Codes: Unequal Probabilities, Unequal Letter Costs

DORIS ALTENKAMP AND KURT MEHLHORN

University of Saarlandes, Saarbriicken, Federal Republic of Germany

ABSTRACT. The construction of alphabetic prefix codes with unequal letter costs and unequal probabilities is
considered. A variant of the noiseless coding theorem is proved giving closely matching lower and upper bounds
for the cost of the optimal code. An algorithm is described which constructs a nearly optimal code in linear time.

KEY WORDS AND PHRASES: codes, unequal letter costs, unequal probabilities, noiseless coding, prefix codes,
approximation algorithm, search trees

CR CATEGORIES: 5.25,5.39, 5.6

1. Introduction

We study the construction of prefix codes in the case of unequal probabilities and unequal
letter costs. The investigation is motivated by and oriented toward the following problem.
Consider the ternary search tree in Figure 1. It has three internal nodes and six leaves. The
internal nodes contain the keys (3, 4, 5, 10, 12} in sorted order, and the leaves represent
the open intervals between keys. The standard strategy to locate X in this tree is best
described by the following recursive procedure SEARCH.

proc SEARCH(int X: node v)

if v is a leaf

then “X is not in the tree™

else begin let X, K; be the keys in node v;
if X < K, then SEARCH(X, left son of v)
if X = K then exit (found);
if K> does not exist
then SEARCH(X, right son of v)
else begin if X < K, then SEARCH(X, middle son of v);
if X = K then exit (found);
SEARCH(X, right son of v)
end

end
end

Apparently the search strategy is unsymmetric. It is cheaper to follow the pointer to the
first subtree than to the second subtree, and it is cheaper to locate K, than K.

We also assume that the probability of access is given for each key and each interval
between keys. More precisely, suppose we have n keys Bi, ..., B, out of an ordered
universe, with B; < B, < ... < B,. Then fB; denotes the probability of accessing B;,
I =i =n, and o; denotes the probability of accessing elements X, with B, < X < By,

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.

A preliminary version of this paper was presented at the Fifth International Colloquium on Automata, Languages,
and Programming, Udine, Italy, 1978,

Authors’ address: University of Saarlandes, 66 Saarbriicken, Fachbereich 10, Federal Republic of Germany 6600.
© 1980 ACM 0004-5411/80/0700-0412 $00.75

Journal of the Association for Computing Machinery. Vol. 27. No. 3, July 1980, pp- 412-427.

Codes: Unequal Probabilities, Unequal Letter Costs 413

O G, 10

(53] [GL8)] [4,5) [0, [z,)

FIGURE |

0 < j < n. ao and B, have obvious interpretations. In our example n = 5, B2 is the
probability of accessing 4, and aq is the probability of accessing X € (4, 5). We always

write the distribution of access probabilities as ao, 81, ay, . . ., Br, Q.
Ternary trees, in general, (f + 1)-ary trees, correspond to prefix codes in a natural way.
We are given letters ao, a1, @2, . . ., G2 of cost co, €1, €2, . - - , Car, TESPECtively; ¢; > 0 for 0 =

[< 2t. Here letter ay corresponds to following the pointer to the (/ + 1)st subtree, 0 </
< 1, and letter gy corresponds to a successful search terminating in the (/ + I)st key of a
node, 0 = /<1t

In our example, ¢ = 2. The code word corresponding to 4, denoted Wy, is aoas. The code
word corresponding to (10, 12), denoted ¥y, is asao.

In general, a search tree is a prefix code

C={Vo, Wi, Vs, ..., Wa, Vi) with V,;EZ* and W, € Z*Zenq,

where = = {ao, a2, G4, ..., Az} and Zeng = {@1, a3, ..., @21}, 0= j=n 1l =si=n =*
denotes the set of all words over alphabet =, W; describes the search process leading to key
B;, and V; describes the search process leading to interval (B;, Bj+1).

Remark. In the binary case ¢ = 1, letters do, a1, a2 have the natural interpretation <,
=, and >. Letter a, (=) ends successful searches and letter a; is never used in unsuccessful
searches. In signaling-codes applications, alphabet . might serve synchronizing purposes
(cf. the example of an alphabetic Morse code at the end of Section 3).

Note that the use of the letters in Zeqq is very restricted. They can only be used at the
end of code words, and they can only be used in words W,. Furthermore, the code words
must reflect the ordering of the keys, i.e.,

(*) Vi Wi< ¥V

for j < i=j’, and < denotes the lexicographic ordering of strings based on the ordering
@ < ay < a» < --+ < ay of letters. The cost of a word a;aiai, --- a, is equal to ¢;, +
¢i,+ -+ + iy, L&, the sum of the costs of the letters. The (expected) cost of code C is then
defined as

Cost(C) = ¥ B: Cost(W)) + ¥ a; Cost(V)).
i=1 J=0
Remark. In the binary equal cost case (f = 1, co = ¢1 = ¢; = 1) this definition coincides
with the definitions of weighted path length used in the literature [e.g., 4, 11, 13, 15, 16].
We will address the following two problems:

(1) Given letters, their costs, and a probability distribution, find a code with nearly
minimal cost.
(2) Give good a priori bounds for the cost of the optimal code.

We refer to these problems as the alphabetic coding problems. We will also have to

414 D. ALTENKAMP AND K. MEHLHORN

consider nonalphabetic codes, i.e., codes which do not have the ordering requirement (»)
on the code words and which have unlimited usage of letters. Formally, given letters
do, . . - , ds, their costs co, . . ., ¢, and a probability distribution p,, ..., pn, we want to find
a prefix code C = {U), ..., Uy} such that

Cost(C) = i pi Cost(U:)

=1
is minimal.

Remark. We use the notation p;, ..., p, for the probability distribution in the
nonalphabetic case and ao, B, ..., B a» in the alphabetic case. This should help the
reader keep things apart.

We show that the cost of an optimal alphabetic code C, satisfies the following
inequalities. Here H = H(ao, f1, au, . . ., fin, an) = —Y.Bi log Bi — Ya; log g is the entropy
of the probability distribution, B = ¥, and ¢, d € R are such that¥5.o 277 = 1 and

#4027 = |. Numbers 279 27° are sometimes called the “roots of the characteristic
equation of the letter costs” [cf. 6]. Also, log denotes logarithm base 2, and In denotes
natural logarithm.

i 1
<d. Cont) +~-c- ’ Ve .
H < d- Cost(Copt) o ¢ BI:QOS;(¢l + In(u-v. Cost(Copt)] +))
for some constants ¥, vand e = 2.71. . .;
H i
H(Copr) = =+ Ba)) | =+ ; .
Cost(Cop) < — + (Zat) [5+ max Ck] + (T8)[rpoadg c/e] @

Note that the lower and upper bound differ essentially by In Cost(Copt). Inequality (1)
is proved in Corollary 1. Theorem 2 gives a better bound than Corollary 1, but the bound
is harder to state. Inequality (2) is proved in Theorem 3 by the explicit construction of a
code C satisfying (2). Moreover, this code can be constructed in linear time O(r-n)
(Theorem 4).

Inequalities (1) and (2) provide us with a “noiseless coding theorem” for alphabetic
coding with unequal letter costs and unequal probabilities.

The construction of prefix codes is an old problem. We close this introduction by briefly
reviewing some results.

Case 1. Equal Letter Costs (i.e., c;= 1 foralli, 0 =i=<ys). Inthe nonalphabetic case an
algorithm for the construction of an optimal code dates back to Huffmann [10]; it can be
implemented to run in time O(xn log n) [19]. The noiseless coding theorem (due to Shannon
[18]) gives bounds for the cost of the optimal code, namely,

1

mﬂ(m, s pr) = Cost(C) =

1
lOg(S + l) [H(Pl, .. ,pn) + 1]7
where H(p1, ..., pa) = —3 p: log p: is the entropy of the distribution.

The binary alphabetic case was solved by Gilbert and Moore [8], Knuth {13}, and Hu
and Tucker [9]. The time complexity of their algorithm is O(n”) and O(n log n), respectively.
Cost is usually called weighted path length in this context. Bounds were proved by Bayer
[4] and Mehlhorn [16], namely,

H(co, Brs - - ., Bn, an) = Cost(Copr) + (loge) — 1 + log Cost{ Cope),
Cost{Copt) = H(aw, Bry .- s Brs a) + 1 + Yo

Various approximation algorithms exist which construct codes in linear time in the binary
case. The cost of these codes lie within the above bounds [4, 7, 15, 16].

Case 2. Equal Probabilities (i.e., pi = 1/n for | <i=<n) The problem was solved by
Perl, Garey, and Even [17]. The time complexity of their algorithm is O(min(¢°n, tmlogn)).

Codes: Unequal Probabilities, Unequal Letter Costs 415

The alphabetic case is identical to the nonalphabetic case, and no a priori bounds exist for
the cost of an optimal code.

Case 3. Unequal Probabilities, Unequal Letter Costs. This case was treated by Karp
[12]. He reduced the problem to integer programming and thus provides us with an
algorithm of exponential time complexity. No better algorithm is known at present.
However, it is also not known whether the corresponding recognition problem (is there a
code of cost =<m) is NP-complete. A priori bounds were proved by Krause [14],
Csiszar [5), and Cot [6].

The alphabetic case was treated by Itai [11]. He describes a clever dynamic programming
approach which constructs an optimal alphabetic code in time O(1*-n%). No a priori
bounds are known.

2. The Lower Bound

In this section we want to prove a lower bound on the cost of every prefix code. We first
treat the nonalphabetic case and then extend the results to the alphabetic case.

2.1 THE NONALPHABETIC CASE

2.1.1 Preliminary Considerations. Consider the binary case first. There are two letters
of cost ¢, and cy, respectively. In the first node of the code tree we split the set of given
probabilities into two parts of probability p and 1 — p, respectively (Figure 2). The local
information gain per unit cost is then

H(p.1-p)
G(py=11p1=p
(P == Sl =p)
where H(p, g) = —p log p — g log 4. This is equivalent to
—plog p — (1 — p)log(l — p)
0.
(—p . log - - p) IOg 2—002) - (1/0) forall ¢#

The following fact shows that G(p) is maximal for p =27, | — p =27°%, where c is
chosen such that 277" + 272 = |, Hence G(p) =< c for all p, and GQ™°") = c.

G(p) =

FACT (CF,E.G., AsH [2]). Letx;,yi=O0forl<i=<n,Yx;=1= Yy, Then

=Yx;log xi = —Yx; log yi.

This shows that the maximal local information gain per unit cost is ¢. Hence every code
for probabilities py, ..., p. should have cost at least (1/c)- H(p,, ..., pn). This is made
precise in the next section.

The plausibility argument also suggests an approximation algorithm: Try to split the
given set of probabilities into two parts of probability p and 1 — p, respectively, so as to
make |p —27°"| as small as possible. We discuss this approach in Section 3.

2.1.2 The Lower Bound in the Nonalphabetic Case

THEOREM 1. Let py, ..., p. be a probability distribution and let C = {U,, ..., U,) be
a prefix code over code alphabet {ay, . . ., a,}. Let c; > 0 be the cost of a;,, 0 < i < s. Let ¢ be
such that ¥, 27 = 1.

(@) [14]) Cost(C) = H(p, ..., pa)/c, where H(pi, . .., pa) = —Y. pi log pi is the entropy of
the frequency distribution.
(b) Lee he R, h =0, and

Ly = {i; cCosi(U)) = log pi — h}.
Then Y.er, po <277

Remark. Inequality (a) reads in its full form

-21 pleCost{U)] = ¥ pl-log p.].
1= =1

416 D. ALTENKAMP AND K. MEHLHORN

FIGURE 2

It is an extension of the noiseless coding theorem to arbitrary letter costs. Part (b) shows
that this inequality is almost satisfied termwise by the expressions in square brackets. More
precisely, the fraction of probabilities which violates the termwise inequality by more than
h is less then 277,

Proor. (a) Let Ui =a;a;, -+ - a;. Define

[
gi = [] 27°%, l<i<n,

k,Tl
Q = zl q..
Then Q = I by a simple induction argument on max /.. The prefix property is needed here.
Furthermore,

4
lcg qi = —C. Z C,'k = —CCOSt(Ui))
k=1

and hence, by the fact above,

H(pi, ..., pn) ~¥pi log p:
—2.p: log(qi/ Q)
¢Cost(C) + log 0

¢- Cost(C).

W A

(b) Let h =0 and
Ly = {i; cCost(U) = —log p: ~ h}.

Then
[= = “ 2—rCost(U,)
Q iglc L)
> 2-¢ ost (L],
> E 2logp,+h = 2):. Z p“ D
€L, i€l
2.2 THE ALPHABETIC Case. Every alphabetic code C = {(Vo, Wy, ..., W,, V) is a

nonalphabetic code, and hence Theorem 1 applies. It shows that
1
Cos(C) = = Haw, B, . .., Bn,),

where 3320 27°* =1. In this section we improve upon this lower bound and essentially
show that for every alphabetic code C,

1
Cost(C) = (—1-[H(a0, Bis ..., Bn, an) —-E-mg;(¢ +In H(ao, B, ..., B, a,.)],

Codes: Unequal Probabilities, Unequal Letter Costs 417

where Y=o 27/ =1 and u is some constant. Note that only the letters in £, and not those
in Sea. are used to define d, and hence the new bound is much better for large H.

Example. Consider ternary trees withco=¢;, = c2=c3=c¢s= 1. Then ¢ = log 5 and
d=log 3.
The alphabetic case differs from the nonalphabetic case in two respects:

(1) The letters in Zoq can only be used at the end of code words W; and not at all in
words V.

(2) The lexicographic ordering of code words must reflect the underlying ordering of
the keys.

We will use only restriction (1) to improve upon the lower bound. There seems to be no
way to incorporate this (combinatorial) restriction into the proof of Theorem 1. Rather, we
turn the combinatorial restriction into a constraint on costs by artificially increasing the
cost of letters in X.na. Then we use the fact that letters in Zenq are used at most once in
words W; and not at all in words ¥} in order to relate the cost of a code under the old and
the new cost function. Finally, we apply Theorem 1 to the new cost function. Let |1 <
x < ... be arbitrary, let

¢i=c¢ for i even,
Ci=X+Ci for i odd,

and let ¢(x) € R be such that Y550 27% = |,

Remark. In the new cost function ¢;, 0 < i < 2¢, we increased the cost of letters in Senq
by factor x. For x = 1 the new cost function is identical with the old, and hence c(l) = ¢
for x = % the cost of letters in Zcnq is infinite, and hence c(®) = d.

Let C = {Vo, Wi, Vi, ..., W, V,} be an alphabetic code for probability distribution

(@ B1. a. ..., Ba, an). In particular, ¥; € =* and W; € Z*Zena. Let Cost(C) be the cost
of C with respect to Co, ¢1, s, . .., €, and let Cost(C) be the cost of C with respect to co,
Cio v v v Cot

Lemma 1. CosC) = Cos(C) + (x — 1)- B- maxioaa ¢i for every x, | < x < oo, B =
*n

o=l s
Proor. For W, € Z*X,,4 let
I/’/i = W: . aj‘, aj, S zend-

Then
Cost(W)) = CosuW)) + ¢;

= Cost(W) + x-¢;

= Cost(W) + (x —)¢,
Hence

Cost(C) = 3B: Cosu W) + Yoy Cost(V;)
=< Cost(C) + (x — l)-Bma;(ci. O
{od

We next use Theorem 1 for the costs &, 0 < i < 2.
THEOREM 2. Let c(x) be such that T3t 27°*'% = 1. Then
Cosi(C) = max{H(ao, B1, . .., Bn,)/ c(x) — (x — 1)- B-max ¢;; | = x < oo},
iodd

Proor. By Theorem I,

H(ao, B], “eey Bn, a,.)
o(x) ’

Substituting into Lemma 1 yields the result. [J

CosiC) =

418 D. ALTENKAMP AND K. MEHLHORN

We were unable to find a closed form expression for the maximal value of the right-
hand side in Theorem 2. An approximate value can be found as follows. Recall that
c(1) = ¢, ¢(») = d, and c(x) decreases for | < x < 0. Write ¢(x) = d + 8(x).

with 0 < 8(x) < ¢ — d. We show that 8(x) < v- e “*~" for some constants u, v (see Lemma
2 below). Then Theorem | can be written as (we write H instead of H(ao, B, ..., Bn,

an)):
H=c(x)-Cost(C)+(x — 1).e(x)- B mg;(i
=d.Cost(C) + 8§(x)-Cost(C) + (x — 1} c- B-max ¢

iodd
=d-Cost(C) + v. ™" V. Cost(C) + (x = 1) - ¢+ B-r_ng;(G.

This inequality is true for all x, 1 < x < o,
The right-hand side is minimal (differential calculus) for

_ (Infu-v Cost(C)/c - B> maXioaa ¢:])
” .

NEER)

Hence

.B -v.Cost(C
H=d Cost(C) + =2 max ¢; [1 +1n (—“—v———f-(-—)—)]
U iodd ¢+ B.-max;oqq4 ¢

Finally, using y In(1/y) = 1/e for all y > 0 (in particular, y = (cB max ¢;)/u), we obtain

CoOROLLARY 1. Let C be an alphabetic code for distribution oo, B, av, . . ., Bn, an with
respect to costs ¢o, C1, . . ., Cor. Let ¢, d be such that

2

t
y2ru=1 y2rdu=]

k=0 k=0
Let B = 3 B.. Then there are constants u, v (depending on co, i, . . ., ¢z but not on Cosi(C)
and ao, By, . . ., Br, an) such that

B 1
H(ao, By, - .., Bny aa) = d - Cost(C) +-C—-max o[l + In(u-vCost(C))] +—.
u iodd e u

Proor. By the preceding argument. [J

Corollary 1 shows that the lower bound for the alphabetic code is essentially the lower
bound (d- Cost(C)) for the nonalphabetic code where only the letters of even index are
used, plus a small correction of order (¢ B-max;.aa ¢ In Cost(C)) which reflects the
restricted usage of the letters in Z.pnq.

A special case of Theorem 2 and Corollary | was proved by Bayer [4]. He considered
the binary alphabetic case with equal letter costs, i.e., t=landco=c; =c: = 1.

Codes: Unequal Probabilities, Unequal Letter Costs 419

It remains to prove Lemma 2. We will show the existence of constants u, v but not derive
a bound for them. This is justified since we recommend always using Theorem 2 and
computing the maximal value of the right-hand side by numerical methods. Corollary 1 is
only given in order to indicate the order of the bound in Theorem 2.

LEMMA 2. Let 8(x) be defined as above. Then
8(x) < v.e =V
for some constants u, v.

PROOF. 8(x) < v-e “*""is equivalent to (x — 1) = —In(8(x)/v)/u. §(x) is defined by
¢t ¢
2—(d+a<xi)cy, + 2-(d+6(x))-x- o — l
IEO kzl

Consider the left-hand side as a function f(x, 8) of two arguments x and §; i.e., replace
8(x) by & in the left-hand side. For fixed & this function is decreasing in x. Also,
f(x, 8(x)) = 1. Suppose we know that f(z, §(x)) =< | for some z. Then x =< z, since z < x
implies f(x, 8(x)) < f(z, 8(x)) = 1, a contradiction. It therefore suffices to show that there
are constants u, v such that for all x,

t t
2—(d+5(-’()k‘zk + 2—1d+6(x))zvy,_| < l, 3
kgo kgl ()
where z := 1 — In(8(x)/v)/u. Replacing ¢;, 0 < i < 2t, by ¢min = min{c; 0 =<i=< 2t} >0in
the left-hand side of (3) only increases the left-hand side. It therefore suffices to show that

t
2—6(x)cmi,,. Z 2—d(‘~_’k + tz-dzcm,,, <1 (4)

k=0
for some constants u, v. Using Yk-0 279 =1, the left-hand side of (4) is of the form
8(y) = by” + ba(y/v)™,
with b; = 2™ > 1, by = (27%win > 0, by = (dCmin In 2)/u > 0, and y = 8(x). Hence 0 <
y = ¢ — d. Choose u such that b3 = 1. Then
g(y) = bi" + ba(y/v).
. It remains to show that we can choose v such that g(y) = I for 0 < y < ¢ — 4. Note that
£(0) =1 and that
b
g'(»=(-In b)b” + 72
< (=In b))y + b gnee 0= y<c—d
v
=0
for sufficiently large v. Hence g(y) = 1 for 0 =< y < 4. This shows the existence of u
andv. O
3. The Upper Bound

In this section we describe an algorithm- for constructing alphabetic codes and derive a
bound on the cost of the code constructed. The algorithm is a generalization of the one in
[8. 16]. :

The code is constructed top-down by repeated splitting of the ordered set {ao, 1, au,
-+« @n1y Bus an} Of probabilities. In each step we try to split the set as described in 2.1.1.
Let d be such that

t
Y 2w = |
:
k=0

420 D. ALTENKAMP AND K. MEHLHORS

o} St o) s3
= l —+ + l ——t l + LL |
% B 4 B % lea o3
N -) b N
~-dc -dc¢ -dc
2 o 2 2 ’ 4
FIGURE 3
%o i
l l ! 4 l | ———— e —
i a B, l a, I 1)
A R |
— — A N,
~de ~de ~dc
2 4
a2 ° A2 A2
— J
—~—————
-dc
A = 2
FIGURE 4
and let
S-1} = =00, Sn+1 = 0O, So = ao/2,

si=ap+ B+ -0+ Bi 4+ a;f2 for 1<i<n.
5-1 and sn+1 are defined as “stoppers.”

Example. Letco=1,c1=3,c2=2,¢c3=1,c,=2 Thend= 1. Let oo = oz = B; = 1 for
1 =i=<3. Thensi= (4 + 1)/14 for 0 < i < 3. We draw the distribution (a0, 81, ay, ...,
-1, Br, @a) as a partition of the unit interval and split the unit interval in the ratio 27
2—d(‘2 . 2—dc4 .

From Figure 3, it appears reasonable to assign letter ao to ao, 81, ay, to assign letter a; to
az, letter a4 to ay, letter a; to By, and letter a; to 8. In other words, we set W, = ay, Vs =
az, W3 = as, and V3 = ay, and let V,, W), V; start with a,. Next we have to work on the
subproblem {ao, 81, a1}. We split the interval [0, 277*] in the same way and obtain Figure
4. This suggests the use of letter ao(ai,a2) as the second letter of the code words assigned
10 a0 (B1, a1). Note that we used letter a; for oy, since more than half of probability a, falls
into the interval of length A - 277,

In general, the construction process can be described as a recursive procedure CODE
with parameters

’ Lr We work on the subproblem ay, B4+1, ..., Br, an l<r;
(H L, R LRER, L=ssi=s5, <R,
(U UeZ* ={ay a ..., ax}* Uis a common prefix of code words
VI, Wi, Vl+1, ee.y Wy, V5, and

(2) R — I = 27 Cosull)

Initially / = 0, r = n, L = 0, R = 1, and U = € where € is the empty word. Consider now
any call of the procedure CODE with parameters /, r, L, R, U satisfying the invariants (1)
and (2) stated in their definition.

Case 1. I = r. Then we define ¥, = U and return.

Case 2. 1 <r. We split the interval (L, R) in the ratio 279*:279: ... :27% The ith

Codes: Unequal Probabilities, Unequal Letter Costs 421

FIGURE S

subinterval, 0 < i < 1, has boundaries L; = L + (R — L)-Yib2™%* and R =
Li + (R — L)-27%_We then determine for each subinterval the set of sx’s which lie in
that subinterval, say Sx)—; = L; < S» and S; =< R; < Sy for the ith interval. If h < j, i.e,,
some sy’s actually lie in the ith subinterval, then we call procedure CODE recursively with
parameters l="hr=j L=L;R=R; U= Uay. Furthermore, if in addition j + 1 < r,
then we assign code word Uayisy to Bys1; i.e., we set Wy, = Uazis1.

Example. Supposef=3and Ly<so< ' ssy<Li<b<s=s--.=<s55=l3<
53 < Rs. Then the recursive calls are CODE(0, 4, Lo, L;, Uao), CODE(S, 7, L, Ls, Uay),
and CODE(S, 8, Ls, Rs, Uae). Furthermore, we set W5 = Ua; and Ws = Uas. A pictorial
representation is given in Figure 5.

In the remainder of this section we derive an upper bound on the cost of the code
constructed by procedure CODE. It is obvious that the properties stated in the definitions
of I, r, L, R, U are invariants of the recursive procedure; i.e., they hold for all values of the
actual parameters.

Consider the code word W; = Uay, constructed for 8; U € Z* and a,, € Zena. The word
W: was constructed by the procedure CODE with actual parameters /, r, L, R, U, where
!<i=r. Hence

Bisa/2+ B+ apr+ .- + B¢ + a,/2,
since 3, appears in that sum, and thus

Bi=< s — s
<R-L= 2—dCosl(U)

by invariants (1) and (2) of procedure CODE. Hence
Cost(W,) = Cost(U) + max cx

1
=< 7 [-log B:] + max cx.

Consider next code word V;. Word ¥; was constructed by procedure CODE with actual
parameters (/. j. . , V;). CODE with actual parameters (J, j, , , V) was called by CODE
with actual parameters (/, r, L, R, U), with I < r, I=j=<r and V; =Uas for some ap, €
Z. Hence

G2=2af2+ B+ ami+ o + B+ ar/2
=s5,—-5<R-L= 2—dCosl(U)

by the same reasoning as above. Hence

1
Cost(V)) = y [-loga; + 1] + max .

even

422 D. ALTENKAMP AND K. MEHLyqq

c NS
A / g\ / \°\ N\,
/ /! \ L

a H 2 q P
FIGURE 6
We summarize:
THEOREM 3. Let (a0, 1, ... , Bn, @n) be a probability distribution, 8; = 0, a; = 0,
2Bi+Yai=1 Letao, a,...,axbe (2t + 1) symbols with costs co, ¢y, . . ., czr € Re. Then

procedure CODE constructs an alphabetic code with

(a) Cost(W)) < [—log Bi}/d + maxs oaa cx;

(b) Cost(V)) = [—log a; + 1]/d + maxi even C;

(©) Cos{(C) = H(ao, B1, ar, . .., B, an)/d + (T)[1/d + maxy cven cx] +
(Z ﬁ.‘)[ma)Ck odd Ck]-

Proor. (a) and (b) are proved by the discussion above. (c) follows from (a) and (b) by
multiplication with 8; and a;, respectively, and summation. O -

Example. An ordered Morse code. The Morse code is over a three letter alphabet: dot
(cost 1), dash (cost 2), and letter space (cost 1). We assume the ordering dot < letter space
< dash; i.e, = = {dot, dash} and S..q = {letter space}. Thenco =1, ¢c; = 1, ¢ = 2, 2~¢
= 0.618, and d = 0.6942. We encode the 27 English letters (including the word space) in
alphabetical ordering; i.e., 8 = probability of letter a, 8, = probability of letter b, .. .,
B27 = probability of word space. We refer the reader to [3] for the extract values of 8., S,
-+ . Ber. All a’s are zero. Then H(ao, B, . . ., 27, 027) = 4.1. The lower bound of Theorem
2is

Cost(C) = max{4.1/¢(x) = (x — 1); | = x < o},

where ¢(x) is such that 27% + 272%) 4 37x®@ = | The maximal value of the right-hand
side is about 3.24 with x = 1.44 and ¢(x) = 1.19. The upper bound of Theorem 3 is 5.85.
The code actually constructed is shown in Figure 6; i.e., r is encoded by letter space, i is
encoded by dot letter space, and n by dot dash letter space. The cost of this code is 4.3025.
In comparison, the cost of the morse code is 4.055. The Morse code is nonalphabetic.

4. Implementation

In this section we describe an implementation of procedure CODE. Our implementation
has running time O(7 - n). As above, let d € R be such that ¥, 2"%* = 1. Furthermore,
let z; = Yo 27%* for 0 < i < . Procedure CODE has the following global structure.

procedure CODE(/, r, L, R, U):
begin
ifl=r
then V, «— U
else begin
(*) foralli,0<i=<1tdo

Codes: Unequal Probabilities, Unequal Letter Costs 423

begin L; = L + (R — L)zi_y;

Ri=L+(R~- L)z
) let h and j be such that

Siy S Li<spand 5 < Ry < 5,445
if h = j then CODE(h, j, L;, R;, Ua..);
ifj+ | = r then VV_,-H «— Uaziyy

end

end
' end

Three problems remain to be solved:

(a) In what order do we process the different values of i in loop (*)?

(b) How do we find h and j in line (»*)?

(c) What should we do if all s’s, / < i < , lie in the same subinterval? Note that problem
(c) does not affect the analysis given in Section 3; however, it will affect running time.

Consider problem (b) first. We describe a solution for the Oth subinterval. By definition,
Lo = L, and hence s-1 < Lo < 5 by assumption. Thus we only have to find j such that
5; < Ry < 5;+1. We find j by exponential + binary search [7]. We first compare Ry with

St+1s St+25 Si+ay Si+8 until S0 > Ry or 4 2k >r.

In the second case we have s, < Ry; i.e,, all 5/s fall into the same interval. In the first case
we have snpt > Ro and spge-r < Ro or k = 0. If k is equal to 0, then either j = [+ 1 (if
s1=< Ro) or j = I (if Ro < ;). If k is not equal to 0, then / + 2"~ < j </ + 2* We determine
the exact value of j by binary search on the interval / + 2*! ... [+ 2% in time O(k).

Let np = j— I+ 1; i.e,, no is the number of s;’s which lie in the Oth interval. Equivalently,
the recursive call CODE(/, j, . ..) constructs n, — 1 code words W,

Since j — I = 2*"! where k is determined as above, it follows that J can be determined in
time <a(l + log(ne + 1)), where a is a suitable constant.

Next we address problem (a). Let n;, 0 < i < 1, be the number of s5i’s which lie in the ith
interval. The obvious way to proceed is to determine no, my, ny, ..., n in that order. Note
that the solution given to (b) applies to all ns. However, this strategy may waste a lot of
time, e.g., if n, is large and n, ..., n, are small. Note that r, actually does not have to be
computed because it is uniquely determined once the other values are found. It would be
much cheaper in this case to compute m, n, . .. in reverse order. These considerations lead
to the following strategy.

Determine no and n, in parallel, and stop when any one of them is found. Say no was
determined first. Forget everything about n,. Now determine n, and », in parallel

In this way one can find n, ..., n, in time

a- (f) (1 + log(n; + 1)) ~ max (1 + log(n; + 1)))
=0 it

for some constant a’.

It remains to treat problem (c). Suppose all but one n; are 0, say n; = n. In this case we
either artificially assign the leftmost probability a; to the Oth subinterval (if j = 1) or the
rightmost probability . to the rth subinterval (if J < 1). More precisely, suppose j = 1.
Then we set V, « Uao, Wis1 < Ua,, and call CODE recursively with parameters/ + 1, r,
L, R,, Uay. Note that the analysis of Section 3 is still valid. By this modification we
guarantee that at least one code word W, is constructed by every call of procedure CODE.
We are now ready to set up recursion equations for an upper bound T on the running time
of our implementation of algorithm CODE. Let T(n + 1, 1) be the maximal time needed
by CODE in order to construct a code for probability distribution (a, 81, . .., Ba, a») and
code alphabet ao, a,. ..., @1, as with costs Co, €1, ..., C2r. Note that n + 1 is equal to the
number of a,’s. Then

70,1 =0, (1, 1) = q,
for some constant a.

424 D. ALTENKAMP AND K. MEHLHORN

Letn + 1> 1;i.e., we have to construct a code for (ao, B, . . ., Bn, an). We first determine
no, m, ..., n as described above in time

t

a- (2 (1 +logmi+ 1) ~ max (1 + log(n: + l))).
i=0 <i<

Since n; is the number of s;’s which fall in the ith subinterval, we have n + 1 = np + n, +

-« + n. Also, 0 < n; and n; = n by our modification above. For every n; > 0 we have to

call CODE recursively; this recursive call takes time at most T(n;, t).

For the sequel, it will be convenient to modify CODE slightly. If max n; > 4, then we
proceed as described above. If max n; < 4, then we avoid recursive calls altogether. Rather,
we solve each subproblem directly in time O(r). This gives the following recursion equation
for T (we replace n + 1 by n throughout):

— t
hmn= max [2 (T(ni, 1) + a(l + log(ni + 1))
n<n i=1
max n,>4

O=i<t

— max a(l + log(n; + l))],

¢
Y. (if n; 5 0 then a(z + 1) else 0 + a(1 + log(n; + 1))

i=0

ng+- .. +n=n
n<n
max n,=<4

To(n, t) = max [

O=ist

— max a(l + log(n; + l)):l,

T(n, t) = max(T\(n, t), Ta(n, 1)).

Here a is some constant; without loss of generality we can use the same a in all equations.

THEOREM 4. T(n, 1) = O((t + 1) - n).

Proor. We show by induction on »n that

Tn,y=d(t+1)-n—e(t+1).log(n+ 1))

for some suitable constants d and e (to be determined later).

Induction base. n=0,n=1,orn=ny+ -+ + n; 0<n;<n,max n; <4; and T(n, 1)
= Ty(n, t). Then

70,1 =0, T(l,1) = a,
and
T(n, 1) = a(t + 1) - (number of n’s # 0) + a(t + 1)(1 + log 5)
=a(t+ 1)-n+a(t+ 1) log 10.

In either case we can find for every choice of e a suitable 4 such that (5) is true.

Induction step. Letn=no+ --- +n,0 < n;, < n, max n; >4, and T(n, 1) = Ti(n,).
Then by the induction hypothesis,

t

T(n,)= 3, [d(t + Dn; — e(r + Dlog(m + 1) + a(1 + log(n; + 1)]

=0
— max a(l + log(n; + 1)).
O=<ist
We may assume without loss of generality that no = max n;. Then
Tn,)=d(t + 1) n— e(t + Dlog(n + 1) + e(t + Dlog(n + 1)
t ¢

+ ¥ a(l +log(ni + 1)) — ¥ e(t + Dlog(n: + 1).
=0

=1

Codes: Unequal Probabilities, Unequal Letter Costs 425

It suffices to show that
e(t + Dlog(n + 1) + at ,
< e(t + Dlog(no + 1) + (e(t + 1) — a) ¥, log(n: + 1).
i=1
Since Yi-1 log(n: + 1) is smallest when all but one n;, 1 < i < ¢, are zero, we have
i log(m + 1) = log(n = no + 1). Thus it suffices to show that

e(t + Dlog(n+ 1) + at
= e(t + Dlog(no + 1) + (e(t + 1) — a)log(n — no + 1).
The derivative of the right-hand side with respect to no is
1 e(t+ Dn+a+ (a—2e(t+)no
10 = 3 e D e
o+ Y(n—no+ 1)

For 0 < ny < n the denominator is positive. The numerator is a linear function of no
which is positive for no = 0. Hence there exists some real m such that f(n0) = 0 for 0 =
ng <= m and f(no) < 0 for m < no < n. (It is conceivable that m = n.) Hence it suffices to
check the inequality for the extremal values of no: no = n — 1 and no = max(n/(t + 1), 5).
For no = n — | the inequality reduces to

e(t + Dlog(n + 1) + at < e(t + Dlogn + (e(t + 1) — a),

or

+
e(t + llog ntl

p =(e—a)t+ 1)

Since n > no = 5, one has only to choose e such that
log =< (e — a)/e.

Suppose now that mo = max(n/(t + 1), 5). If no = n/(t + 1) = 5, and hence n = 5(¢t + 1),
the inequality reduces to
n+ l).

e(t + l)log<
Sincer= L. (n+ 1)/(no+)<t + l,and /(¢ + 1)+ 1 =5t + 1 = 5(t + 1) — 4, it suffices
to show that

n+1
no+l

) + at < (e(t + 1)—a)log(Ht_ 7

e(t + Dlog(t + 1) + at < (e(t + 1) — a)log(5¢ + 1) — 4),

or

a(t +log(S(t+ 1) —4)<e(t+1)- log<ﬂ_':__:)Tf_i).

Since 1 = | and hence (5(t + 1) — 4)/(t + 1) = 3, it suffices to choose e such that

2 (1 + log(5(+ 1) — 4))

=e
t+1

forr= 1.
Finally, if no = 5 > n/(t + 1), and hence n < 5(¢ + 1), the inequality reduces to

e(r + Dlog(n + 1) + ar < e(r + log 6 + (e(r + 1) — a)log(n — 4),
or

n+1
n-—4

e(t + l)log() + alog(n — 4) < e(t + N)log 6 — at.

426 _ D. ALTENKAMP AND K. MEHLHORN
Since 5 = ny < n < 5(¢ + 1), it suffices to show that
et + log 7 + alog 5¢ < e(t + l)log 6 — at,
or
a(t + log 51) < e(t + l)log ¥

for 1 = 1. Hence we only need to choose e sufficiently large.

In either case one only has to choose e sufficiently large in order for the induction step
to carry through. Since the validity of the induction base is independent of the value of e,
the theorem follows. O

Remark. If the for-loop (#) in procedure CODE is realized as for i from O to ¢ do, then
the recursive equation,

T(n,t)= Jmax ,:Z' T(n;, 1) + E:l a(l + log(n: + l))}

n;<n

with solution T(n,) = O(tn log n) arises. So the modification suggested above is essential.

Theorem 4 shows that a prefix code satisfying the inequality of Theorem 3 can be
constructed in linear time O(r - n). Two variants of the above recursion equations for T
might sometimes be useful. An application can be found in [1].

Variant A
n+eotn=n | peg

l=ni<n
1=s=t

T(n,t) = max ':i T(ni, 1) + a(l + log ni)}.

It has a solution T(n, 1) = O(nlogn) [1].

Variant B
T(n,t)=a for n=<4,
T(n,t) = max [(T(ni, 1) + a(l + logn))) — max a(l + log ni):'.
notngte.ctn=n | j=g O=i<s
o

It has a solution T(n, 1) = O(n) [1].

REFERENCES

1. ALTENKAMP, D., AND MEHLHORN, K. Codes: Unequal probabilities, unequal letter costs. Tech. Rep,,
University des Saarlandes, Saarbriicken, Federal Republic of Germany, 1978.
2. Asn, R, Information Theory. Interscience, New York, 1965.
3. BAUER, F.L., AND Goos, G. Informatik, Heidelberger Taschenbiicher. Springer-Verlag, Berlin, 1971.
4. Baver, P.J. Improved bounds on the costs of optimal and balanced binary search trees. Tech. Memo.,
Project MAC TM 69, M.L.T., Cambridge, Mass., 1975.
5. Csiszar, 1. Simple proofs of some theorems on noiseless channels. Inf. Control 14 (1969), 285-298.
6. Cot, N. Characterization and design of optimal prefix codes. Ph.D. Thesis, Stanford University, Stanford,
Calif. June 1977.
7. FREDMAN, M.L. Two applications of a probabilistic search technique. Proc. 7th Ann. ACM Conf. on
Theory of Computing, Albuquerque, N.M., 1975.
8. GILBERT, E.N.,, AND MOORE, E.F. Variable length encodings. Bell Syst. Tech. J. 38 (1959), 933-968.
9. Hu, T.C,, AND TuUCKER, A.C. Optimal search trees and variable length alphabetic codes. SIAM J. Appl.
Math. 21 (1971), 514-532.
10. HurFMaNN, D.A. A method for the construction of minimum-redundancy codes. Proc. IRE 40 (1952),
1098-1101.
1. Ita1, A. Optimal alphabetic trees. SIAM J. Comput. 5 (1976), 9-18.
12. Karp, R.M. Minimum redundancy coding for the discrete noiseless channel, JEEE Trans. Inf. Theory IT-
7 (Jan. 1961), 27-39.

Codes: Unequal Probabilities, Unequal Letter Costs 427

i3, Knute, D.E. Optimum binary search trees. Acta Inform. 1 (1971), 14-25.

§4. KraUSE, RM. Channels which transmit letters of unequal duration. Inf. Control 5 (1962), 13-24.

15. MEHLHORN, K. Effiziente Algorithmen. Teubner Studienbiicher Informatik, Stuttgart, 1977.

16. MEHLHORN, K. Best possible bounds on the weighted path length of optimum binary search trees. SIAM
J. Comput. 6,2 (1977), 235-239.

17. PerL, Y., GAREY, N.R., anD EvEN, S. Efficient generation of optimal prefix code: Equiprobable words
using unequal cost letters. J. ACM 22,2 (April 1975), 202-214.

18. SuannoN, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 27 (1948), 379-423, 623-656.

19. VAN LEEUWEN, J. On the construction of Huffmann trees. In 3rd International Colloguium on Automata,
Languages, and Programming, S. Michaelson and R. Milner, Eds., Edinburgh University Press, 1976, pp.
382-410.

RECEIVED JANUARY 1978; REVISED JUNE 1979; ACCEPTED JULY 1979

Journal of the Association for C ing Machinery. Vol. 27, No. 3, July 1980.

P]

