
Codes: Unequal Probabilities, Unequal Letter Costs

DORIS ALTENKAMP AND KURT MEHLHORN

University of Saarlandes, Saarbrficken, Federal Republic of German),

ABSTRACT. The construction of alphabetic prefix codes with unequal letter costs and unequal probabilities is
considered. A variant of the noiseless coding theorem is proved giving closely matching lower and upper bounds
for the cost of the optimal code. An algorithm is described which constructs a nearly optimal code in linear time.

KEY WORDS AND PHRASES; codes, unequal letter costs, unequal probabilities, noiseless coding, prefix codes,
approximation algorithm, search trees

ca CATEGORIES: 5.25, 5.39, 5.6

1. Introduction

We s tudy the cons t ruc t ion o f pref ix codes in the case o f u n e q u a l p robab i l i t i e s a n d u n e q u a l
letter costs. T h e inves t iga t ion is m o t i v a t e d by a n d o r i en ted toward the fo l lowing prob lem.
Cons ide r the t e r na r y search tree in F igu re 1. It has three in te rna l nodes a n d six leaves. The
in terna l nodes con ta in the keys {3, 4, 5, 10, 12} in sor ted order , a n d the leaves represen t
the open in te rva ls be tween keys. T h e s t a n d a r d s t ra tegy to locate X in this t ree is best
descr ibed by the fo l lowing recurs ive p r o c e d u r e S E A R C H .

proc SEARCH(int X; node v)
if v is a leaf
then "'X is not in the tree"
else begin let K, K2 be the keys in node v;

if X < K~ then SEARCH(X, left sou of v)
if X = K~ then exit (found);
if K2 does not exist
then SEARCH(X, right son of v)
else begin if X < K2 then SEARCH(X, middle son of v);
if X = K2 then exit (found);
SEARCH(X, right son of v)
end

end
end

A p p a r e n t l y the search s t ra tegy is unsymmet r i c . It is c h e a p e r to fol low the po in t e r to the
first subt ree t h a n to the second subtree , a n d it is c h e a p e r to locate K1 t h a n K2.

We also assume tha t the p robab i l i t y o f access is g iven for each key and each in terval
be tween keys. M o r e precisely, suppose we h a v e n keys B1 Bn out o f an o rdered

universe, wi th BI < B2 < . . . < Bn. T h e n fli deno te s the p robab i l i t y o f accessing Bi,
1 _< i _< n, a n d c~ i deno te s the p robab i l i t y o f accessing e l ement s X, wi th Bi < X < Bi÷t,

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
A preliminary version of this paper was presented at the Fifth International Colloquium on Automata, Languages,
and Programming. Udine, Italy, 1978.

Authors' address: University of Saarlandes, 66 Saarbriicken, Fachbereich 10, Federal Republic of Germany 6600.
© 1980 ACM 0004-5411/80/071X)-IMI2 $00.75

Journal of the Associalion for Compu ng Machinery, Vol. 27. No. 3. July 19S0, pp. 412-427.

;odes: U n e q u a l Probabi l i t ies , U n e q u a l L e t t e r Cos t s

[C-7T5] ~ [Cg'Tg~ ~ l(12 ,)1
FIGURE 1

413

0 ~ j -< n. ao and fin have obvious interpretations. In our example n = 5, fls is the
probability of accessing 4, and a4 is the probabili ty of accessing X E (4, 5). We always
write the distribution of access probabilities as ao, fla, eta ft,, an.

Ternary trees, in general, (t + l)-ary trees, correspond to prefix codes in a natural way.
We are given letters ao, al, a2 a2t of cost Co, cl, cs cst, respectively; ct > 0 for 0 _<
l -< 2t. Here letter ast corresponds to following the pointer to the (l + l)st subtree, 0 _< l
_ t, and letter ast+l corresponds to a successful search terminating in the (l + l)st key of a

node, 0 -< l < t.
In our example, t = 2. The code word corresponding to 4, denoted I4"2, is aoa3. The code

word corresponding to (10, 12), denoted II4, is a4ao.
In general, a search tree is a prefix code

C = { V0, W~, 1"1 W,, V,} with ~ ~ Z* and W / ~ '~'*~"end,

where Z = {ao, as, a4 as,} and Ze,d = {al, a3 as,-l}, 0 <_j --< n, 1 _< i <-- n. Z*
denotes the set of all words over alphabet ~, IV, describes the search process leading to key
B/, and Vj describes the search process leading to interval (Bi, Bi+~).

R e m a r k . In the binary case t = 1, letters ao, al, as have the natural interpretation <,
=, and >. Letter al (=) ends successful searches and letter al is never used in unsuccessful
searches. In signaling-codes applications, alphabet Ze,d might serve synchronizing purposes
(of. the example of an alphabetic Morse code at the end of Section 3).

Note that the use of the letters in ~]end is very restricted. They can only be used at the
end of code words, and they can only be used in words W/. Furthermore, the code words
must reflect the ordering of the keys, i.e.,

(,) ~ < w/< ~.

for j < i _< j ' , and < denotes the lexicographic ordering of strings based on the ordering
a o < a l < a 2 < • • • < a s t o f letters. The cost of a word a i a i , a i : , • • • a l , is equal to ci, +
e,~ + • • • + c,,, i.e., the sum of the costs of the letters. The (expected) cost of code C is then

defined as
n n

Cost(C) = ~ /3i Cos t (W/)+ y~ aj Cost(~) .
iml j~0

R e m a r k . In the binary equal cost case (t = 1, Co = ca = cs = 1) this definition coincides
with the definitions of weighted path length used in the literature [e.g., 4, 11, 13, 15, 16].

We will address the following two problems:

(I) Given letters, their costs, and a probabili ty distribution, find a code with nearly
minimal cost.

(2) Give good a priori bounds for the cost of the optimal code.

We refer to these problems as the alphabe t ic cod ing prob lems . We will also have to

4 1 4 D. A L T E N K A M P A N D K. M E H L H O R N

consider nonalphabetic codes, i.e., codes which do not have the ordering requirement (,)
on the code words and which have unlimited usage o f letters. Formally, given letters
a0 as, their costs co , cs, and a probability distribution pl pn, we want to find
a prefix code C = { UI Un) such that

Cost(C) - ~ pi Cost(U/)
i--I

is minimal.

Remark. We use the notation p~ pn for the probability distribution in the
nonalphabetic case and c~0, fla fin, a , in the alphabetic case. This should help the
reader keep things apart.

We show that the cost of an optimal alphabetic code Coot satisfies the following
inequalities. Here H = H(ao, ill, al fin, a~) = - ~ 8 i log fli - ~aj log a~ is the entropy
of the probability distribution, B = ~8~, and c, d ~ ~, are such tha t~_o 2 -de2• - 1 and
~k2t=o 2 -cck --- 1. Numbers 2 -a, 2 -c are sometimes called the "roots o f the characteristic
equation of the letter costs" [cf. 6]. Also, log denotes logarithm base 2, and In denotes
natural logarithm.

1 1
H _< d . Cost(Coot) + - c. B max ci[l + In(u. v. Cost(Coot)] + - - (1)

u io~d (e. u)

for some constants u, v and e = 2.71... ;

] ,[max 1 Cost(Coot) -< -~ + (~ai) + max ek + (YBi ck . (2)
k even

Note that the lower and upper bound differ essentially by In Cost(Copt). Inequality (1)
is proved in Corollary 1. Theorem 2 gives a better bound than Corollary 1, but the bound
is harder to state. Inequality (2) is proved in Theorem 3 by the explicit construction of a
code C satisfying (2). Moreover, this code can be constructed in linear time O(t. n)
(Theorem 4).

Inequalities (1) and (2) provide us with a "noiseless coding theorem" for alphabetic
coding with unequal letter costs and unequal probabilities.

The construction of prefix codes is an old problem. We close this introduction by briefly
reviewing some results.

Case 1. Equal Letter Costs (i.e., c~ = 1 for all i, 0 _< i _< s). In the nonalphabetic case an
algorithm for the construction of an optimal code dates back to Huffmann [10]; it can be
implemented to run in time O(n log n) [19]. The noiseless coding theorem (due to Shannon
[18]) gives bounds for the cost of the optimal code, namely,

1 1
log(s + 1) H(p~ p,) <- Cost(C)_< log(s + 1) [H(pl pn) + 1],

where H(p~ pn) = - ~ p i log p, is the entropy of the distribution.
The binary alphabetic case was solved by Gilbert and Moore [8], Knuth [13], and Hu

and Tucker [9]. The time complexity of their algorithm is O(n 2) and O(n log n), respectively.
Cost is usually called weighted path length in this context. Bounds were proved by Bayer
[4] and Mehlhorn [16], namely,

H(ao, fll B~, an) <-- Cost(Coot) + (loge) - 1 + logCost(Coo,),
Cost(Coo,) _< H(a0, B, B., o~) + l + y,~j.

Various approximation algorithms exist which construct codes in linear time in the binary
case. The cost of these codes lie within the above bounds [4, 7, 15, 16].

Case 2. Equal Probabilities (i.e., pi = l /n for ! _< i _< n.) The problem was solved by
Perl, Garey, and Even [17]. The time complexity of their algorithm is O(min(t"n, tnlogn)).

I Codes: Probabilities, Letter Costs Unequal Unequal 415

The alphabetic case is identical to the nonalphabetic case, and no a priori bounds exist for
the cost of an optimal code.

Case 3. Unequal Probabilities, Unequal Letter Costs. This case was treated by Karp
[12]. He reduced the problem to integer programming and thus provides us with an
algorithm of exponential time complexity. No better algorithm is known at present.
However, it is also not known whether the corresponding recognition problem (is there a
code of cost -<m) is NP-complete. A priori bounds were proved by Krause [14],
Csiszar [5], and Cot [6].

The alphabetic case was treated by Itai [I 1]. He describes a clever dynamic programming
approach which constructs an optimal alphabetic code in time O(t 2.n3). No a priori
bounds are known.

2. The Lower Bound

In this section we want to prove a lower bound on the cost of every prefix code. We first
treat the nonalphabetic case and then extend the results to the alphabetic case.

2.1 THE NONALPHABETIC CASE

2.1.1 Preliminary Considerations. Consider the binary case first. There are two letters
of cost cl and c2, respectively. In the first node of the code tree we split the set of given
probabilities into two parts of probability p and 1 - p, respectively (Figure 2). The local
information gain per unit cost is then

H(p , 1 - p)
G(p) - cl .p + e2(I - p) '

where H(p, q) = - p logp - q log q. This is equivalent to

G (p) - - p l o g p - (l - p) l o g (l - p) for all c ~ O .
(- p . log 2 (1 - p) log 2). (l /c)

_ - - c o l - - , The following fact shows that G(p) is maximal f o r p - 2 , 1 - p = 2 c% where c i s
chosen such that 2 + 2 -cc~ -- 1. Hence G(p) <_ c for allp, and G(2) = c.

FACT (CF., E.G., ASH [2]). Let xi, yi >-- O f o r 1 <_ i <_ n, ~x i = 1 = ~yi. Then

- ~ x i log xi <-- - ~ x i log yi.

This shows that the maximal local information gain per unit cost is c. Hence every code
for probabilities pl pn should have cost at least (l / c) . H(p~ pn). This is made
precise in the next section.

The plausibility argument also suggests an approximation algorithm: Try to split the
given set of probabilities into two parts of probability p and 1 - p, respectively, so as to
make [p -2-"'1 as small as possible. We discuss this approach in Section 3.

2.1.2 The Lower Bound in the Nonalphabetic Case

THEOREM 1. Let pl pn be a probability distribution and let C = { U1 Un} be
a prefix code over code alphabet {ao a~}. Let ci > 0 be the cost ofai, 0 <_ i <_ s. Let c be
such that ~_,7=. 2 -m = 1.

(a) [14] Cost(C) >_ H(p~ p~)/c, where H(p~ p,,) = -Y~pi log pi is the entropy o f
the frequency distribution.

(b) Let h E IR, h >_ O, and

Lh = {i; cCost(U,) <_ logpi - h}.

Then 5,~,~L,, p, <- 2 -h.

Remark. Inequality (a) reads in its full form
n n

Y~ p,[cCost(U,)] >_ ~ p,[- logp,] .

416 D. A L T E N K A M P A N D K. M E H L H O R N

p / -p

F1~URE 2

:i

It is an extension of the noiseless coding theorem to arbitrary letter costs. Part (b) shows
that this inequality is almost satisfied termwise by the expressions in square brackets. More
precisely, the fraction of probabilities which violates the termwise inequality by more than
h is less then 2 -h.

PROOf. (a) Let Ui = a~ai.~ . . . %. Define

li
qi := [I 2-~", l < i < n,

k - I
n

O : = Z q i .
i - 1

Then Q < I by a simple induction argument on max/~. The prefix property is needed here.
Furthermore,

tl
log qi = - c . ~ ci~ = - c C o s t (U i) ,

k-- I

and hence, by the fact above,

H (p l p ,) = - ~ p i log pi
< - ~ J ~ i l o g (q i / Q)
= c C o s t (C) + log Q
__< c . Cost(C).

(b) Let h _> 0 and

Then

Lh = {i; cCost(Ui) < - l o g pi - h} .

1 >_ Q = ~ 2 -cc°~ttv,,
i-1

--> ~ 2 -cc°~'~c;~
iEL~

~ 21°g'+h= 2 h. ~ P,.
i ~ L h i ~ L h

[]

2.2 THE ALPHABETIC CASE. Every alphabetic code C = { Vo, W~ W,,, Vn) is a
nonalphabetic code, and hence Theorem 1 applies. It shows that

Cost(C) _ - .> 1 H(ao, 32 /3n, ~) ,
C

where ~ 0 2 -~ck =1. In this section we improve upon this lower bound and essentially
show that for every a lphabe t i c code C,

Cost(C) ~ ~. (~o, fl~ /?~, an) - c . max ci . In H(ao, fl~ B . . ~ ,
1/ i odd

Codes: Unequal Probabilities, Unequal Let ter Costs 417

where ~,~,=o 2 -a',~' = 1 and u is some constant. Note that only the letters in Z, and not those
in Z,,,d, are used to define d, and hence the new bound is much better for large H.

Example. Consider ternary trees with Co = c~ = c2 = c3 = c4 = !. Then c = log 5 and
d = log 3.

The alphabetic case differs from the nona lphabe t ic case in two respects:

(1) The letters in X,,d can only be used at the end of code words IV, and not at all in
words V~.

(2) The lexicographic ordering of code words must reflect the under ly ing ordering of
the keys.

We will use only restriction (1) to improve upon the lower bound. There seems to be no
way to incorporate this (combinatorial) restriction into the proof of Theorem 1. Rather, we
turn the combinator ia l restriction into a constraint on costs by artificially increasing the
cost of letters in ~E~end. Then we use the fact that letters in Z~.d are used at most once in
words W, and not at all in words ~ in order to relate the cost of a code under the old and
the new cost function. Final ly, we apply Theorem 1 to the new cost function. Let 1 _<
x < ~ . . . be arbitrary, let

di = ci for i even,
d g = x . c ~ for i o d d ,

and let c(x) ~ IR be such that ~,~0 2 -~>4 = 1.

Remark. In the new cost funct ion d~, 0 _< i_< 2t, we increased the cost o f letters in Z~,d
by factor x. For x = 1 the new cost funct ion is identical with the old, and hence c(l) = c;
for x = ~ the cost of letters in Z~,d is infinite, and hence c(oo) = d.

Let C = (Vo, W~, V~ W, , V,} be an alphabetic code for probabi l i ty dis t r ibut ion
(a,,. fij, o~ fl~, a ,) . In particular, Vj E Z* and IVi E ~']'*'~end. Let Cos"~(C) be the cost
of C with respect to (o, (~, (2 (2t, and let Cost(C) be the cost o f C with respect to Co,
Cl C2t .

LEMMA I. C o ~ (C) < - C o s t (C) + (x - l) . B . m a x i o a a c i f o r e v e r y x , l__ .x_<oo , B =

PROOF.

Then

For IV, ~ Z* Zen d let

Wi = W~. aj~, aj, ~ Zend.

Cos'-~(w;) = ~ " g i (w ;) + 6,
= Cost(W~) + x - cj,

= Cos t (W,) + (x - l)cj,.
Hence

C ~ (c / = Eft, C~(w,) + E,~, C0~(v,)
--< Cost(C) + (x - !) . B max el.

i odd

We next use Theorem 1 for the costs dg, 0 _< i _ 2t.

THEOREM 2. Let c(x) be such that ~'~t=o 2 -~u~¢ = 1. Then

Cost(C) > m a x (H (a o , fll f l , , o~) /c (x) - (x - 1). B . m a x ci; 1 <_ x < oo).
i o d d

PROOF. By Theorem 1,

H(ao, flj fin, an) c"~t~c) _>
c(x)

Substituting into Lemma 1 yields the result. []

[]

418 D . A L T E N K A M P A N D K . M E H L H O R N

We were unable to find a closed form expression for the maximal value of the right-
hand side in Theorem 2. An approximate value can be found as follows. Recall that
c(i) = c, c(~) = d, and c(x) decreases for I <_ x _ oo. Write c(x) = d + 6(x) .

ii:1

C

c (x)
d .

X

with 0 _-< 6(x) _< c - d. We show that 8(x) <_ v , e - ~ - a ~ for some constants u, v (see Lemma
2 below). Then Theorem 1 can be written as (we write H instead of H(ao, fl~ f l , ,

an)):

H <_ e (x) . Cost(C) + (x - 1). c (x) . B max cs
i o d d

__< d . Cost(C) + 6(x) . Cost(C) + (x - I) . c . B . max c,
i odd

_< d . Cost(C) + v. e -"~-~) • Cost(C) + (x - 1). e . B . max ci.
i o d d

This inequali ty is true for all x, 1 _< x -< oo.
The r ight-hand side is min imal (differential calculus) for

(In[u • v C o s t (C) / c . B . maxiodd ci])
(x - I) =

U

Hence

[/ cost,c, l
H < _ d . C o s t (C) + m a x c i l + l n u - v .

u iodd \C . B . maxiodd c l / J "

Finally, using y In (l / y) _< l / e for all y > 0 (in particular, y = (cB max c,) /u) , we obtain

COROLLARY I. L e t C be an a lphabe t i c code f o r d is t r ibut ion C~o, i l l , aa fin, a , with
respect to costs Co, ca c2t. L e t c, d be such that

2t t

Y. 2 - ~ = 1, y~ 2 -~'~* = 1.
k=O k=O

L e t B = ~ f l i . Then there are cons tan t s u, v (depend ing on co, ca c2, bu t no t on C o s t (C)

a n d ao, fla fin, an) such tha t

c B l
H(a0, fla fin, trn) <-- d . C os t (C) + - - . m a x c,[l + l n (u . v Cos t (C))] + .

U i odd e • u

PROOF. By the preceding argument. []

Corollary 1 shows that the lower bound for the alphabet ic code is essentially the lower
bound (d. Cost(C)) for the nonalphabet ic code where only the letters of even index are
used, plus a small correction of order (c . B . maxi,,,~,~ c, In Cost(C)) which reflects the
restricted usage of the letters in Ze,d.

A special case of Theorem 2 and Corollary 1 was proved by Bayer [4]. He considered
the binary alphabetic case with equal letter costs, i.e., t = 1 and co = c2 -- ce = I.

Codes: Unequal Probabilities, Unequal Letter Costs 419

It remains to prove L e m m a 2. We will show the existence o f constants u, v but not derive
a bound for them. This is just if ied since we r e c o m m e n d always using Theo rem 2 and
computing the maximal value o f the r ight-hand side by numerica l methods. Corol lary I is
only given in order to indicate the order o f the bound in Theo rem 2.

LEMMA 2. Let 8(x) be defined as above. Then

~(x) <_ v . e - " ~ - "

for some constants u, v.

PROOf. 6(x) <-- v . e - ' (x-~ is equivalent to (x -- I) <_ - - ln(8(x) /v) /u . 6(x) is def ined by

~ 2 -(d÷~*))~k + 2 -~d÷e~*" '~-' = 1.
k=O k = l

Consider the lef t -hand side as a funct ion f (x , 8) of two arguments x and 8; i.e., replace
6(x) by 8 in the lef t -hand side. Fo r fixed ~ this funct ion is decreasing in x. Also,
f (x , 6(x)) = 1. Suppose we know t h a t f (z , 6(x)) _< 1 for some z. T h e n x _< z, since z < x
impl i e s f (x , 8(x)) < f (z , 8(x)) _< 1, a contradict ion. It therefore suffices to show that there
are constants u, v such that for all x,

' i Y,, 2 -(d+~(x))c2* + 2 -(d+~x))z~k-' _< 1, (3)
k~O k=l

where z := 1 - ln(8(x) /v) /u . Replacing ci, 0 <_ i <_ 2t, by Cmin = min(ci; 0 --< i ----- 2t} > 0 in
the left-hand side o f (3) only increases the lef t -hand side. It therefore suffices to show that

2--~t~)~,-~n. ~ 2-d~:* + t2-d --< 1 (4)
kzO

for some constants u, v. Using Y.~-0 2 -d~* =1, the lef t -hand side o f (4) is o f the form

g(y) : = b l y + b 2 (y / v) b:',

with b~ = 2 "m'" > 1, b2 = t2 -a > 0, b3 = (dcmin In 2)/u > 0, and y = 8(x). Hence 0 _<
y _< c - d. C h o o s e u Such that b3 = I. T h e n

g(y) = b-i -~ + b.,.(y/v).

It remains to show that we can choose v such that g(y) _< 1 for 0 _< y _< c - d. Note that
g(0) = 1 and that

b2
g'(y) = (- I n bl)b'{ y + -

V

_ (- I n bx)b7 (c-a~ + _b2 since 0 _< y _< c - d
V

_<0

for sufficiently large v. Hence g(y) _< 1 for 0 _ y _< d. This shows the existence o f u
and v. []

3. The Upper Bound

In this section we describe an a l g o r i t h m for construct ing alphabet ic codes and derive a
bound on the cost o f the code constructed. The a lgor i thm is a general izat ion o f the one in
[8. 16].

The code is constructed top-down by repeated splitting o f the ordered set {a0, ill, al ,
. . . . c~,,_ ,, fl,,, a ,} o f probabili t ies. In each step we try to split the set as described in 2.1.1.
Let d be such that

2 -dc'-'~ = I,
k=O

420

S
O

I I I ' %
k

- d c
O 2

S
1

D. ALTENKAMP AND K. MEHLHOR/I~! ~

s 2 s 3 '~!

% 5 "3

- d c 2 - d c 4
2 2

FIGURE 3

s o s 1

k..._ ° " Y - .j ..,,

- d e - d e 2 - d c 4
A.2 o h'2 A.2

-dc
A 1= 2 o

FIGURE 4

a n d let

s - l = - ~ , s,+a = ~ , so - ao/2,

si = ao + fl l + . . . + fl i + a i / 2 for l _ < i _ < n .

s - t a n d S,+l are def ined as " s toppers . "

E x a m p l e . Let Co = 1, Cl = 3, c2 = 2, c3 = 1, c4 = 2. T h e n d = 1. Let ao = ai = fli = ~ for
1 ~ i _< 3. T h e n si = (4i + 1)/14 for 0 _< i ~ 3. W e d raw the d i s t r ibu t ion (ao, ill, a l
a , - a , /~ , , a ,) as a pa r t i t ion o f the uni t in te rva l a n d split the un i t in te rva l in the ra t io 2-at":
2-de2.2-dc4.

F r o m F igu re 3, it appea r s r easonab le to assign let ter ao to ao, ill, a l , to assign let ter a2 to
a2, le t ter a4 to aa, le t ter a~ to fl2, a n d le t ter a3 to fla. In o the r words, we set W2 = al, V2 =
a2, W3 = a,, a n d I.'3 = a4, a n d let Iio, IV,, V~ star t wi th ao. Next we h a v e to work on the
s u b p r o b l e m {ao, fl~, a~}. W e split the in te rva l [0, 2 -at ' '] in the s ame way a n d o b t a i n F igure
4. Th i s suggests the use o f let ter ao (a~, a2) as the second le t ter o f the code words ass igned
to ao (fla, a 0 . No te tha t we used let ter a2 for a~, s ince more t h a n h a l f o f p robab i l i t y a~ falls
into the in te rva l o f l eng th A • 2 -dc'~ .

In general , the cons t ruc t ion process can be descr ibed as a recurs ive p r o c e d u r e C O D E
with p a r a m e t e r s

L r W e work on the s u b p r o b l e m at, flt+l f i r , am; I <-- r;

!) L, R L , R ~ IR, L <_ st <_ sr <_ R;

U U 6 Z* = {a0, a2 a2t} *. U is a c o m m o n pref ix o f code words

Vt, Wt+l, VI+I W~, V,-; a n d

(2) R - L = 2 -d 'c°~"u) .

Ini t ia l ly 1 = 0, r = n, L = 0, R = 1, a n d U = E where ~ is the e m p t y word. Cons ide r now
any call o f the p rocedu re C O D E with p a r a m e t e r s / , r, L, R, U sat isfying the i n v a r i a n t s (1)
and (2) s ta ted in the i r def in i t ion .

Case 1. 1 = r. T h e n we def ine V~ - U a n d re turn .

Case 2. I < r. W e split the in terva l (L, R) in the ra t io 2-de": 2 -'~c' : • • • : 2 -tic'-'. T h e ith

f! Codes: Unequal Probabilities, Unequal Let ter Costs

(ao,13 I , a 4} 135 { c ~ 5 , f 3 6 , . . . , a 7} [38 {a 8}

F I G U R E 5

421

subinterval, 0 < i < t, has boundaries Li L + (R L) i-i - - = - .~k-0 2 -ec2k and Ri =
L, + (R - L) • 2 -aC~'. We then determine for each subinterval the set of sk's which lie in
that subinterval, say Sh-i --< Li < Sh and Sy _< Ri < Si+l for the ith interval. I f h _<j, i.e.,
some s~'s actually lie in the ith subinterval, then we call procedure CODE recursively with
parameters l = h, r = j , L = L,, R = R~, U = Ua2i. Furthermore, if in a d d i t i o n j + 1 __. r,
then we assign code word Ua2i+l to fly+l; i.e., we set I.Vj+~ = Ua2i+l.

Example. S u p p o s e t = 3 a n d L 0 ~ s o _ < - . . ~ s 4 < L l < L 2 < s ~ . . . - < s 7 < L a <
s~ -< R3. Then the recursive calls are CODE(0, 4, Lo, L~, Uao), CODE(5, 7, L2, La, Ua4),
and CODE(8, 8, L3, Ra, Ua6). Furthermore, we set W5 = Ua~ and W8 = Uas. A pictorial
representation is given in Figure 5.

In the remainder of this section we derive an upper bound on the cost of the code
constructed by procedure CODE. It is obvious that the properties stated in the definitions
of 1, r, L, R, U are invariants of the recursive procedure; i.e., they hold for all values of the
actual parameters.

Consider the code word IV,. = Uaki constructed for fli; U E Y.* and ak, E Zend. The word
IV, was constructed by the procedure CODE with actual parameters 1, r, L, R, U, where
I < i _< r. Hence

fli <--- at~2 + flt+l + at÷l + "." + flq + at~2,

since fl, appears in that sum, and thus

f l i ~ Sr - - SI

-< R - L = 2 -ac°sttU~

by invariants (I) and (2) of procedure CODE. Hence

Cost(W~) _< Cost(U) + max cK
K odd

i
-< ~ [- log/~i] + max cK.

K odd

Consider next code word Vj. Word ~ was constructed by procedure CODE with actual
parameters (j. j . , , Vj). CODE with actual parameters (j , j , , , Vj) was called by CODE
with actual parameters (l, r, L, R, U), with I < r, 1 ~ j _< r, and ~ = Uak, for some ak, E
Z. Hence

aj./2 < ad2 + flt+~ + ffl+l + ' ' " + fir + a~/2
= S r - - S l ~ R - - L = 2 -ac°'"U~

by the same reasoning as above. Hence

1
Cost(Vj) _< ~ [- l o g ay + I] + max ck.

k even

422 D. A L T E N K A M P A N D K.

l ~ - word 2 t

/ \ v

/ \ \ /\
/ /

a J g q / x ~
w y

FIGURE 6

We summarize:

THEOREM 3. Let (ao, fl~ fin, a~) be a probability distribution, fli >- O, ct; >_ O,
~/3i -[" ~Olj = 1. Let ao, al a2t be (2t + 1) symbols with costs co, c~ ce, ~ IR+. Then
procedure C O D E constructs an alphabetic code with

(a) Cost(W,) <_ [- l o g Bi] /d + maxk odd ch;
(b) Cost(V~) <_ [- l o g aj + l] /d + maxk ck;

(c) Cost(C) <_ H(ao, flh al fin, ct~)/d + (~ctj)[l / d + maxk c~] +
(Y. fli)[maxk odd ck].

PROOF. (a) and (b) are proved by the discussion above. (c) follows from (a) and (b) by
multiplication with/3i and at, respectively, and summation. []

Example. An ordered Morse code. The Morse code is over a three letter alphabet: dot
(cost 1), dash (cost 2), and letter space (cost 1). We assume the ordering dot < letter space
< dash; i.e., E = {dot, dash} and E~,d = {letter space}. Then co = I, ci = I, cz = 2, 2 - d

= 0.618, and d = 0.6942. We encode the 27 English letters (including the word space) in
alphabetical ordering; i.e.,/31 = probabili ty of letter a,/32 = probabil i ty of letter b
/357 = probabili ty of word space. We refer the reader to [3] for the extract values of/31,132,
. . . . /~27. All a / s are zero. Then H(ao, fli /327, 0/97) = 4.1. The lower bound of Theorem
2 is

Cost(C) _> max{4.1 /c(x) - (x - 1); 1 _< x _ oo},

where c(x) is such that 2 -~t~) + 2 -2~t~ + 2 -~t~ = 1. The maximal value of the right-hand
side is about 3.24 with x = 1.44 and c(x) = 1.19. The upper bound of Theorem 3 is 5.85.
The code actually constructed is shown in Figure 6; i.e., r is encoded by letter space, i is
encoded by dot letter space, and n by dot dash letter space. The cost of this code is 4.3025.
In comparison, the cost of the morse code is 4.055. The Morse code is nonalphabetic.

4. Implementation

In this section we describe an implementation of procedure CODE. Our implementation
has running time O(t • n). As above, let d E ~ be such thatf.,~o 2 -de-'* = 1. Furthermore,
let zi = ~ o 2 -de2k for 0 ~ i _< t. Procedure CODE has the following global structure.

procedure CODE(/, r, L, R, U):
begin
i l l= r
then Vt ~-- U

else begin
(*) for all i, O <_ i <_ t do

Codes: Unequal Probabil i t ies, Unequa l Le t t e r Costs

begin L, := L + (R - L)zH;
R, := L + (R - L)z,;
let h andj be such that
sh- j <- L; < sa and s~ < Ri < s~+~;
if h _<j then CODE(h,j, Li, R,, Ua2,);
ifj + 1 _< r then W~+l ,-- Ua~i+l

{**)

end
end

' end

423

Three problems remain to be solved:

(a) In what order do we process the different values of i in loop (*)?
(b) How do we find h a n d j in line (**)?

(c) What should we do if all s/'s, l_< i_< r, lie in the same subinterval? Note that problem
(c) does not affect the analysis given in Section 3; however, it will affect r u n n i n g time.

Consider problem (b) first. We describe a solution for the 0th subinterval . By definition,
Lo = L, and hence st-~ _< Lo -< st by assumption. Thus we only have to find j such that
s1 -< R0 < si÷~. We f i n d j by exponent ia l + b inary search [7]. We first compare Ro with

st+l, st+2, st+4, st+8 unt i l st+2~ > Ro or 1 4 . 2 k > r.

In the second case we have sr -< Ro; i.e., all s/'s fall into the same interval. In the first case
we have st+zk > Ro and Sl+2~-, <-- Ro or k = 0. I f k is equal to 0, then e i t h e r j = 1 + 1 (if
st <- Ro) o r j = l (ifRo < st). I f k is not equal to 0, then 1 + 2 k-~ _ j _< l + 2 k. We determine
the exact value o f j by b inary search on the interval 1 + 2 *-~ . . . 1 + 2 k in t ime O(k) .

Let no = j - l + 1; i.e., no is the n u m b e r ofs/ 's which lie in the 0th interval. Equivalent ly,
the recursive call CODE(/ , j , . . .) constructs no - 1 code words IV,.

Since j - 1 __> 2 ~-a where k is determined as above, it follows t h a t j can be determined in
time _<a(l + log(no + 1)), where a is a suitable constant.

Next we address problem (a). Let hi, 0 _< i _< t, be the n u m b e r of si's which lie in the ith
interval. The obvious way to proceed is to determine no, n~, n2, . . . , nt in that order. Note
that the solution given to (b) applies to all nz's. However, this strategy may waste a lot o f
time, e.g., if n~ is large and n2 n , are small. Note that nt actually does not have to be
computed because it is uniquely determined once the other values are found. It would be
much cheaper in this case to compute m, n2 in reverse order. These considerat ions lead
to the following strategy.

Determine no and nt in parallel, and stop when any one of them is found. Say no was
determined first. Forget everything about n,. Now determine nl and n, in parallel

In this way one can find no n, in t ime

a'.(~.i=o (l + l o g (n ~ + l))-max(i~i~, + l o g (n i + I)))

for some constant a ' .

It remains to treat problem (c). Suppose all but one n / a re 0, say nj = n. In this case we
either artificially assign the leftmost probabil i ty at to the 0th subinterval (i f j ___ 1) or the
rightmost probabi l i ty ar to the tth subinterval (i f j < t). More precisely, suppose j _> I.
Then we set Vt ~ Uao, Wt+~ ~-- Ua~, and call C O D E recursively with parameters l + !, r,
Lj, R~, Ua2j. Note that the analysis of Section 3 is still valid. By this modificat ion we
guarantee that at least one code word W~ is constructed by every call of procedure CODE.
We are now ready to set up recursion equat ions for an upper bound T o n the runn ing time
of our implementa t ion of algori thm CODE. Let T(n + !, t) be the maximal t ime needed
by C O D E in order to construct a code for probabi l i ty dis t r ibut ion (Cto, fl~ fl~, am) and
code alphabet ao, a3 , a2t-~, a2t with costs co, cl c2t. Note that n + l is equal to the
number of afs. Then

T(0, t) = 0, T(I, t) = a,
for some constant a.

424 D . A L T E N K A M P A N D K . M E H L H O R N

Let n + 1 > 1; i.e., we have to construct a code for (ao, fl~ fin, an). We first determine
no, nl nt as described above in time

a.(~.i~0 (1 + log(hi + 1) - max (1~/_~, + log(ni + I))) .

Since ni is the number of sfs which fall in the ith subinterval, we have n + 1 = no + n~ +
• . • + nt. Also, 0 --< ni and n/_< n by our modification above. For every n / > 0 we have to
call C O D E recursively; this recursive call takes time at most T(n/, t).

For the sequel, it will be convenient to modify C O D E slightly. If max ni > 4, then we
proceed as described above. I f max n/_< 4, then we avoid recursive calls altogether. Rather,
we solve each subproblem directly in time O(t) . This gives the following recurs/on equation
for T (we replace n + 1 by n throughout):

Tl(n, t) = max [
n0+..-+~,ffin (T(ni , t) + a(l + Iog(ni + 1)))

n , < n i--1
max n l>4

-1

- max a(l + log(ni + l)) / ,
O<_i~_t 3

T2(n, t) = max [
~o* ,~n (i f n i ~ O t h e n a (t + l) else 0 + a(1 + log(ni + 1)))

n i <n i~O
max n l ~ 4

"1

max a(l + log(ni + l)) / ,
O<--i~--t d

T(n, t) = max(Tl(n, t), T2(n, t)).

Here a is some constant; without loss of generali ty we can use the same a in all equations.

THEOREM 4. T(n , t) -~ O ((t q- l) . n).

PROOF. We show by induction on n that

T(n , t) <_ d(t + l) . n - e(t + I) . l o g (n + l) (5)

for some suitable constants d and e (to be determined later).

Induct ion base. n = 0 , n = 1, o r n = n o + . . . + nt; O <- ni < n; m a x n/ - 4; and T(n , t)
= T2(n, t). Then

T(0, t) = 0, T(I, t) = a,

and

T(n , t) <_ a(t + 1). (number o f ni's ~ 0) + a(t + 1)(1 + log 5)
<_ a(t + l) . n + a(t + 1) log 10.

In either case we can find for every choice o f e a suitable d such that (5) is true.

Induct ion step. Let n = no + . . . + nt, 0 <_ ni < n, max n / > 4, and T(n , t) = Tl(n, t).

Then by the induction hypothesis,
t

T(n , t) <_ ~ [d(t + I)ni - e(t + l)log(ni + I) + a(I + log(ni + 1)]
iffi0

- max a(l + log(hi + !)).
O~_i~_t

We may assume without loss o f generality that no = max n/. Then

T(n , t) <_ d(t + 1). n - e(t + l)log(n + 1) + e(t + 1)log(n + 1)
t t

+ ~ a(l + log(hi + 1)) - ~ e(t + l)log(ni + 1).
iffil i--0

Codes." Unequal Probabilities, Unequal Letter Costs 425

It suffices to show that

e(t 4- 1)log(n + 1) + at
t

<_ e(t + l)log(no + i) + (e(t + 1) - a) ~ log(hi + 1).
i ~ l

Since ~ I~ log(n, + I) is smallest when all but one n~, 1 <- i <- t, are zero, we have
~ t log(n, + 1) >_ log(n - no + 1). Thus it suffices to show that

e(t + l) log(n + 1) + at
<_ e(t + l)log(no + 1) + (e(t + 1) - a)log(n - no + 1).

The derivative of the r ight-hand side with respect to no is

1 e(t + l) n + a + (a - 2e(t + l))no
f(no) := In 2 (no + l)(n - no + !)

For 0 <- no <- n the denomina to r is positive. The numera tor is a l inear funct ion of no
which is positive for no = 0. Hence there exists some real m such that f(no) >- 0 for 0 <-
no <- m andf (no) <- 0 for m <- no <- n. (It is conceivable that m >_ n.) Hence it suffices to
check the inequal i ty for the extremal values of no: no = n - 1 and no = max(n / (t + 1), 5).
For no = n - 1 the inequal i ty reduces to

e(t + l)log(n + 1) + at < _ e(t + l) l ogn + (e(t + 1) - a),

o r

n + l
e(t + l)log <-- (e - a)(t + 1).

n

Since n > no -> 5, one has only to choose e such that

7 < (e - a)/e. log ~ _

Suppose now that no = max(n / (t + 1), 5). If no = n/(t + 1) ~_ 5, and hence n _~ 5(t + 1),
the inequali ty reduces to

e (t + l)log n + 1 + a t < _ (e (t + l) - a) l o g ~ n + 1 .

Since t_> 1. (n + 1)/(no + 1) <- t + I, and tn/ (t + 1) + 1 _> 5t + 1 = 5(t + 1) - 4, it suffices

to show that

e(t + l)log(t + 1) + at <_ (e(t + l) - a)log(5(t + 1) - 4),

o r

a (t + l og (5 (t+ 1) - 4)) < e (t + 1) . l o g (5 (t + 1) - 4)
- - t + l "

Since t _> 1 and hence (5(t + l) - 4) /(t + l) _> 3, it suffices to choose e such that

(l°g(5(t + 1) - 4)) < e
a 1-t

t + l

f o r t _ > I.
Finally, if n0 = 5 > n/ (t + I), and hence n < 5(t + l), the inequal i ty reduces to

e(t + l) log(n + l) q- at <_ e(t + l)log 6 + (e(t + l) - a)log(n - 4),

o r

e (t + l)log ~ + a l o g (n - 4) < - e (t + l) l o g 6 - a t .

426 D. ALTENKAMP AND K. MEHLHORN

Since 5 = no < n < 5(t + i), it suffices to show that
7 e(t + l)log ~ + a log 5t _< e(t + l)log 6 - at,

or

a(t + log 50 < e(t + l)log 12
- - T

for t --> 1. Hence we only need to choose e sufficiently large.
In either case one only has to choose e sufficiently large in order for the induction step

to carry through. Since the validity of the induction base is independent of the value of e,
the theorem follows. []

Remark. If the for-loop (,) in procedure CODE is realized as for i from 0 to t do, then
the recursive equation,

T(n, t) = max T(ni, t) + ~ a(l + log(hi + 1))
no+" " "+nt--n i-- l i-- 1

n i < n

with solution T(n, t) = O(tn log n) arises. So the modification suggested above is essential.

Theorem 4 shows that a prefix code satisfying the inequality o f Theorem 3 can be
constructed in linear time O(t. n). Two variants of the above recursion equations for T
might sometimes be useful. An application can be found in [I].

Variant A

T(n,t)= n,+.max. - +,,~-,, [~.T(n;,t)+a(l+logni)].i=o
l~_n,-<n
l~s~_t

It has a solution T(n, t) = O(n logn) [1].

Variant B

T(n , t)=a for n _ 4 ,

T(n, t) = ,,o+,,,+--max. +,,.=,, [~ (T(ni, t) + a(l + logn/)) - max a(l + ~/_~
l ~ n l < n

It has a solution T(n, t) = O(n) [l] .

REFERENCES

I. ALTENKAMP, D., AND MEHLHORN, K. Codes: Unequal probabilities, unequal letter costs. Tech. Rep.,
University des Saarlandes, Saarbriicken, Federal Republic of Germany, 1978.

2. ASH, R. Information Theory. lnterscience, New York, 1965.
3. BAUER, F.L., AND GOOS, G. lnformatik, Heidelberger Taschenbucher. Springer-Verlag, Berlin, 1971.
4. BAYER, P.J. Improved bounds on the costs of optimal and balanced binary search trees. Tech. Memo.,

Project MAC TM 69, M.I.T., Cambridge, Mass., 1975.
5. CSrSZAR, 1. Simple proofs of some theorems on noiseless channels. Inf. Control 14 (1969), 285-298.
6. Cot, N. Characterization and design of optimal prefix codes. Ph.D. Thesis, Stanford University, Stanford,

Calif. June 1977.

7. FREDMAN, M.L. Two applications of a probabilistic search technique. Proc. 7th Ann. ACM Conf. on
Theory of Computing, Albuquerque, N.M., 1975.

8. GILaERT, E.N., AND MOORE, E.F. Variable length encodings. Bell Syst. Tech. J. 38 (1959), 933-968.
9. Hu, T.C., AND TUCr~R, A.C. Optimal search trees and variable length alphabetic codes. SIAM .L Appl.

Math. 21 (1971), 514-532.

10. HUFFMANN, D.A. A method for the construction of minimum-redundancy codes. Proc. IRE 40 (1952),
1098-1101.

I 1. ITAI, A. Optimal alphabetic trees. SlAM J. Comput. 5 (1976), 9-18.
12. KARP, R.M. Minimum redundancy coding for the discrete noiseless channel. IEEE Trans. Inf. Theory 17"-

7 (Jan. 1961), 27-39.

I
I:

~'~70des: Unequal Probabilities, Unequal Letter Costs

~-~=~3, KNUTH, D.E. Optimum binary search trees. Acta Inform. 1 (1971), 14--25.

14.

18.
19.

427

KRAUSE, R.M. Channels which transmit letters of unequal duration. Inf. Control 5 (1962), 13-24.
MEHLHORN, K. Effiziente Algorithmen, Teubner Studienbiicher lnformatik, Stuttgart, 1977.
MEHLHORN, K. Best possible bounds on the weighted path length of optimum binary search trees. SIAM
J. Comput. 6, 2 (1977), 235-239.
PERL, Y., GAREY, N.R., AND EVEN, S. Efficient generation of optimal prefix code: Equiprobable words
using unequal cost letters. J. ACM 22, 2 (April 1975), 202-214.
SHANNON, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 27 (1948), 379--423, 623-656.
VAN LEEUWEN, J. Off the construction of Huffmann trees. In 3rd International Colloquium on Automata,
Languages, and Programming, S. Michaelson and R. Milner, Eds., Edinburgh University Press, 1976, pp.
382-410.

RF.~EIVED JANUARY 1978; REVISED JUNE 1979; ACCEPTED JULY 1979

Journal of the Association for Computing Machincr-j. Vol. 27, No. 3, July 1980.

