,  we set W2 = al,  V2 = 
a2, W3 = a,,  a n d  I.'3 = a4, a n d  let Iio, IV,, V~ star t  wi th  ao. Next  we h a v e  to work  on  the 
s u b p r o b l e m  {ao, fl~, a~}. W e  split the  in te rva l  [0, 2 -at ' ']  in the  s ame  way a n d  o b t a i n  F igure  
4. Th i s  suggests  the  use o f  let ter  ao (a~, a2) as the  second  le t ter  o f  the  code words  ass igned 
to ao (fla, a 0 .  No te  tha t  we used let ter  a2 for a~, s ince more  t h a n  h a l f  o f  p robab i l i t y  a~ falls 
into  the in te rva l  o f  l eng th  A • 2 -dc'~ . 

In  general ,  the  cons t ruc t ion  process  can  be  descr ibed  as a recurs ive  p r o c e d u r e  C O D E  
with p a r a m e t e r s  

L r W e  work  on  the  s u b p r o b l e m  at, flt+l . . . . .  f i r ,  am; I <-- r; 

!) L,  R L ,  R ~ IR, L <_ st <_ sr <_ R; 

U U 6 Z* = {a0, a2 . . . . .  a2t} *. U is a c o m m o n  pref ix  o f  code  words  

Vt, Wt+l, VI+I . . . . .  W~, V,-; a n d  

(2) R - L = 2 -d 'c°~"u) .  

Ini t ia l ly  1 = 0, r = n, L = 0, R = 1, a n d  U = E where  ~ is the  e m p t y  word.  Cons ide r  now 
any  call o f  the  p rocedu re  C O D E  with  p a r a m e t e r s / ,  r, L, R, U sat isfying the  i n v a r i a n t s  (1) 
and  (2) s ta ted  in the i r  def in i t ion .  

Case  1. 1 = r. T h e n  we def ine  V~ - U a n d  re turn .  

Case  2. I < r. W e  split  the  in terva l  (L, R) in the  ra t io  2-de": 2 -'~c' : • • • : 2 -tic'-'. T h e  ith 
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subinterval, 0 < i < t, has boundaries Li L + (R L)  i-i - - = - .~k-0 2 -ec2k and Ri = 
L, + (R - L) • 2 -aC~'. We then determine for each subinterval the set of  sk's which lie in 
that subinterval, say Sh-i --< Li < Sh and Sy _< Ri < Si+l for the ith interval. I f h  _<j, i.e., 
some s~'s actually lie in the ith subinterval, then we call procedure CODE recursively with 
parameters l = h, r = j ,  L = L,, R = R~, U = Ua2i. Furthermore,  if  in a d d i t i o n j  + 1 __. r, 
then we assign code word Ua2i+l to fly+l; i.e., we set I.Vj+~ = Ua2i+l. 

Example. S u p p o s e t = 3 a n d L 0 ~ s o _ <  - . .  ~ s 4 < L l < L 2 < s ~ . . . - < s 7  < L a <  
s~ -< R3. Then the recursive calls are CODE(0, 4, Lo, L~, Uao), CODE(5, 7, L2, La, Ua4), 
and CODE(8, 8, L3, Ra, Ua6). Furthermore,  we set W5 = Ua~ and W8 = Uas. A pictorial 
representation is given in Figure 5. 

In the remainder of  this section we derive an upper  bound on the cost of  the code 
constructed by procedure CODE. It is obvious that the properties stated in the definitions 
of 1, r, L, R, U are invariants of  the recursive procedure; i.e., they hold for all values of  the 
actual parameters. 

Consider the code word IV,. = Uaki constructed for fli; U E Y.* and ak, E Zend. The word 
IV, was constructed by the procedure CODE with actual parameters 1, r, L, R, U, where 
I < i _< r. Hence 

fli <--- at~2 + flt+l + at÷l + "." + flq + at~2, 

since fl, appears in that sum, and thus 

f l i  ~ Sr  - -  SI 

-< R - L = 2 -ac°sttU~ 

by invariants (I) and (2) of  procedure CODE. Hence 

Cost(W~) _< Cost(U) + max cK 
K odd 

i 
-< ~ [ - log/~i ]  + max cK. 

K odd 

Consider next code word Vj. Word ~ was constructed by procedure CODE with actual 
parameters (j. j .  , , Vj). CODE with actual parameters ( j , j ,  , , Vj) was called by CODE 
with actual parameters (l, r, L, R, U), with I < r, 1 ~ j  _< r, and ~ = Uak, for some ak, E 
Z. Hence 

aj./2 < ad2  + flt+~ + ffl+l + ' ' "  + fir + a~/2 
= S r  - -  S l  ~ R - -  L = 2 -ac°'"U~ 

by the same reasoning as above. Hence 

1 
Cost(Vj) _< ~ [ - l o g  ay + I] + max ck. 

k even 
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We summarize: 

THEOREM 3. Let  (ao, fl~ . . . . .  fin, a~) be a probability distribution, fli >- O, ct; >_ O, 
~/3i  -[" ~Olj = 1. Let  ao, al . . . . .  a2t be (2t + 1) symbols with costs co, c~ . . . . .  ce, ~ IR+. Then 
procedure C O D E  constructs an alphabetic code with 

(a) Cost(W,) <_ [ - l o g  Bi] /d  + maxk odd ch; 
(b) Cost(V~) <_ [ - l o g  aj + l ] /d  + maxk ..... ck; 

(c) Cost(C) <_ H(ao, flh al . . . . .  fin, ct~)/d + (~ctj)[ l / d  + maxk ..... c~] + 
(Y. fli)[maxk odd ck]. 

PROOF. (a) and (b) are proved by the discussion above. (c) follows from (a) and (b) by 
multiplication with/3i and at, respectively, and summation. []  

Example. An  ordered Morse code. The Morse code is over a three letter alphabet: dot 
(cost 1), dash (cost 2), and letter space (cost 1). We assume the ordering dot < letter space 
< dash; i.e., E = {dot, dash} and E~,d = {letter space}. Then co = I, ci = I, cz = 2, 2 - d  

= 0.618, and d = 0.6942. We encode the 27 English letters (including the word space) in 
alphabetical ordering; i.e.,/31 = probabili ty of  letter a,/32 = probabil i ty of  letter b . . . . .  
/357 = probabili ty of  word space. We refer the reader to [3] for the extract values of/31,132, 
. . . .  /~27. All a / s  are zero. Then H(ao, fli . . . . .  /327, 0/97) = 4.1. The lower bound of  Theorem 
2 is 

Cost(C) _> max{4.1 /c(x)  - (x - 1); 1 _< x _ oo}, 

where c(x) is such that 2 -~t~) + 2 -2~t~ + 2 -~t~ = 1. The maximal value of  the right-hand 
side is about 3.24 with x = 1.44 and c(x) = 1.19. The upper bound of  Theorem 3 is 5.85. 
The code actually constructed is shown in Figure 6; i.e., r is encoded by letter space, i is 
encoded by dot letter space, and n by dot dash letter space. The cost of  this code is 4.3025. 
In comparison, the cost of  the morse code is 4.055. The Morse code is nonalphabetic. 

4. Implementation 

In this section we describe an implementation of  procedure CODE. Our implementation 
has running time O(t • n). As above, let d E ~ be such thatf.,~o 2 -de-'* = 1. Furthermore, 
let zi = ~ o  2 -de2k for 0 ~ i _< t. Procedure CODE has the following global structure. 

procedure CODE(/, r, L, R, U): 
begin 
i l l= r 
then Vt ~-- U 

else begin 
(*) for all i, O <_ i <_ t do 
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begin L, := L + (R - L)zH; 
R, := L + (R - L)z,; 
let h andj be such that 
sh- j <- L; < sa and s~ < Ri < s~+~; 
if h _<j then CODE(h,j, Li, R,, Ua2,); 
ifj  + 1 _< r then W~+l ,-- Ua~i+l 

{**) 

end 
end 

' end 
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Three problems remain  to be solved: 

(a) In what order do we process the different values of  i in loop (*)? 
(b) How do we find h a n d j  in line (**)? 

(c) What  should we do if  all s/'s, l_< i_< r, lie in the same subinterval? Note that problem 
(c) does not affect the analysis given in Section 3; however, it will affect r u n n i n g  time. 

Consider problem (b) first. We describe a solution for the 0th subinterval .  By definition, 
Lo = L, and hence st-~ _< Lo -< st by assumption.  Thus  we only have to find j such that 
s1 -< R0 < si÷~. We f i n d j  by exponent ia l  + b inary  search [7]. We first compare Ro with 

st+l, st+2, st+4, st+8 unt i l  st+2~ > Ro or 1 4 . 2  k > r. 

In the second case we have sr -< Ro; i.e., all s/'s fall into the same interval. In the first case 
we have st+zk > Ro and  Sl+2~-, <-- Ro or k = 0. I f  k is equal  to 0, then e i t h e r j  = 1 + 1 (if  
st <- Ro) o r j  = l ( ifRo < st). I f k  is not  equal  to 0, then 1 + 2 k-~ _ j  _< l + 2 k. We determine 
the exact value o f j  by b inary  search on the interval  1 + 2 *-~ . . .  1 + 2 k in t ime O(k) .  

Let no = j  - l + 1; i.e., no is the n u m b e r  ofs/ 's  which lie in the 0th interval. Equivalent ly,  
the recursive call CODE( / , j ,  . . . )  constructs no - 1 code words IV,. 

Since j - 1 __> 2 ~-a where k is determined as above, it follows t h a t j  can be determined in 
time _<a(l + log(no + 1)), where a is a suitable constant.  

Next we address problem (a). Let hi, 0 _< i _< t, be the n u m b e r  of  si's which lie in the ith 
interval. The obvious way to proceed is to determine no, n~, n2, . . . ,  nt in that order. Note 
that the solution given to (b) applies to all nz's. However, this strategy may waste a lot o f  
time, e.g., if  n~ is large and  n2 . . . . .  n ,  are small. Note that nt actually does not  have to be 
computed because it is uniquely  determined once the other values are found. It would be 
much cheaper in this case to compute  m, n2 . . . .  in reverse order. These considerat ions lead 
to the following strategy. 

Determine no and  nt in parallel, and stop when any  one of  them is found. Say no was 
determined first. Forget everything about  n,. Now determine nl and  n, in parallel  . . . .  

In this way one can find no . . . . .  n, in t ime 

a'.(~.i=o ( l + l o g ( n ~ +  l))-max(i~i~, + l o g ( n i +  I ) ) )  

for some constant  a ' .  

It remains to treat problem (c). Suppose all but  one n / a re  0, say nj = n. In this case we 
either artificially assign the leftmost probabil i ty  at to the 0th subinterval  ( i f j  ___ 1) or the 
rightmost probabi l i ty  ar to the tth subinterval  ( i f j  < t). More precisely, suppose j _> I. 
Then we set Vt ~ Uao, Wt+~ ~-- Ua~, and  call C O D E  recursively with parameters  l + !, r, 
Lj, R~, Ua2j. Note that the analysis of  Section 3 is still valid. By this modificat ion we 
guarantee that at least one code word W~ is constructed by every call of  procedure CODE.  
We are now ready to set up recursion equat ions for an upper  bound  T o n  the runn ing  time 
of our  implementa t ion  of  algori thm CODE.  Let T(n + !, t) be the maximal  t ime needed 
by C O D E  in order to construct a code for probabi l i ty  dis t r ibut ion (Cto, fl~ . . . . .  fl~, am) and  
code alphabet  ao, a3 . . . .  , a2t-~, a2t with costs co, cl . . . . .  c2t. Note that n + l is equal  to the 
number  of  afs. Then  

T(0, t) = 0, T(I,  t) = a, 
for some constant  a. 
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Let n + 1 > 1; i.e., we have to construct a code for (ao, fl~ . . . . .  fin, an). We first determine 
no, nl . . . . .  nt as described above in time 

a.(~.i~0 (1 + log(hi + 1 ) -  max (1~/_~, + log(ni + I ) ) ) .  

Since ni is the number  of  sfs which fall in the ith subinterval, we have n + 1 = no + n~ + 
• . • + nt. Also, 0 --< ni and n/_< n by our  modification above. For  every n / >  0 we have to 
call C O D E  recursively; this recursive call takes time at most T(n/,  t). 

For the sequel, it will be convenient  to modify  C O D E  slightly. If  max ni > 4, then we 
proceed as described above. I f  max n/_< 4, then we avoid recursive calls altogether. Rather,  
we solve each subproblem directly in time O(t ) .  This gives the following recurs/on equation 
for T (we replace n + 1 by n throughout):  

Tl(n,  t) = max [ 
n0+..-+~,ffin (T(ni ,  t)  + a(l  + Iog(ni + 1))) 

n , < n  i--1 
max n l>4  

-1 

- max a(l + log(ni + l ) ) / ,  
O<_i~_t 3 

T2(n, t) = max [ 
~o* . . . . .  ,~n ( i f n i ~ O t h e n a ( t +  l) else 0 + a(1 + log(ni + 1))) 

n i <n  i~O 
max n l ~ 4  

"1 

max a(l  + log(ni + l ) ) / ,  
O<--i~--t d 

T(n,  t) = max(Tl(n, t), T2(n, t)). 

Here a is some constant; without loss of  generali ty we can use the same a in all equations. 

THEOREM 4. T(n ,  t) -~ O ( ( t  q- l ) .  n). 

PROOF. We show by induction on n that 

T(n ,  t)  <_ d( t  + l ) .  n - e(t  + I ) . l o g ( n  + l) (5) 

for some suitable constants d and e (to be determined later). 

Induct ion  base. n = 0 ,  n =  1, o r n = n o +  . . .  + nt; O <- ni < n; m a x  n/ - 4; and  T(n ,  t) 
= T2(n, t). Then  

T(0, t) = 0, T(I,  t) = a, 

and 

T(n ,  t) <_ a(t  + 1). (number  o f  ni's ~ 0) + a(t  + 1)(1 + log 5) 
<_ a(t  + l ) . n  + a(t  + 1) log 10. 

In either case we can find for every choice o f  e a suitable d such that (5) is true. 

Induct ion  step. Let n = no + . . .  + nt, 0 <_ ni < n, max n / >  4, and T(n ,  t) = Tl(n,  t). 

Then by the induction hypothesis, 
t 

T(n ,  t) <_ ~ [d( t  + I)ni - e(t + l)log(ni + I) + a(I + log(ni + 1)] 
iffi0 

- max a(l  + log(hi + !)). 
O~_i~_t 

We may assume without loss o f  generality that no = max n/. Then  

T(n ,  t) <_ d( t  + 1). n - e(t + l)log(n + 1) + e(t + 1)log(n + 1) 
t t 

+ ~ a(l  + log(hi + 1)) - ~ e(t + l)log(ni + 1). 
iffil i--0 
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It suffices to show that 

e(t 4- 1)log(n + 1) + at 
t 

<_ e(t + l)log(no + i) + (e(t + 1) - a) ~ log(hi + 1). 
i ~ l  

Since ~ I~  log(n, + I) is smallest when all but  one n~, 1 <- i <- t, are zero, we have 
~ t  log(n, + 1) >_ log(n - no + 1). Thus  it suffices to show that 

e(t + l) log(n + 1) + at 
<_ e(t + l)log(no + 1) + (e(t + 1) - a)log(n - no + 1). 

The derivative of the r ight-hand side with respect to no is 

1 e( t  + l ) n  + a + (a  - 2e( t  + l))no 
f(no) := In 2 (no + l)(n - no + !) 

For 0 <- no <- n the denomina to r  is positive. The  numera tor  is a l inear  funct ion of  no 
which is positive for no = 0. Hence there exists some real m such that f(no) >- 0 for 0 <- 
no <- m andf (no)  <- 0 for m <- no <- n. (It is conceivable that m >_ n.) Hence it suffices to 
check the inequal i ty  for the extremal values of  no: no = n - 1 and  no = max(n / ( t  + 1), 5). 
For no = n - 1 the inequal i ty  reduces to 

e(t + l)log(n + 1) + at < _ e(t + l ) l ogn  + (e(t + 1) - a), 

o r  

n + l  
e(t + l)log <-- (e - a)(t + 1). 

n 

Since n > no -> 5, one has only to choose e such that 

7 < (e - a)/e.  log ~ _  

Suppose now that no = max(n / ( t  + 1), 5). If  no = n/( t  + 1) ~_ 5, and  hence n _~ 5(t + 1), 
the inequali ty reduces to 

e ( t +  l)log n +  1 + a t < _ ( e ( t +  l ) - a ) l o g ~ n +  1 . 

Since t_> 1. (n + 1)/(no + 1) <- t + I, and  tn/ ( t  + 1) + 1 _> 5t + 1 = 5(t + 1 ) -  4, it suffices 

to show that 

e(t + l)log(t + 1) + at <_ (e(t + l) - a)log(5(t + 1) - 4), 

o r  

a ( t +  l og (5 ( t+  1 ) - 4 ) ) <  e ( t +  1 ) . l o g (  5 ( t +  1 ) -  4 )  
- -  t + l  " 

Since t _> 1 and hence (5(t + l) - 4) /( t  + l) _> 3, it suffices to choose e such that 

( l°g(5(t + 1) - 4 ) )  < e 
a 1-t 

t + l  

f o r t _  > I. 
Finally,  if n0 = 5 > n/ ( t  + I), and  hence n < 5(t + l), the inequal i ty  reduces to 

e(t + l) log(n + l) q- at <_ e(t + l)log 6 + (e(t + l) - a)log(n - 4), 

o r  

e ( t +  l)log ~ + a l o g ( n - 4 ) < - e ( t +  l ) l o g 6 - a t .  



426  D. ALTENKAMP AND K. MEHLHORN 

Since 5 = no < n < 5(t + i), it suffices to show that 
7 e(t + l)log ~ + a log 5t _< e(t + l)log 6 - at, 

or  

a(t + log 50 < e(t + l)log 12 
- -  T 

for t --> 1. Hence we only need to choose e sufficiently large. 
In either case one only has to choose e sufficiently large in order for the induction step 

to carry through. Since the validity of  the induction base is independent of  the value of  e, 
the theorem follows. [ ]  

Remark. If the for-loop ( , )  in procedure CODE is realized as for i from 0 to t do, then 
the recursive equation, 

T(n, t) = max T(ni, t) + ~ a(l + log(hi + 1)) 
no+" " "+nt--n  i-- l i-- 1 

n i < n  

with solution T(n, t) = O(tn log n) arises. So the modification suggested above is essential. 

Theorem 4 shows that a prefix code satisfying the inequality o f  Theorem 3 can be 
constructed in linear time O(t. n). Two variants of  the above recursion equations for T 
might sometimes be useful. An application can be found in [I]. 

Variant A 

T(n,t)= n,+.max. - +,,~-,, [~.T(n;,t)+a(l+logni)].i=o 
l~_n,-<n 
l~s~_t 

It has a solution T(n, t) = O(n logn)  [1]. 

Variant B 

T(n , t )=a  for n _ 4 ,  

T(n, t) = ,,o+,,,+--max. +,,.=,, [ ~ (T(ni, t) + a(l + logn/)) - max a(l + ~/_~ 
l ~ n l < n  

It has a solution T(n, t) = O(n) [ l ] .  
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