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Summary. Plane-sweep algorithms form a fairly general approach to two- 
dimensional problems of computational geometry. No corresponding general 
space-sweep algorithms for geometric problems in 3-space are known. We 
derive concepts for such space-sweep algorithms that yield an efficient 
solution to the problem of solving any set operation (union, intersection . . . .  ) 
of two convex polyhedra. Our solution matches the best known time 
bound of O(n log n), where n is the combined number of vertices of the two 
polyhedra. 

I. Introduction 

In recent years plane-sweep algorithms have become prominent in 2-dimension- 
al computational geometry, beginning with the influential paper of Shamos and 
Hoey [14]. Bieri and Nef  [2] trace the idea back to Hadwiger I6] who 
considered the so-called "Konvexring",  the class of all finite unions of convex 
and compact subsets of R d. He gave an inductive existence proof for Euler's 
characteristic of the "Konvexring" - a measure is assigned to an element S of 
this ring by advancing a (d-1)-dimensional  hyperplane H orthogonal to the 
x-axis from left to right, and by considering the measure of S c~ H in R d-1 
which only changes at finitely many x-values. Later 1'7] Hadwiger extended this 
approach and defined the principle (which he called "Schnittrekursion") in a 
systematic way. 

The name of these algorithms comes from their characteristic property that 
a figure in the plane is processed by advancing a "brush"  (often a straight line) 
from left to right across the figure. Processing is strictly local: No backing up 
ever occurs, and the lookahead reaches to the next "transition point" only. 

Plane-sweep algorithms promise to be efficient for many applications of 
practical interest in computer-aided design (e.g. for VLSI), computer graphics 
(for instance, scan conversion), and geographic data processing (consistency 
checking of map data). Due to this motivating factor, the scope of problems 
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that can be handled by plane-sweep algorithms has been extended in various 
papers. Let us first review the concepts needed to understand plane-sweep 
algorithm and introduce the motivation and terminology used in the rest of 
this paper (see also [11]). 

Consider a configuration of geometric figures given by a collection of 
straight line segments, as shown in Fig. 1.1. 

Fig. 1.1. A configuration consisting of 4 figures: "line", "triangle", "rectangle", and "spiral". The 
figure has a total of n = 16 line segments and s = 6 unknown intersections 

Interesting topological and geometric questions regarding the figure include 
containment (the rectangle contains the line but is not contained by the spiral), 
intersection (the triangle intersects the rectangle and the spiral), region 
identification (the shaded region of the plane is covered by the triangle only), 
and measurement (area or length of perimeter of the shaded region). Solutions 
by plane-sweep algorithms working in time O((n +s)log n) are known, where n 
is the number of line segments and s is the number of (initially unknown) 
intersections. Thus n measures the size of the input data, and s the complexity 
of the data (and often the size of the output). 

Some of the problems above can be solved by obvious exhaustive search 
algorithms that work in time O(n 2) by checking every pair of line segments for 
an intersection. Since s=O(n2), plane-sweep algorithms have a worst case time 
behavior of O(n210gn) which at first sight seems to make them unattractive. 
However, such "dense" configurations characterized by s=O(n 2) rarely occur 
in practice; realistic configurations tend to have s =O(n). For  these applications 
plane-sweeps are very useful as they - surprisingly - solve many seemingly 
complex problems at the asymptotic cost O(n log n) of sorting. 

Plane-sweep algorithms superimpose an x - y  coordinate system on the 
geometric configuration to be processed. This arbitrary choice of a sweep 
direction for problems that are independent of coordinate systems is an es- 
thetic blemish, but for some applications, such as raster scan conversion or 
drum plotters, it mirrors in a natural way the constraints imposed by the mode 
of operation of devices. 
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The x - y  coordinate system is represented by two data structures common 
to all plane-sweep algorithms: The x-structure X and the y-structure Y In 
addition, there are one or more problem-dependent data structures. X is a 
queue representing the tasks still to be accomplished. At any time, it contains 
the known transition points to the right of the brush, sorted according to x- 
coordinate. As the next transition point is processed i t  gets deleted from X, 
and newly discovered transitions get inserted. The y-structure which is usually 
implemented by a balanced tree represents the state of the current cross section 
of the configuration, at the position of the brush. The information contained in 
Y remains unchanged for a slice between two transition points; it must be 
updated as the brush passes a transition point. Figure 1.2 illustrates these 
concepts. 

y-talk ie 
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Transi t ions 
a l ready processed 
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x-queue 

Fig. 1.2. The  data  structures common  to all plane-sweep algorithms. A through H are the 
transit ion points known before the sweep starts;  U, V,, W are discovered during the sweep. A, B, C, 
U have been processed and discarded; D, E, V, F, G, H are known at this t ime and wait to be 
processed. W is not  yet in the  queue, as it will be discovered only at transit ion D 

Plane-sweep algorithms work according to the following schema: 

pror SWEEP: 
X*-a l l  transition points know initially, sorted by x-coordinate; 
Y ~ r  

Initialize problem-dependent data structures; 
while X =#~1 do 

P.--MIN(X);  
TRANSITION(P) 

ad 
corp. 

The core of the algorithm, procedure TRANSITION,  basically consists of the 
following: 

1. With y of P(x, y), locate the entry in the y-structure Y with y-coordinate 
identical or nearest to y, then update Y. 



504 s. Hertel et al. 

2. Check adjacent line segments for intersection. 

3. Insert newly found transition points into X. 

4. Problem-dependent operations. 

This skeleton already allows a rough analysis of the asymptotic time 
performance. With n line segments given, at most 2n transition points are 
known initially, s transitions (intersections) are discovered during the sweep. 
For  each of the 2n+s transitions we perform the operation P*--MIN(X) and 
the four steps described above: 

(1) P*--MIN(X): 

This can be done in time O(log(2n+s))=O(logn) (since s=O(n2)) if X is 
implemented by a tree structure, or even in time 0(1) if all transition points are 
known initially. 

(2) Locate y and update Y: 

As Y contains at most n entries sorted according to y-coordinate, and as 
update operations are local in the vicinity of y, these operations can be done in 
time O(logn). 

(3) Check adjacent line segments for intersections: 

Time O(1) is needed. 

(4) Insert intersections found into X: 

Time O(log(n + s)) = O(log n) is needed. 

(5) Problem-dependent operations: 

For  many problems of interest these can be done in time 0(1) or O(logn). 

This sums up to O((n + s) log n) as mentioned earlier. In special circum- 
stances a time performance of O(nlogn+s) can be achieved (e.g. [I0]). As we 
are interested in the generality of plane-sweep algorithms, we do not discuss 
these cases. 

As a summary of this brief review of plane-sweep algorithms: they are well 
understood, very general in their applicability to different problems, and ef- 
ficient for the large class of applications where data "spread evenly across the 
working plane", characterized by s = O(n). 

In contrast to the two-dimensional case, it is not yet clear whether efficient 
multi-dimensional space-sweep algorithms exist for problems of practical in- 
terest. As examples of initial investigations into this question, let us mention 
the use of plane-sweep techniques for hidden-surface elimination (Schmitt 
[12]), and of space-sweep algorithms for computing the volume of polyhedra 
[3"1, or the subdivision of the space given by a finite number of hyperplanes [2] 
by Bieri and Nef. The former could well be called a "two-and-a-half-dimension- 
al" problem (superposition of several two-dimensional problems), and thus it is 
not clear whether its results generalize to k > 3 dimensions. The latter is a truly 
k-dimensional problem, and provides an interesting example worth extending. 

In this paper, we present in an intuitive but systematic way a space-sweep 
algorithm that completes the intersection of two convex polyhedra in time 
O(nlogn). This upper bound has previously been achieved by Muller and 
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Preparata [9]. We find it interesting to show how a sweep algorithm achieves 
the same result by an entirely different technique. 

2. Simplification of the Problem 

In this paper we study the problem 
ICP (Intersection of two Convex Polyhedra): "Given two convex polyhedra in 
the form of a boundary representation, calculate their intersection." 

This problem has previously been studied by Muller and Preparata [9] 
who established an upper bound of O(n logn) for polyhedra having a total of n 
vertices. Later, attention has shifted to testing the intersection of two prepro- 
cessed polyhedra; Dobkin and Kirkpatrick [4] are able to do this in time 
O((logn) 2) after O(n 2) preprocessing. More recently, the same authors [5] have 
presented a linear time algorithm that allows to detect whether two convex 
polyhedra intersect. We return to the harder problem of calculating the in- 
tersection, rather than merely testing for intersection, and achieve the same 
time bound as Muller and Preparata by a simpler technique. 

Our algorithm works by first determining some points in the intersection of 
the surfaces of the two polyhedra Po and Pi, using space-sweep. Starting from 
there it constructs all edges of Poc~P1, and thus resulting convex polyhedron, 
by graph exploration methods. Minor modifications in the graph exploration 
phase allow to construct Po u P1 or Po\Pi instead of Po c~ P1- 

Throughout this paper we assume that no two comers of one of the 
polyhedra have identical x-coordinates. This can always be achieved by a slight 
rotation of the coordinate system, requiring linear time in addition to the 
initial sorting of the corners. We also assume that all faces of the polyhedra P0 
and P~ are triangulated from their respective point of minimal x-coordinate by 
improper edges. The "boundary representation" mentioned above is basically 
the doubly connected edge list introduced by Muller and Preparata [9], 
enriched by the improper edges and by pointers between faces and the im- 
proper edges contained therein. 

In the following the word face (bounding triangle) always refers to a bound- 
ing face of one of the polyhedra without (with) consideration of improper 
edges. Thus a face may consist of several co-planar bounding triangles. 

Problem ICP is reduced to a simpler problem. The edge set E of the 
resulting convex polyhedron Po ~P~ consists of a set E t of line segments on the 
surface of both polyhedra, and a set E2 of line segments that are edges or part 
of edges of only one of the polyhedra. Figure 2.1 gives an example. 

E 1 is composed of connected components; the example in Fig. 2.1 has only 
one component. It will be shown (Lemma 1) that Poc~P1 can be systematically 
constructed in time O(n) if a least one point (on an edge) of each component 
of E x id known. With this in mind, we define the following problem that lends 
itself more directly to the space-sweep approach: 
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l j f i f11~/11 oO.'~~176 
Fig~ 2.1. Two bricks penetrating each other. Heavy 
lines are edges in E~, dotted lines edges in E 2 

Problem ICP':  "Given two convex polyhedra P0 and P1 with a total of n 
corners, compute a set of intersection points of proper edges of P~ with 
bounding triangles of P~_~, i = 0  or i=1 .  This set must contain at least one 
point of each connected component of E 1 _ P0 r~ PI-" 

Lemma 1. A solution to problem I CP' allows to compute 

a) P0~Pi, b) PouP1, c)  Po\Pi 

in time O(n). 

Proof. We argue about part a) only. Parts b) and c) solely differ in the 
definition of E2, and thus in a modified determination of the edges in E 2. 

The basic idea is to consider the solution set to ICP' as part of the set of 
vertices of a graph, and, starting from these vertices, to explore the graph by 
a systematic method. To have a sensible stopping criterion we want to know 
E x completely before we start exploring E z. 

Let S be the solution set to ICP'. As shown in Sect. 4, each x~S  is the 
intersection of a proper edge e separating two bounding triangles F' and F" 
of P~, with a bounding triangle F of Px-i- We process all points x e S  as 
follows: We construct all edges of E 1 incident to x. On the proper edges of 
PI(Po) extending from x into the interior of Po(Px) (observe that there may be 
more than one of these if x is a vertex of Po or P0, the candidates for E 2, we 
mark x, and store these edges in a set. If such an edge is marked already, it 
penetrates one of the two polyhedra; in this case we add the segment between 
the two markings to the set E z. Compare Fig. 2.2. 

We have to distinguish three cases concerning the respective position of x, 
namely 

Case I. x is no polyhedron vertex, and lies in the interior of bounding triangle 
F of Px_i, 

Case 2. x is the intersection of two edges but no polyhedron vertex, and 

Case 3. x is vertex of Pi or/and of P1-;- 

Case 1 - as illustrated in Fig. 2.3 - is the standard case. 
In Case 2 let x be the intersection of edge e with edge f separating 

bounding triangles F and F'" of P~_~. Ordinarily (and analogously to Case 1), 
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PI-; 

Fig. 2.2. Marking of candidates for E 2. e is edge of P~ and intersects P~-i in x. e penetrates Pl- i  
from x on to the right; this part  of  e becomes a candidate for E 2, and x is marked on e. If e is 
later explored start ing from y (3, may belong to a different component  of  El) , the mark  x is 
detected; we then add ~-y to the set E 2 

Fig. 2..3. Edge e intersects bounding  triangle F in x. Edges Fc~F' and Fc~F" belong to E t. The 
part of e extending into the interior of the other polyhedron is candidate for E2; x is marked on e 

we can compute the structure around x in time 0(1) by intersecting F and F'" 
with F' and F". A problem arises, however, if F or F '"  is co-planar with F' or 
F". A problem arises if F or F'" is co-planar with F' or F". Say, F is co-planar 
with F'. F' is part of face G~, F is part of face GI_ i. To avoid getting irrelevant 
and undesired intersections in the interior of G~c~ G 1_~, we treat the faces as a 
whole and compute G~nGI_ ~ in time O(deg~(G~)+deg~_i(Gl_~) ), using the 
known method due to Shamos [13]. deg~(G) denotes the number of vertices of 
convex polygon G in P~. We mark the two faces as "done",  and then process 
the vertices of the intersection polygon. 

Case 3 can be divided into three subcases. Let x be a vertex of Po. Then x 
can lie in the interior of a bounding triangle F of P~, or on an edge f of P~, or 
it can even be a vertex of P~ as well. In the first case we intersect F with all 
bounding triangles of Po incident to x, and thus get all edges in El  (and 
candidates for E2) incident to x in time O(dego(x)). Here deg~(x) denotes the 
degree of x in polyhedron P~, improper edges included. In addition, we might 
have to treat co-planar faces as described in Case 2 above. In general, we will 
get two edges in E~, and some candidates for E 2, as shown in Fig. 2.4. 

The second subcase is analogous; time O(dego(X)) suffices, apart from the 
time for treating co-planar faces. 
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Fig. 2.4. Vertex x of P~ 

(eE2) (eE2) (eE2) / 

lies in b o u n d i n g  t r iangle  F of P1 - 

If  x is vertex of both polyhedra, however, the situation is considerably more 
subtle. The naive approach might result in quadratic running time. Therefore 
we transform the problem in a suitable manner to a two-dimensional problem. 
Basically, we find a plane D intersecting all edges of P0 incident to x in time 
O(deg0(x)). PonD is a convex polygon, P1 n D  a convex polygonal region. We 
intersect these two plane figures in t ime O(dego(x)+degl(x)), using Shamos'  
method. The structure around x can be inferred from the resulting polygon in 
a straightforward manner. 

In all three subcases we mark  x in the polyhedron to which it belongs. This 
way we have constructed all edges in E1 (and candidates for E2) incident to 
a point xeS in total t ime O(n). Total time O(n) is also sufficient for the treat- 
ment of co-planar faces since the computat ion described in Case 2 is performed 
at most  once for each face. 

Starting from these edges we first want to explore E 1 completely. This is 
done by working with two sets WI(Wz), that initially contain all the known 
members  of E~ (candidates for Ez). As long as W~ contains any element an 
edge e=(x,y) is removed from W 1 and processed. Processing an edge means 
checking whether its endpoints were processed already; an endpoint that was 
not is processed according to the pertinent case as described above, thereby 
possibly adding new edges to W 1, E~, W 2, E 2. The t ime for the whole pro- 
cedure sums up to O(n) by arguments above if one can decide fast (i.e., in 
constant time) whether an edge endpoint was processed already. This is indeed 
possible if we mark  points that are not corners of Po or P~ on the edges they lie 
on in such a way that no edge bears more than two markings. The only 
question as to where one should mark  arises in case 2 above (x=ei~e~_i) 
if el lies (partly) in a face of Pa -i.  We mark x on ex_i if this edge does not lie in 
a face of P~; otherwise (two co-planar faces), e i and el_i will be proper edges 
(the algorithm in Sect. 4 will deliver no intersection with an improper  edge in 
this case), and we can safely mark  x on both of them. 

By now we have explored all of E1 in time O(n), and candidates for E z can 
be added to set E 2. Starting from the interior endpoints of these candidates it 
is easy to find the remaining edges that belong to E z in t ime O(n). [] 

More details of the proof  above, especially of the corner-in-corner subcase, 
can be found in [8]. 
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3. Basic Concepts 

By analogy to plane-sweep algorithms, a space-sweep algorithm operates by 
advancing a plane through space. The x-structure is a queue X containing (for 
our problem) all n corners of the two polyhedra. The yz-structure that replaces 
the y-structure represents the state of the cross section. The latter has (for each 
one of the two polyhedra) the form of a convex polygon. 

The set of edges (of one polyhedron) intersected by the sweep plane forms a 
cycle whose neighbor edges bound the same bounding triangle of the polyhed- 
ron. This leads us to 

Definition 1. Let P~, i=0 ,1 ,  be one of the polyhedra. Let ei, O<j<n~, be the 
cyclically ordered sequence of edges intersected by the sweeping plane. A prong 
is the portion of a bounding triangle bounded by two consecutive edges e i and 
e{j+l~moa,, , and, to the left, by the sweeping plane. The cyclically ordered set of 
prongs forms the crown C i. 

Observe that, because of the triangulation chosen, the part of a face of P~ to 
the right of the sweeping plane is either completely or not at all part of the 
crown C i. 

Obviously all prongs are either triangles or quadrilaterals, and we can 
classify crown edges as follows: 

Definition 2. Let P~ and ej be as in Definition 1. The edges of the polygon 
formed by connecting the intersection points in a circular fashion are called 
base edges, their x-coordinate is the base; the edges e~ of the original polyhe- 
dron are called forward edges, and all other edges of the crown are called prong 
edges (they connect tips of prongs). These definitions are pictured in Fig. 3.1. 

. . . . . .  p - - - -  ........ 

. . . . . .  ! p 

. . . . . .  ,,,o 

sweep plane 

Fig. 3.1. Edge classification of a crown, b, f,  p denote the three edge types. Point q is the 
polyhedron corner just processed. Forward edges starting left of q are shown dashed to the left of 
the sweeping plane 
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Thus we can represent a cross section in a way analogous to the one- 
dimensional cross section of plane-sweep algorithms: here the linearly ordered 
y-structure is replaced by a circularly ordered yz-crown. Due to this circular 
ordering, the crown can be searched in logarithmic time by binary search for 
angular arguments, to determine the relative position of a new transition point 
w.r.t, the crown edges. 

To store crown C i in a balanced tree we select an axis line L i, e.g. the line 
connecting the vertices of P~ having the minimum and maximum x-coordinate, 
respectively. This axis always intersects the sweeping plane, and we can repre- 
sent p e r  3 w.r.t. Li by the cylindrical coordinates (x, alfa, radius). Here x is p's 
x-coordinate, and (alfa, radius) are p's polar coordinates in the yz-plane 
through p, with pole on L~ and alfa's measured against, say, the positive y-axis. 
A forward edge is represented by the cylindrical coordinates w.r.t. Li of its 
endpoints, i.e., by (x 0, alfa o, r 0, x 1, alfal, rl). Note  that for every p on such a 
forward edge with x-coordinate x, X o < X < X  1, we can calculate (alfa, r) in 
constant time. The radial representation is depicted in Fig. 3.2; in Fig. 3.3 
formulae are given that help for the calculation of (alfa, r) - for simplification, 
the axis is assumed to be the x-axis. 

Note that although alfas and radii change with x, the relative ordering of 
crown edges remains invariant between transitions. This allows us to store the 
crown as a balanced binary tree, organized with respect to alfas. 

Before we can process a new polyhedron vertex p = (x, y, z) with cylindrical 
coordinates (x, alfa, r), we have to know where it is located in the respective 
crown. Therefore we use angular binary search to find a crown edge whose 
right endpoint is p. If the intersection of any forward edge of the crown with the 
yz-plane through p has cylindrical coordinates (x, alfa*, r*), we have to search 
until we lind an edge such that a lda*= alfa. 

cr 7 

/ / ' ~ . ~  

0( 6 / -  - / ~  ~ 
[ ~  / " ' - , a t2  

,k.-" ", /f 
I N ,," " " . ' <  I 

/ / m 5.6\ \  axis i I y -d i rect ion 

; / f  "" _&'3 ~, .,'.11 "\-~- . . . .  "-- . i  

-.. \ ,  

Fig.  3.2,. Rad ia l  representa t ion  of  a crown,  viewed paral lel  to the  axis. m~'s are angles  of  left, ~'~'s 
angles  o f  r ight  endpo in t s  of  foreard  edges 
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Y0 "P~ 
Y0 

~ z1 
yl 

x=x0*k[xl-x 01 tan  = = z / y  

y=y0*k(yl-y0) r=z / s in  = 

Z=Zo.,-klzl-z O) 
(a) [b) 

Fig. 3.3a, b. Coordinate transformation for a forward edge fffi(Po, Pl) if the axis is the x-axis, a 
Projection into the xy-plane, b Projections into the yz-plane at x = x  o and at x = x l  

4. The Algorithm 

Our algorithm will construct two crowns, one for each polyhedron, and will 
find their intersections (as specified in problem ICP', i.e., at least one per 
connected component of El). Thereby, if edge e lies completely in a face of the 
other polyhedron, "intersection" is defined to be an endpoint of e. Advancing 
in the x-queue (that initially contains all n corners) from vertex to vertex of the 
two polyhedra, we perform one transition per vertex. We will first present 
procedure TRANSITION,  the core of our algorithm, and then show that the 
algorithm is correct and stays within the desired time limit of O(n log n). 

While processing vertex p of polyhedron P~ we assume that at least one point 
of every component of E1 to the left of p (and possibly including p) is al- 
ready known; we only look for intersections to the right of p. One execution of 
T R A N S I T I O N  will deliver zero, one, or several intersection points of the two 
polyhedra on an edge or in a face of P~ starting at p. To achieve this, we first 
intersect all proper  edges of P~ starting at p with the opposite crown C~_~. If 
none of the two edges bounding a face F of P~ starting at p intersects the 
opposite crown, a part of Pz-~ could nevertheless penetrate face F, as shown in 
Fig. 4.1. 

To detect some of these intersections, we intersect an arbitrary proper forward 
edge of crown C~_~ with F. Lemma 2 below asserts that this is sufficient to find 
at least one point of each component of E 1. 

Specifically, a transition is performed as follows (S is an initially empty set 
of intersections): 
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e 

C 1 �9 

Fig. 4.1. No bounding edge of face F of P~ 
intersects C 1_~; however, forward edges of C~_~ 
penetrate F 

(1) proc TRANSITION(p , i ) :  
(2) update crown C~ of polyhedron P~; 
(3) if exactly one edge e of P~ starts at p 
(4) then intersect e with the crown C1 _~ of P~_~ and 

add all intersections to set S 
(5) else for all faces F of P~ starting at p 

(possibly consisting of several prongs) 
(6) do intersect the starting proper edges of F with the crown 

C 1 _g, and add all intersections to S; 
(7) if no intersection is found 
(8) then choose a proper forward edge of crown C t_ ~ and 

intersect it with F;  add intersection, if any, (in the 
pertaining bounding triangle) to S 

fi 
od 

(9) 
(lo) 
(11) fi 
(12) corp. 

L e m m a  2. Performing TRANSITION once for each of the vertices of the two 
polyhedra sorted into a common queue correctly solves problem I CP'. 

Proof. It is clear that a set of intersections is computed. Thus we only need to 
show that at least one point of each component  of E 1 will be reported. 

Let K be a component  of E 1, and let v be a vertex of K with minimal x- 
coordinate. Clearly v is the intersection of an edge e of polyhedron P~ with a 
face F of polyhedron P~_i. If v is not reported then e must start before F (in 
the sweep order). Consider the state of the space-sweep immediately after the 
start  vertex p of F is encountered. At this point e is a forward edge of the 
crown C i of Pi- 

Conceptually trace K in face F and crown C~, starting at v. Two cases may 
arise: 

Case 1. We are not able to trace K completely, i.e., we first hit either a 
bounding edge e' of F (subcase a)), or a prong edge e" of C~ (subcase b)). 
Because of the minimality of v's x-coordinate we do not leave Ci by way of a 
base edge. 
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a) e' intersects a prong G of C~. Then e'c~ G either was detected while pro- 
cessing p, or it will be detected when the starting point of e' is processed, since 
G is still a prong of C~ at that time. Compare  Fig. 4.2. 

Fig. 4.2. Case la) of the proof of Lemma 2. Shown are a part of the crown Ct_ ~, and prong G of 
crown C~. w=e'c~G is detected when the starting point of e' is processed 

b) Because of the triangulation chosen for faces, e" is a proper  edge. Also, 
F still is part  of crown C1_ ~ when the starting point of e" is processed. 
Therefore e"c~ F is detected at that time. 

Case 2. We are able to trace K completely in F and C~. Since e starts before F 
and since it does not intersect a bounding edge of F, e does not lie in face F 
but intersects the interior of F. The intersection with F of the two prongs of C i 
neighboring e is completely contained in F, and the forward edges (other than 
e) of these prongs again intersect the interior of F. The argument  propagates 
around the crown Ci. Thus K is a dosed  curve in F running through all 
prongs of C~, and intersecting all forward edges of C i. Hence a point of F is 
found in line (8) of  T R A N S I T I O N .  Figure4.1 helps understand this case; 
we may, in line (8) of T R A N S I T I O N ,  select forward edge f of C; and inter- 
sect it with F. []  

Let us now examine the time required for the different actions of T R A N -  
SITION. 

Lemma 3. The updating of  crown C O (C1, resp.) can be done in total time 
O(n log n). 

Proof. Consider updating crown C~ ( i=0 ,1)  at a transition vertex v=(x,y ,z) .  
Let c be the max imum of the number  of forward edges of C~ before the 
transition, and the number  of such edges after the transition, and let d = d  1 
wd2, with dl(d2) being the number  of edges of Pi ending (starting) at v. We 
have to localize the edges ending at v in the balanced tree representing C~ for 
updating C i subsequently. This can be done by angular binary search as 
described in the previous section. Because of the cyclic ordering of the crown 
this yields a subtree T~, as pictured in Fig. 4.3. 
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. - y  

edges with 
endpoint v 

Fig. 4.3. The two outermost search paths (bounding Tv) for edges with endpoint v 

Now we split C i along the two outermost  search paths, drop T o, and merge 
the tree T~ e" formed from the d 2 edges starting in v (that are given in cyclic 
order) with the remainder of C i. This can be done in time O(logc+d2), namely 
time O(logc) for the search with the subsequent splitting of the tree Ci, t ime 
O(d2) for the construction of the tree T~ ew, and time O(logc) for the merging of 
T~ cw with the remainder of C~. The operations necessary are those of a 
"concatenable  queue" ([1], p. 155ff.) - observe that the remainder of C i is a 
forest of trees with known relative ordering, and with height differences be- 
tween two neighbors summing up to O(log c). Since c < n, and since the sum of 
d's over all polyhedron vertices is O(n), the lemma follows. []  

L e m m a  4. Let g be a straight line, and let C be a crown with c forward edges. 
C chg can be computed in time O(logc). 

Proof. Similarly to the idea of Dobkin and Kirkpatrick [4, 5] we let the 
balanced tree define a hierarchical representation of the crown. Finding an 
intersection is easier if we use an extension of the crown to a convex polyhed- 
ron. Specifically, let v 1 . . . .  , v c be the verticles of the base polygon, and let 
wl, .. . ,  wc be the right endpoints of the c forward edges. Neighboring v's or 
neighboring w's may coincide. Let V:= {vl . . . .  , v~}, W:={w~ . . . .  , we}, and let t 
be the right endpoint of the axis of C, i.e., the rightmost vertex of the 
respective polyhedron. Consider the convex hull of the points V ~  Ww {t}. The 
bounding faces of the convex hull are the base polygon, which we will not 
consider intersections with g there are not interesting, the prongs of crown C, 
and the terminal triangles (it's) extending from two neighboring but not identi- 
cal w's each to t. Thus each tt has exactly one partner prong (pp); the reverse 
relation does not necessarily hold. Figure 4.4 presents such a solid object and 
illustrates the new terms. 

We will represent such a special polyhedron hierarchically by a balanced 
tree. To  be specific, let us choose a (2, 3)-tree (compare [1]). Observe that the 
crown, resp. the special polyhedron, is a solid for which the two-dimensional 
hierarchical representation of [4] is sufficient. Let C ~~ i =  1, ..., k=O(logc),  be 
the forward edges of the crown stored in depth i of the tree. C tk) is C, and P<~), 
the convex hull of C ~i~ and point t, is an inner approximation of the special 
polyhedron. C t~) is shrunk to C t i -~  by transforming two (or three) prongs of 
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V 7 

W7 ' W 8 
Vs~' '~. ._ . . . . . .  "~. ~ W 6 

I . . . . . . . . . . . . . .  ' i " . = -  . . . .  
I ~- " - - .  - ~  . . . .  J . ~ "  

v 2 v3 

Fig. 4.4. Convex hull of a crown with 8 forward edges joining in 5 different right endpoints, 
together with t, the rightmost polyhedron vertex. Partner of trwTw~t is prong v~w~wsva; prong 
vTvsw 8 has no partner 

C m each into one - this, in turn, is done by  removing the forward edge(s) 
separating them. Com pa re  Fig. 4.5. 

Internal  nodes of  the balanced tree contain  hierarchy informat ion in ad- 
dition to the usual order  informat ion needed during rebalancing. The former  is 
chosen to insure that, in each depth i, i =  1 . . . . .  k, two neighboring nodes each 
correspond to a p rong  of  the crown C m. To  achieve this, it is sufficient to let 
leaves of  the tree represent forward edges of  the crown C = C ~k), and  every 
internal node  the (cyclically) minimal edge of  the subtree the roo t  of  which it 
is. Via neighbor  pointers on  every level one can find the p rong  corresponding  
to a node in constant  time. Figure 4.6 illustrates the correspondence between a 
connected section of  the c rown C (k) and  its tree representation. 

The refinement of  the representation, i.e., the transit ion f rom pm to p~+t~, 
may be unders tood  as a convex extension of  pro. We will present related terms 
and investigations before we explain the a lgor i thm for determining C c~g. 

Let P = (V,, E) be an  arbi t rary  convex polyhedron.  Let Z = (v 1 . . . .  , v~, v~ + 1 = v) 
be a closed simple path  o f  edges on P, i.e., v~V, (v~,vi+l)eE for i = 1  . . . .  ,s, and 

o 

/ , ' /  t I ~\ \ , . . .  

zY b ~  . . . . . .  ~\ \ - ' -  

o-, . . . . . .  o. / 

I ~ . /  
-~. | o 

Fig. 4.5a. Two subsequent approximations of the crown of a polyhedron, seen from the direction 
of the positive axis. C m (consisting of prongs with at least one forward edge shown dashed) is 
made coarser and thus changed into C ~i-~ (solid edges) 
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o 

~ I ~ '  [co-planar prongs) 

e '  o r  �9 

X i ",,L. 
..... <,, -i 

Fig. 4.ilk Refinement of the representation of a crown; transition from C "-1~ to C <~ Forms of the 
"partitioning" of a prong into two by adding an additional forward edge (dashed; between two 
neighboring forward edges, e and e', of Cti-l~). If two additional edges are inserted even more 
forms of refining a prong are possible 

v j*v j  for i * j ,  i , j e [1  :s]. Z divides the surface of  P into two segments. Let S be 
a segment.  A convex extension of S is an expansion of P in the region of  S (by 
adding new nodes and  edges, and by possibly removing nodes in the interior of  
S, i.e., in S but  not  on the path of edges bounding  S) that  preserves convexity. 
The  roof over S is the maximal  convex extension of  S. Roofs  may be closed or 
open  (i.e., infinite); for instance, the faces of  a te t rahedron have open  roofs, 
those of  a dodecahedron  have closed roofs. 

Relevant  for our  a lgor i thm is the following fact proved in [8] :  

Fact. Let S =  {S 1 . . . .  , Sk} be a part i t ion of  the surface of  a convex polyhedron  P 
into segments. A line g tha t  does not  intersect P can intersect the roofs of at 
mos t  two of  these segments. 

N o w  we are going to compute  C:~g,  guided by Dobk in  and Kirkpatr ick 's  
a lgor i thm for determining the intersection of  a straight line with a convex 
polygon.  In the following, segments will always be tt-pp-pairs, and prongs 
wi thout  par tner ;  compare  Fig. 4.4. 

W e  start with p<l~, a (possibly degenerated) convex po lyhedron  with few 
segments,  and determine the part  of  ptl~ where an intersection could occur if it 
exists. There  we locally proceed t o / / 2 7  and determine a - smaller - section for 
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w6o-- e8 
(o} *5 ~ '~ '7  ~ ~ 

~,o.~"" / ,  
:>x --.... / /  

wz.o,4,"- "-. , / / 
w2 / \ .~.,, / 

V 2 ~ _ 0  -~ 
v3 

://\ /\ /\ -3: 

Fig. 4.6. a Part of crown C ~k) with the corresponding part of C ~k-*) (solid lines) b Hierarchical 
representation of a in the (2, 3)-tree; shown is only the hierarchy information in the internal nodes. 
From the upper node marked by e I one can find the corresponding prong w l w 6 v T v  6 of C ~k-2~ that 
is not explicitly drawn in a 

a possible intersection. We locally expand the polyhedron up to p(k) to find an 
intersection if any. If g intersects ptk) in a prong of C (k) this point is reported;  
intersections with tt's are neglected. 

Depending on whether we already have found an intersection g c~ C or not, 
we have to distinguish two cases. 

A proper  intersection (i.e., not only touching point) found in depth i is 
processed by refining the respective segment to the next depth. One of the (at 
most six) new bounding faces must again have an intersection with g; we 
proceed analogously at depth i + 1. 

If no intersection was found so far, the following invariant is maintained 
before the start of the i-th iteration (i.e., computat ion at depth i), i = 2  . . . . .  k: 

(INV. 1): S 1, S 2 are two segments of p , - 1 )  with the following property:  If  g 
intersects pt/) with j>i ,  then g intersects one or both of the roofs over S 1, S 2. 
$1 = S  2 is allowed. 

For  the second iteration the invariant is established as follows: 
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Intersect g with all bounding faces of p(l~. If no such intersection is found 
intersect g with the roofs of all segments of p~l). Observe that such an 
intersection is computable  in constant time. Get  at most two segments $1, S 2 
whose roofs are intersected by g. Stop if no such segment exists. 

The transition from the i-th to the ( i + l ) s t  iteration, i_>_2, is performed as 
follows: 

Refine segments Sx, S 2 to  depth i+  1. Get  at most six new segments. If no 
intersection of g with one of the maximally 12 new bounding faces is found, 
intersect g with the roofs of the new segments. Get  at most  two new segments 
S 1, S 2 the roofs of which are intersected by g. Observe that, if segment S is 
refined into two or three new segments, the roofs of the new segments are 
contained in the roof  of S, and, that roofs of  segments not considered never 
grow either. Stop if g does not intersect any roof. 

Let us briefly mention two special cases that require some modification of 
our procedure in the i-th iteration. If g touches pti~ in exactly one point on a 
forward or " terminal"  edge, we refine the two incident segments; if a part  of g 
lies in a prong of C "~ we refine, per iteration, the outermost  two segments 
concerned, in order to avoid reporting an intersection of g with an improper  
edge. 

Details of special cases are left to the reader. It  suffices to realize that only 
constant work is necessary per iteration. Due to the convexity of pti~, no 
more than two search paths are followed in the tree, hence the time bound 
follows. [] 

Corollary. Let C be a crown with c forward edges, and let e be an edge whose 
left endpoint does not lie left of the base of C. C n e  can be computed in time 
O (log c). 

By combining Lem m at a  2-4 we obtain 

Lemma  5. The space-sweep algorithm using procedure T R A N S I T I O N  described 
above solves problem ICP'  defined in Sect. 2 in time O(n logn). 

Proof. The total cost for line (2) of T R A N S I T I O N  is O(nlogn) according to 
Lemma 3, as is, according to Lemma 4 including its corollary, the total cost for 
lines (4) and (6). Line (8) needs O(degi(F)) per execution, that is, total t ime O(n) 
since it is executed at most  once per face F. For  all other lines linear time 
suffices in total. []  

Together with L e m m a  1 we finally get our main result. 

Theorem. The intersection of two convex polyhedra with a total of n corners can 
be computed by space-sweep in time O(n logn). 

5. Conclusions 

We have seen that the space-sweep approach yields an efficient algorithm for 
intersection of convex polyhedra that matches the performance of the best 
known algorithm to this problem. Although the details are complex, we 
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believe the ma in  ideas of sweeping and  of angular  search are easier to under -  
stand. 

Thus  there are effective space-sweep algori thms for selected problems.  How-  
ever, space-sweep does no t  seem to offer as general an  approach to solving 
geometr ic  problems in 3 d imens ions  as plane-sweep does for 2 dimensions .  It is 
an open quest ion whether  space-sweep can be effectively applied to more  
general  problems,  such as those involving non-convex  solids. 

Acknowledgement. We are grateful to Klaus Hinrichs, Herbert Edelsbrunner, and Athanasios 
Tsakalidis for helpful comments. 
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