MPI-INF Logo

MPI-INF D1 Publications

Search the publication database
.
Return

Your search returned the following 32 documents:

  1. Analytic Root Clustering: A Complete Algorithm using Soft Zero Tests
    Chee Yap, Michael Sagraloff, and Vikram Sharma
    . Note: submitted to Computability in Europe 2013, an extended version is available at http://www.mpi-inf.mpg.de/~msagralo/SoftPredicate.pdf
  2. Exact symbolic–numeric computation of planar algebraic curves
    Eric Berberich, Pavel Emeliyanenko, Alexander Kobel, and Michael Sagraloff
    Theoretical Computer Science 491: 1-32, 2013
  3. Fast Approximate Polynomial Multipoint Evaluation and Applications
    Alexander Kobel and Michael Sagraloff
    arXiv abs/1304.8069: 17 p., 2013
  4. From Approximate Factorization to Root Isolation with Application to Cylindrical Algebraic Decomposition
    Kurt Mehlhorn, Michael Sagraloff, and Pengming Wang
    arXiv abs/1301.4870, 2013. Note: A short version has been submitted to the International Symposium on Symbolic and Algebraic Computation (ISSAC)
  5. A worst-case bound for topology computation of algebraic curves
    Michael Kerber and Michael Sagraloff
    Journal of Symbolic Computation 47 (3): 239-258, 2012
  6. Exact Symbolic-Numeric Computation of Planar Algebraic Curves
    Eric Berberich, Pavel Emeliyanenko, Alexander Kobel, and Michael Sagraloff
    arXiv abs/1201.1548v1: 1-46, 2012. Note: Submitted to Theoretical Computer Science, corresponding conference versions have been published in the proceedings of ALENEX 2011 and SNC 2011
  7. Exaktes geometrisches Rechnen
    Michael Sagraloff
    MPG Jahrbuch. Note: \url{http://www.mpg.de/4705544/Exaktes_geometrisches_Rechnen?c=5732343}
  8. On the Complexity of Solving a Bivariate Polynomial System
    Pavel Emeliyanenko and Michael Sagraloff
    In: ISSAC 2012 : Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation, Grenoble, France, 2012, 154-161
  9. When Newton meets Descartes: A Simple and Fast Algorithm to Isolate the Real Roots of a Polynomial
    Michael Sagraloff
    In: ISSAC 2012 : Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation, Grenoble, France, 2012, 297-304
  10. A deterministic algorithm for isolating real roots of a real polynomial
    Kurt Mehlhorn and Michael Sagraloff
    Journal of Symbolic Computation 46 (1): 70-90, 2011
  11. A General Approach to the Analysis of Controlled Perturbation Algorithms
    Kurt Mehlhorn, Ralf Osbild, and Michael Sagraloff
    Computational Geometry 44 (9): 507-528, 2011
  12. A Note on the Complexity of Real Algebraic Hypersurfaces
    Michael Kerber and Michael Sagraloff
    Graphs and Combinatorics 27 (3): 419-430, 2011. Note: A conference version of this paper appeared in JCCGG 2009, see \url{http://www.mpi-inf.mpg.de/~msagralo/TopBoundsJGC.pdf} for a preliminary version.
  13. A Simple But Exact and Efficient Algorithm for Complex Root Isolation
    Michael Sagraloff and Chee Yap
    In: ISSAC 2011 : Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation, San Jose, CA, 2011, 353-360. Note: To appear, see \url{http://www.mpi-inf.mpg.de/~msagralo/ceval.pdf} for a preliminary version.
  14. An Elimination Method for Solving Bivariate Polynomial Systems: Eliminating the Usual Drawbacks
    Eric Berberich, Pavel Emeliyanenko, and Michael Sagraloff
    In: 2011 Proceedings of the Thirteenth Workshop on Algorithm Engineering and Experiments (ALENEX), San Francisco, CA, 2011, 35-47
  15. Arrangement Computation for Planar Algebraic Curves
    Eric Berberich, Pavel Emeliyanenko, Alexander Kobel, and Michael Sagraloff
    arXiv abs/1103.4697, 2011
  16. Arrangement Computation for Planar Algebraic Curves
    Eric Berberich, Pavel Emeliyanenko, Alexander Kobel, and Michael Sagraloff
    In: Proceedings of the 4th Internal Workshop on Symbolic-Numeric Computation, San Jose, USA, 2011, 88-98. Note: An extended version has been submitted to Theoretical Computer Science
  17. Efficient Real Root Approximation
    Michael Kerber and Michael Sagraloff
    In: ISSAC 2011 : Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation, San Jose, CA, 2011, 209-216
  18. When Newton meets Descartes: A Simple and Fast Algorithm to Isolate the Real Roots of a Polynomial
    Michael Sagraloff
    arXiv abs/1109.6279v1: 1-21, 2011. Note: Submitted to ISSAC 2012, see http://arxiv.org/abs/1109.6279 for an online version
  19. A General Approach to Isolating Roots of a Bitstream Polynomial
    Michael Sagraloff
    Mathematics in Computer Science 4 (4): 481-506, 2010
  20. An efficient algorithm for the stratification and triangulation of an algebraic surface
    Eric Berberich, Michael Kerber, and Michael Sagraloff
    Computational Geometry: Theory and Applications (CGTA) 43 (3): 257-278, 2010
  21. An Elimination Method for Solving Bivariate Polynomial Systems: Eliminating the Usual Drawbacks
    Eric Berberich, Pavel Emeliyanenko, and Michael Sagraloff
    CoRR abs/1010.1386: 1-16, 2010
  22. On the Complexity of Real Root Isolation
    Michael Sagraloff
    CoRR abs/1011.0344: 1-33, 2010. Note: submitted to the Journal of Symbolic Computation
  23. A Generic and Flexible Framework for the Geometrical and Topological Analysis of (Algebraic) Surfaces
    Eric Berberich and Michael Sagraloff
    Computer Aided Geometric Design (CAGD) 26 (6): 627-647, 2009
  24. Certified Complex Root Isolation via Adaptive Root Separation Bounds
    Michael Sagraloff, Michael Kerber, and Michael Hemmer
    In: The Joint Conference of ASCM 2009 and MACIS 2009, Fukuoka, Japan, 2009, 151-166
  25. Isolating real roots of real polynomials
    Kurt Mehlhorn and Michael Sagraloff
    In: Proceedings of the 2009 international symposium on Symbolic and algebraic computation (ISSAC), Seoul, Republic of Korea, 2009, 247-254
  26. Visualizing Arcs of Implicit Algebraic Curves, Exactly and Fast
    Pavel Emeliyanenko, Eric Berberich, and Michael Sagraloff
    In: Advances in Visual Computing : 5th International Symposium, ISVC 2009, Las Vegas, U.S., 2009, 608-619
    [PDF: Download: paper.pdf]
  27. Reliable and Efficient Computational Geometry Via Controlled Perturbation
    Kurt Mehlhorn, Ralf Osbild, and Michael Sagraloff
    In: Automata, Languages and Programming, 33rd International Colloquium, ICALP 2006, Part I, Venice, Italy, 2006, 299-310

  28. A deterministic Bitstream Descartes Algorithm
    Kurt Mehlhorn and Michael Sagraloff
    University of Groningen, 9700 AB Groningen THE NETHERLANDS, ACS-TR-361502-03, Technical Report. Note: accepted to ISSAC 2009
  29. A General Approach to the Analysis of Controlled Perturbation Algorithms
    Kurt Mehlhorn, Ralf Osbild, and Michael Sagraloff
    University of Groningen, 9700 AB Groningen THE NETHERLANDS, ACS-TR-361502-02, Technical Report
  30. A Generic and Flexible Framework for the Geometrical and Topological Analysis of (Algebraic) Surfaces
    Eric Berberich and Michael Sagraloff
    In: Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling, Stony Brook, USA, 2008, 171-182
    [PDF: Download: bs-framework-authprep.pdf]
  31. Exact Geometric-Topological Analysis of Algebraic Surfaces
    Eric Berberich, Michael Kerber, and Michael Sagraloff
    In: Proceedings of the 24th ACM Symposium on Computational Geometry, College Park Maryland, USA, 2008, 164-173
    [PDF: Download: bks_egtaoas.pdf]
  32. Geometric Analysis of Algebraic Surfaces Based on Planar Arrangements
    Eric Berberich, Michael Kerber, and Michael Sagraloff
    In: 24th European Workshop on Computational Geometry - Collection of Abstracts, Nancy, France, 2008, 29-32. Note: An extended version of this article has appeared under the name "Exact Geometric-Topological Analysis of Algebraic Surfaces" in the Proceedings of the 24th ACM Symposium on Computational Geometry, 2008, pp 164-173
    [PDF: Download: bks-exact-eurocg08.pdf]