
Acta lnformatica 21,501-519 (1984)

�9 Springer-Verlag 1984

Space Sweep Solves Intersection of Convex Polyhedra

Stefan Hertel 1, Martti M~intyl~i 2, Kur t Mehlhorn 1, and Jurg Nievergelt 3

1 Fachbereich 10, Universit~it des Saarlandes, D-6600 Saarbriicken, West Germany
2 Lab. of Inf. Proc. Science, Helsinki University of Technology Otakaari 1, SF-02150, Espoo 15,
Finland
3 Institut f'tir Informatik, ETH-Zentrum, CH-8092, Ziirich, Switzerland

Summary. Plane-sweep algorithms form a fairly general approach to two-
dimensional problems of computational geometry. No corresponding general
space-sweep algorithms for geometric problems in 3-space are known. We
derive concepts for such space-sweep algorithms that yield an efficient
solution to the problem of solving any set operation (union, intersection)
of two convex polyhedra. Our solution matches the best known time
bound of O(n log n), where n is the combined number of vertices of the two
polyhedra.

I. Introduction

In recent years plane-sweep algorithms have become prominent in 2-dimension-
al computational geometry, beginning with the influential paper of Shamos and
Hoey [14]. Bieri and Nef [2] trace the idea back to Hadwiger I6] who
considered the so-called "Konvexring", the class of all finite unions of convex
and compact subsets of R d. He gave an inductive existence proof for Euler's
characteristic of the "Konvexring" - a measure is assigned to an element S of
this ring by advancing a (d-1)-dimensional hyperplane H orthogonal to the
x-axis from left to right, and by considering the measure of S c~ H in R d-1
which only changes at finitely many x-values. Later 1'7] Hadwiger extended this
approach and defined the principle (which he called "Schnittrekursion") in a
systematic way.

The name of these algorithms comes from their characteristic property that
a figure in the plane is processed by advancing a "brush" (often a straight line)
from left to right across the figure. Processing is strictly local: No backing up
ever occurs, and the lookahead reaches to the next "transition point" only.

Plane-sweep algorithms promise to be efficient for many applications of
practical interest in computer-aided design (e.g. for VLSI), computer graphics
(for instance, scan conversion), and geographic data processing (consistency
checking of map data). Due to this motivating factor, the scope of problems

502 s. Hertel et al.

that can be handled by plane-sweep algorithms has been extended in various
papers. Let us first review the concepts needed to understand plane-sweep
algorithm and introduce the motivation and terminology used in the rest of
this paper (see also [11]).

Consider a configuration of geometric figures given by a collection of
straight line segments, as shown in Fig. 1.1.

Fig. 1.1. A configuration consisting of 4 figures: "line", "triangle", "rectangle", and "spiral". The
figure has a total of n = 16 line segments and s = 6 unknown intersections

Interesting topological and geometric questions regarding the figure include
containment (the rectangle contains the line but is not contained by the spiral),
intersection (the triangle intersects the rectangle and the spiral), region
identification (the shaded region of the plane is covered by the triangle only),
and measurement (area or length of perimeter of the shaded region). Solutions
by plane-sweep algorithms working in time O((n +s)log n) are known, where n
is the number of line segments and s is the number of (initially unknown)
intersections. Thus n measures the size of the input data, and s the complexity
of the data (and often the size of the output).

Some of the problems above can be solved by obvious exhaustive search
algorithms that work in time O(n 2) by checking every pair of line segments for
an intersection. Since s=O(n2), plane-sweep algorithms have a worst case time
behavior of O(n210gn) which at first sight seems to make them unattractive.
However, such "dense" configurations characterized by s=O(n 2) rarely occur
in practice; realistic configurations tend to have s =O(n). For these applications
plane-sweeps are very useful as they - surprisingly - solve many seemingly
complex problems at the asymptotic cost O(n log n) of sorting.

Plane-sweep algorithms superimpose an x - y coordinate system on the
geometric configuration to be processed. This arbitrary choice of a sweep
direction for problems that are independent of coordinate systems is an es-
thetic blemish, but for some applications, such as raster scan conversion or
drum plotters, it mirrors in a natural way the constraints imposed by the mode
of operation of devices.

Intersection of Two Convex Polyhedra 503

The x - y coordinate system is represented by two data structures common
to all plane-sweep algorithms: The x-structure X and the y-structure Y In
addition, there are one or more problem-dependent data structures. X is a
queue representing the tasks still to be accomplished. At any time, it contains
the known transition points to the right of the brush, sorted according to x-
coordinate. As the next transition point is processed i t gets deleted from X,
and newly discovered transitions get inserted. The y-structure which is usually
implemented by a balanced tree represents the state of the current cross section
of the configuration, at the position of the brush. The information contained in
Y remains unchanged for a slice between two transition points; it must be
updated as the brush passes a transition point. Figure 1.2 illustrates these
concepts.

y-talk ie

% L,__ E

: ~F :

I - - - - I - - I Lt
Transi t ions
a l ready processed
and d iscarded

01EIvlFIGIH
x-queue

Fig. 1.2. The data structures common to all plane-sweep algorithms. A through H are the
transit ion points known before the sweep starts; U, V,, W are discovered during the sweep. A, B, C,
U have been processed and discarded; D, E, V, F, G, H are known at this t ime and wait to be
processed. W is not yet in the queue, as it will be discovered only at transit ion D

Plane-sweep algorithms work according to the following schema:

pror SWEEP:
X*-a l l transition points know initially, sorted by x-coordinate;
Y ~ r

Initialize problem-dependent data structures;
while X =#~1 do

P.--MIN(X);
TRANSITION(P)

ad
corp.

The core of the algorithm, procedure TRANSITION, basically consists of the
following:

1. With y of P(x, y), locate the entry in the y-structure Y with y-coordinate
identical or nearest to y, then update Y.

504 s. Hertel et al.

2. Check adjacent line segments for intersection.

3. Insert newly found transition points into X.

4. Problem-dependent operations.

This skeleton already allows a rough analysis of the asymptotic time
performance. With n line segments given, at most 2n transition points are
known initially, s transitions (intersections) are discovered during the sweep.
For each of the 2n+s transitions we perform the operation P*--MIN(X) and
the four steps described above:

(1) P*--MIN(X):

This can be done in time O(log(2n+s))=O(logn) (since s=O(n2)) if X is
implemented by a tree structure, or even in time 0(1) if all transition points are
known initially.

(2) Locate y and update Y:

As Y contains at most n entries sorted according to y-coordinate, and as
update operations are local in the vicinity of y, these operations can be done in
time O(logn).

(3) Check adjacent line segments for intersections:

Time O(1) is needed.

(4) Insert intersections found into X:

Time O(log(n + s)) = O(log n) is needed.

(5) Problem-dependent operations:

For many problems of interest these can be done in time 0(1) or O(logn).

This sums up to O((n + s) log n) as mentioned earlier. In special circum-
stances a time performance of O(nlogn+s) can be achieved (e.g. [I0]). As we
are interested in the generality of plane-sweep algorithms, we do not discuss
these cases.

As a summary of this brief review of plane-sweep algorithms: they are well
understood, very general in their applicability to different problems, and ef-
ficient for the large class of applications where data "spread evenly across the
working plane", characterized by s = O(n).

In contrast to the two-dimensional case, it is not yet clear whether efficient
multi-dimensional space-sweep algorithms exist for problems of practical in-
terest. As examples of initial investigations into this question, let us mention
the use of plane-sweep techniques for hidden-surface elimination (Schmitt
[12]), and of space-sweep algorithms for computing the volume of polyhedra
[3"1, or the subdivision of the space given by a finite number of hyperplanes [2]
by Bieri and Nef. The former could well be called a "two-and-a-half-dimension-
al" problem (superposition of several two-dimensional problems), and thus it is
not clear whether its results generalize to k > 3 dimensions. The latter is a truly
k-dimensional problem, and provides an interesting example worth extending.

In this paper, we present in an intuitive but systematic way a space-sweep
algorithm that completes the intersection of two convex polyhedra in time
O(nlogn). This upper bound has previously been achieved by Muller and

Intersection of Two Convex Polyhedra 505

Preparata [9]. We find it interesting to show how a sweep algorithm achieves
the same result by an entirely different technique.

2. Simplification of the Problem

In this paper we study the problem
ICP (Intersection of two Convex Polyhedra): "Given two convex polyhedra in
the form of a boundary representation, calculate their intersection."

This problem has previously been studied by Muller and Preparata [9]
who established an upper bound of O(n logn) for polyhedra having a total of n
vertices. Later, attention has shifted to testing the intersection of two prepro-
cessed polyhedra; Dobkin and Kirkpatrick [4] are able to do this in time
O((logn) 2) after O(n 2) preprocessing. More recently, the same authors [5] have
presented a linear time algorithm that allows to detect whether two convex
polyhedra intersect. We return to the harder problem of calculating the in-
tersection, rather than merely testing for intersection, and achieve the same
time bound as Muller and Preparata by a simpler technique.

Our algorithm works by first determining some points in the intersection of
the surfaces of the two polyhedra Po and Pi, using space-sweep. Starting from
there it constructs all edges of Poc~P1, and thus resulting convex polyhedron,
by graph exploration methods. Minor modifications in the graph exploration
phase allow to construct Po u P1 or Po\Pi instead of Po c~ P1-

Throughout this paper we assume that no two comers of one of the
polyhedra have identical x-coordinates. This can always be achieved by a slight
rotation of the coordinate system, requiring linear time in addition to the
initial sorting of the corners. We also assume that all faces of the polyhedra P0
and P~ are triangulated from their respective point of minimal x-coordinate by
improper edges. The "boundary representation" mentioned above is basically
the doubly connected edge list introduced by Muller and Preparata [9],
enriched by the improper edges and by pointers between faces and the im-
proper edges contained therein.

In the following the word face (bounding triangle) always refers to a bound-
ing face of one of the polyhedra without (with) consideration of improper
edges. Thus a face may consist of several co-planar bounding triangles.

Problem ICP is reduced to a simpler problem. The edge set E of the
resulting convex polyhedron Po ~P~ consists of a set E t of line segments on the
surface of both polyhedra, and a set E2 of line segments that are edges or part
of edges of only one of the polyhedra. Figure 2.1 gives an example.

E 1 is composed of connected components; the example in Fig. 2.1 has only
one component. It will be shown (Lemma 1) that Poc~P1 can be systematically
constructed in time O(n) if a least one point (on an edge) of each component
of E x id known. With this in mind, we define the following problem that lends
itself more directly to the space-sweep approach:

506 S. Hertel et al.

l j f i f11~/11 oO.'~~176
Fig~ 2.1. Two bricks penetrating each other. Heavy
lines are edges in E~, dotted lines edges in E 2

Problem ICP': "Given two convex polyhedra P0 and P1 with a total of n
corners, compute a set of intersection points of proper edges of P~ with
bounding triangles of P~_~, i = 0 or i=1 . This set must contain at least one
point of each connected component of E 1 _ P0 r~ PI-"

Lemma 1. A solution to problem I CP' allows to compute

a) P0~Pi, b) PouP1, c) Po\Pi

in time O(n).

Proof. We argue about part a) only. Parts b) and c) solely differ in the
definition of E2, and thus in a modified determination of the edges in E 2.

The basic idea is to consider the solution set to ICP' as part of the set of
vertices of a graph, and, starting from these vertices, to explore the graph by
a systematic method. To have a sensible stopping criterion we want to know
E x completely before we start exploring E z.

Let S be the solution set to ICP'. As shown in Sect. 4, each x~S is the
intersection of a proper edge e separating two bounding triangles F' and F"
of P~, with a bounding triangle F of Px-i- We process all points x e S as
follows: We construct all edges of E 1 incident to x. On the proper edges of
PI(Po) extending from x into the interior of Po(Px) (observe that there may be
more than one of these if x is a vertex of Po or P0, the candidates for E 2, we
mark x, and store these edges in a set. If such an edge is marked already, it
penetrates one of the two polyhedra; in this case we add the segment between
the two markings to the set E z. Compare Fig. 2.2.

We have to distinguish three cases concerning the respective position of x,
namely

Case I. x is no polyhedron vertex, and lies in the interior of bounding triangle
F of Px_i,

Case 2. x is the intersection of two edges but no polyhedron vertex, and

Case 3. x is vertex of Pi or/and of P1-;-

Case 1 - as illustrated in Fig. 2.3 - is the standard case.
In Case 2 let x be the intersection of edge e with edge f separating

bounding triangles F and F'" of P~_~. Ordinarily (and analogously to Case 1),

Intersection of Two Convex Polyhedra 507

PI-;

Fig. 2.2. Marking of candidates for E 2. e is edge of P~ and intersects P~-i in x. e penetrates Pl- i
from x on to the right; this part of e becomes a candidate for E 2, and x is marked on e. If e is
later explored start ing from y (3, may belong to a different component of El) , the mark x is
detected; we then add ~-y to the set E 2

Fig. 2..3. Edge e intersects bounding triangle F in x. Edges Fc~F' and Fc~F" belong to E t. The
part of e extending into the interior of the other polyhedron is candidate for E2; x is marked on e

we can compute the structure around x in time 0(1) by intersecting F and F'"
with F' and F". A problem arises, however, if F or F '" is co-planar with F' or
F". A problem arises if F or F'" is co-planar with F' or F". Say, F is co-planar
with F'. F' is part of face G~, F is part of face GI_ i. To avoid getting irrelevant
and undesired intersections in the interior of G~c~ G 1_~, we treat the faces as a
whole and compute G~nGI_ ~ in time O(deg~(G~)+deg~_i(Gl_~)), using the
known method due to Shamos [13]. deg~(G) denotes the number of vertices of
convex polygon G in P~. We mark the two faces as "done", and then process
the vertices of the intersection polygon.

Case 3 can be divided into three subcases. Let x be a vertex of Po. Then x
can lie in the interior of a bounding triangle F of P~, or on an edge f of P~, or
it can even be a vertex of P~ as well. In the first case we intersect F with all
bounding triangles of Po incident to x, and thus get all edges in El (and
candidates for E2) incident to x in time O(dego(x)). Here deg~(x) denotes the
degree of x in polyhedron P~, improper edges included. In addition, we might
have to treat co-planar faces as described in Case 2 above. In general, we will
get two edges in E~, and some candidates for E 2, as shown in Fig. 2.4.

The second subcase is analogous; time O(dego(X)) suffices, apart from the
time for treating co-planar faces.

508 S. Hertel et al.

Fig. 2.4. Vertex x of P~

(eE2) (eE2) (eE2) /

lies in b o u n d i n g t r iangle F of P1 -

If x is vertex of both polyhedra, however, the situation is considerably more
subtle. The naive approach might result in quadratic running time. Therefore
we transform the problem in a suitable manner to a two-dimensional problem.
Basically, we find a plane D intersecting all edges of P0 incident to x in time
O(deg0(x)). PonD is a convex polygon, P1 n D a convex polygonal region. We
intersect these two plane figures in t ime O(dego(x)+degl(x)), using Shamos'
method. The structure around x can be inferred from the resulting polygon in
a straightforward manner.

In all three subcases we mark x in the polyhedron to which it belongs. This
way we have constructed all edges in E1 (and candidates for E2) incident to
a point xeS in total t ime O(n). Total time O(n) is also sufficient for the treat-
ment of co-planar faces since the computat ion described in Case 2 is performed
at most once for each face.

Starting from these edges we first want to explore E 1 completely. This is
done by working with two sets WI(Wz), that initially contain all the known
members of E~ (candidates for Ez). As long as W~ contains any element an
edge e=(x,y) is removed from W 1 and processed. Processing an edge means
checking whether its endpoints were processed already; an endpoint that was
not is processed according to the pertinent case as described above, thereby
possibly adding new edges to W 1, E~, W 2, E 2. The t ime for the whole pro-
cedure sums up to O(n) by arguments above if one can decide fast (i.e., in
constant time) whether an edge endpoint was processed already. This is indeed
possible if we mark points that are not corners of Po or P~ on the edges they lie
on in such a way that no edge bears more than two markings. The only
question as to where one should mark arises in case 2 above (x=ei~e~_i)
if el lies (partly) in a face of Pa -i. We mark x on ex_i if this edge does not lie in
a face of P~; otherwise (two co-planar faces), e i and el_i will be proper edges
(the algorithm in Sect. 4 will deliver no intersection with an improper edge in
this case), and we can safely mark x on both of them.

By now we have explored all of E1 in time O(n), and candidates for E z can
be added to set E 2. Starting from the interior endpoints of these candidates it
is easy to find the remaining edges that belong to E z in t ime O(n). []

More details of the proof above, especially of the corner-in-corner subcase,
can be found in [8].

Intersection of Two Convex Polyhedra 509

3. Basic Concepts

By analogy to plane-sweep algorithms, a space-sweep algorithm operates by
advancing a plane through space. The x-structure is a queue X containing (for
our problem) all n corners of the two polyhedra. The yz-structure that replaces
the y-structure represents the state of the cross section. The latter has (for each
one of the two polyhedra) the form of a convex polygon.

The set of edges (of one polyhedron) intersected by the sweep plane forms a
cycle whose neighbor edges bound the same bounding triangle of the polyhed-
ron. This leads us to

Definition 1. Let P~, i=0 ,1 , be one of the polyhedra. Let ei, O<j<n~, be the
cyclically ordered sequence of edges intersected by the sweeping plane. A prong
is the portion of a bounding triangle bounded by two consecutive edges e i and
e{j+l~moa,, , and, to the left, by the sweeping plane. The cyclically ordered set of
prongs forms the crown C i.

Observe that, because of the triangulation chosen, the part of a face of P~ to
the right of the sweeping plane is either completely or not at all part of the
crown C i.

Obviously all prongs are either triangles or quadrilaterals, and we can
classify crown edges as follows:

Definition 2. Let P~ and ej be as in Definition 1. The edges of the polygon
formed by connecting the intersection points in a circular fashion are called
base edges, their x-coordinate is the base; the edges e~ of the original polyhe-
dron are called forward edges, and all other edges of the crown are called prong
edges (they connect tips of prongs). These definitions are pictured in Fig. 3.1.

. p - - - -

. ! p

. ,,,o

sweep plane

Fig. 3.1. Edge classification of a crown, b, f, p denote the three edge types. Point q is the
polyhedron corner just processed. Forward edges starting left of q are shown dashed to the left of
the sweeping plane

510 S. Hertel et al.

Thus we can represent a cross section in a way analogous to the one-
dimensional cross section of plane-sweep algorithms: here the linearly ordered
y-structure is replaced by a circularly ordered yz-crown. Due to this circular
ordering, the crown can be searched in logarithmic time by binary search for
angular arguments, to determine the relative position of a new transition point
w.r.t, the crown edges.

To store crown C i in a balanced tree we select an axis line L i, e.g. the line
connecting the vertices of P~ having the minimum and maximum x-coordinate,
respectively. This axis always intersects the sweeping plane, and we can repre-
sent p e r 3 w.r.t. Li by the cylindrical coordinates (x, alfa, radius). Here x is p's
x-coordinate, and (alfa, radius) are p's polar coordinates in the yz-plane
through p, with pole on L~ and alfa's measured against, say, the positive y-axis.
A forward edge is represented by the cylindrical coordinates w.r.t. Li of its
endpoints, i.e., by (x 0, alfa o, r 0, x 1, alfal, rl). Note that for every p on such a
forward edge with x-coordinate x, X o < X < X 1, we can calculate (alfa, r) in
constant time. The radial representation is depicted in Fig. 3.2; in Fig. 3.3
formulae are given that help for the calculation of (alfa, r) - for simplification,
the axis is assumed to be the x-axis.

Note that although alfas and radii change with x, the relative ordering of
crown edges remains invariant between transitions. This allows us to store the
crown as a balanced binary tree, organized with respect to alfas.

Before we can process a new polyhedron vertex p = (x, y, z) with cylindrical
coordinates (x, alfa, r), we have to know where it is located in the respective
crown. Therefore we use angular binary search to find a crown edge whose
right endpoint is p. If the intersection of any forward edge of the crown with the
yz-plane through p has cylindrical coordinates (x, alfa*, r*), we have to search
until we lind an edge such that a lda*= alfa.

cr 7

/ / ' ~ . ~

0(6 / - - / ~ ~
[~ / " ' - , a t2

,k.-" ", /f
I N ,," " " . ' < I

/ / m 5.6\ \ axis i I y -d i rect ion

; / f "" _&'3 ~, .,'.11 "\-~- "-- . i

-.. \ ,

Fig. 3.2,. Rad ia l representa t ion of a crown, viewed paral lel to the axis. m~'s are angles of left, ~'~'s
angles o f r ight endpo in t s of foreard edges

Intersection of Two Convex Polyhedra 511

x 0 -

x -

Y0 "P~
Y0

~ z1
yl

x=x0*k[xl-x 01 tan = = z / y

y=y0*k(yl-y0) r=z / s in =

Z=Zo.,-klzl-z O)
(a) [b)

Fig. 3.3a, b. Coordinate transformation for a forward edge fffi(Po, Pl) if the axis is the x-axis, a
Projection into the xy-plane, b Projections into the yz-plane at x = x o and at x = x l

4. The Algorithm

Our algorithm will construct two crowns, one for each polyhedron, and will
find their intersections (as specified in problem ICP', i.e., at least one per
connected component of El). Thereby, if edge e lies completely in a face of the
other polyhedron, "intersection" is defined to be an endpoint of e. Advancing
in the x-queue (that initially contains all n corners) from vertex to vertex of the
two polyhedra, we perform one transition per vertex. We will first present
procedure TRANSITION, the core of our algorithm, and then show that the
algorithm is correct and stays within the desired time limit of O(n log n).

While processing vertex p of polyhedron P~ we assume that at least one point
of every component of E1 to the left of p (and possibly including p) is al-
ready known; we only look for intersections to the right of p. One execution of
T R A N S I T I O N will deliver zero, one, or several intersection points of the two
polyhedra on an edge or in a face of P~ starting at p. To achieve this, we first
intersect all proper edges of P~ starting at p with the opposite crown C~_~. If
none of the two edges bounding a face F of P~ starting at p intersects the
opposite crown, a part of Pz-~ could nevertheless penetrate face F, as shown in
Fig. 4.1.

To detect some of these intersections, we intersect an arbitrary proper forward
edge of crown C~_~ with F. Lemma 2 below asserts that this is sufficient to find
at least one point of each component of E 1.

Specifically, a transition is performed as follows (S is an initially empty set
of intersections):

512 S. Hertel et al.

e

C 1 �9

Fig. 4.1. No bounding edge of face F of P~
intersects C 1_~; however, forward edges of C~_~
penetrate F

(1) proc TRANSITION(p , i) :
(2) update crown C~ of polyhedron P~;
(3) if exactly one edge e of P~ starts at p
(4) then intersect e with the crown C1 _~ of P~_~ and

add all intersections to set S
(5) else for all faces F of P~ starting at p

(possibly consisting of several prongs)
(6) do intersect the starting proper edges of F with the crown

C 1 _g, and add all intersections to S;
(7) if no intersection is found
(8) then choose a proper forward edge of crown C t_ ~ and

intersect it with F; add intersection, if any, (in the
pertaining bounding triangle) to S

fi
od

(9)
(lo)
(11) fi
(12) corp.

L e m m a 2. Performing TRANSITION once for each of the vertices of the two
polyhedra sorted into a common queue correctly solves problem I CP'.

Proof. It is clear that a set of intersections is computed. Thus we only need to
show that at least one point of each component of E 1 will be reported.

Let K be a component of E 1, and let v be a vertex of K with minimal x-
coordinate. Clearly v is the intersection of an edge e of polyhedron P~ with a
face F of polyhedron P~_i. If v is not reported then e must start before F (in
the sweep order). Consider the state of the space-sweep immediately after the
start vertex p of F is encountered. At this point e is a forward edge of the
crown C i of Pi-

Conceptually trace K in face F and crown C~, starting at v. Two cases may
arise:

Case 1. We are not able to trace K completely, i.e., we first hit either a
bounding edge e' of F (subcase a)), or a prong edge e" of C~ (subcase b)).
Because of the minimality of v's x-coordinate we do not leave Ci by way of a
base edge.

Intersection of Two Convex Polyhedra 513

a) e' intersects a prong G of C~. Then e'c~ G either was detected while pro-
cessing p, or it will be detected when the starting point of e' is processed, since
G is still a prong of C~ at that time. Compare Fig. 4.2.

Fig. 4.2. Case la) of the proof of Lemma 2. Shown are a part of the crown Ct_ ~, and prong G of
crown C~. w=e'c~G is detected when the starting point of e' is processed

b) Because of the triangulation chosen for faces, e" is a proper edge. Also,
F still is part of crown C1_ ~ when the starting point of e" is processed.
Therefore e"c~ F is detected at that time.

Case 2. We are able to trace K completely in F and C~. Since e starts before F
and since it does not intersect a bounding edge of F, e does not lie in face F
but intersects the interior of F. The intersection with F of the two prongs of C i
neighboring e is completely contained in F, and the forward edges (other than
e) of these prongs again intersect the interior of F. The argument propagates
around the crown Ci. Thus K is a dosed curve in F running through all
prongs of C~, and intersecting all forward edges of C i. Hence a point of F is
found in line (8) of T R A N S I T I O N . Figure4.1 helps understand this case;
we may, in line (8) of T R A N S I T I O N , select forward edge f of C; and inter-
sect it with F. []

Let us now examine the time required for the different actions of T R A N -
SITION.

Lemma 3. The updating of crown C O (C1, resp.) can be done in total time
O(n log n).

Proof. Consider updating crown C~ (i=0 ,1) at a transition vertex v=(x,y ,z) .
Let c be the max imum of the number of forward edges of C~ before the
transition, and the number of such edges after the transition, and let d = d 1
wd2, with dl(d2) being the number of edges of Pi ending (starting) at v. We
have to localize the edges ending at v in the balanced tree representing C~ for
updating C i subsequently. This can be done by angular binary search as
described in the previous section. Because of the cyclic ordering of the crown
this yields a subtree T~, as pictured in Fig. 4.3.

514 S. Hertel et al.

. - y

edges with
endpoint v

Fig. 4.3. The two outermost search paths (bounding Tv) for edges with endpoint v

Now we split C i along the two outermost search paths, drop T o, and merge
the tree T~ e" formed from the d 2 edges starting in v (that are given in cyclic
order) with the remainder of C i. This can be done in time O(logc+d2), namely
time O(logc) for the search with the subsequent splitting of the tree Ci, t ime
O(d2) for the construction of the tree T~ ew, and time O(logc) for the merging of
T~ cw with the remainder of C~. The operations necessary are those of a
"concatenable queue" ([1], p. 155ff.) - observe that the remainder of C i is a
forest of trees with known relative ordering, and with height differences be-
tween two neighbors summing up to O(log c). Since c < n, and since the sum of
d's over all polyhedron vertices is O(n), the lemma follows. []

L e m m a 4. Let g be a straight line, and let C be a crown with c forward edges.
C chg can be computed in time O(logc).

Proof. Similarly to the idea of Dobkin and Kirkpatrick [4, 5] we let the
balanced tree define a hierarchical representation of the crown. Finding an
intersection is easier if we use an extension of the crown to a convex polyhed-
ron. Specifically, let v 1 , v c be the verticles of the base polygon, and let
wl, .. . , wc be the right endpoints of the c forward edges. Neighboring v's or
neighboring w's may coincide. Let V:= {vl , v~}, W:={w~ , we}, and let t
be the right endpoint of the axis of C, i.e., the rightmost vertex of the
respective polyhedron. Consider the convex hull of the points V ~ Ww {t}. The
bounding faces of the convex hull are the base polygon, which we will not
consider intersections with g there are not interesting, the prongs of crown C,
and the terminal triangles (it's) extending from two neighboring but not identi-
cal w's each to t. Thus each tt has exactly one partner prong (pp); the reverse
relation does not necessarily hold. Figure 4.4 presents such a solid object and
illustrates the new terms.

We will represent such a special polyhedron hierarchically by a balanced
tree. To be specific, let us choose a (2, 3)-tree (compare [1]). Observe that the
crown, resp. the special polyhedron, is a solid for which the two-dimensional
hierarchical representation of [4] is sufficient. Let C ~~ i = 1, ..., k=O(logc), be
the forward edges of the crown stored in depth i of the tree. C tk) is C, and P<~),
the convex hull of C ~i~ and point t, is an inner approximation of the special
polyhedron. C t~) is shrunk to C t i -~ by transforming two (or three) prongs of

Intersection of Two Convex Polyhedra 515

V 7

W7 ' W 8
Vs~' '~. ._ "~. ~ W 6

I ' i " . = -
I ~- " - - . - ~ J . ~ "

v 2 v3

Fig. 4.4. Convex hull of a crown with 8 forward edges joining in 5 different right endpoints,
together with t, the rightmost polyhedron vertex. Partner of trwTw~t is prong v~w~wsva; prong
vTvsw 8 has no partner

C m each into one - this, in turn, is done by removing the forward edge(s)
separating them. Com pa re Fig. 4.5.

Internal nodes of the balanced tree contain hierarchy informat ion in ad-
dition to the usual order informat ion needed during rebalancing. The former is
chosen to insure that, in each depth i, i = 1 k, two neighboring nodes each
correspond to a p rong of the crown C m. To achieve this, it is sufficient to let
leaves of the tree represent forward edges of the crown C = C ~k), and every
internal node the (cyclically) minimal edge of the subtree the roo t of which it
is. Via neighbor pointers on every level one can find the p rong corresponding
to a node in constant time. Figure 4.6 illustrates the correspondence between a
connected section of the c rown C (k) and its tree representation.

The refinement of the representation, i.e., the transit ion f rom pm to p~+t~,
may be unders tood as a convex extension of pro. We will present related terms
and investigations before we explain the a lgor i thm for determining C c~g.

Let P = (V,, E) be an arbi t rary convex polyhedron. Let Z = (v 1 , v~, v~ + 1 = v)
be a closed simple path o f edges on P, i.e., v~V, (v~,vi+l)eE for i = 1 ,s, and

o

/ , ' / t I ~\ \ , . . .

zY b ~ ~\ \ - ' -

o-, o. /

I ~ . /
-~. | o

Fig. 4.5a. Two subsequent approximations of the crown of a polyhedron, seen from the direction
of the positive axis. C m (consisting of prongs with at least one forward edge shown dashed) is
made coarser and thus changed into C ~i-~ (solid edges)

516 S. Hertel et al.

o

~ I ~ ' [co-planar prongs)

e ' o r �9

X i ",,L.
..... <,, -i

Fig. 4.ilk Refinement of the representation of a crown; transition from C "-1~ to C <~ Forms of the
"partitioning" of a prong into two by adding an additional forward edge (dashed; between two
neighboring forward edges, e and e', of Cti-l~). If two additional edges are inserted even more
forms of refining a prong are possible

v j*v j for i * j , i , j e [1 :s]. Z divides the surface of P into two segments. Let S be
a segment. A convex extension of S is an expansion of P in the region of S (by
adding new nodes and edges, and by possibly removing nodes in the interior of
S, i.e., in S but not on the path of edges bounding S) that preserves convexity.
The roof over S is the maximal convex extension of S. Roofs may be closed or
open (i.e., infinite); for instance, the faces of a te t rahedron have open roofs,
those of a dodecahedron have closed roofs.

Relevant for our a lgor i thm is the following fact proved in [8] :

Fact. Let S = {S 1 , Sk} be a part i t ion of the surface of a convex polyhedron P
into segments. A line g tha t does not intersect P can intersect the roofs of at
mos t two of these segments.

N o w we are going to compute C:~g, guided by Dobk in and Kirkpatr ick 's
a lgor i thm for determining the intersection of a straight line with a convex
polygon. In the following, segments will always be tt-pp-pairs, and prongs
wi thout par tner ; compare Fig. 4.4.

W e start with p<l~, a (possibly degenerated) convex po lyhedron with few
segments, and determine the part of ptl~ where an intersection could occur if it
exists. There we locally proceed t o / / 2 7 and determine a - smaller - section for

Intersection of Two Convex Polyhedra 517

w6o-- e8
(o} *5 ~ '~ '7 ~ ~

~,o.~"" / ,
:>x --.... / /

wz.o,4,"- "-. , / /
w2 / \ .~.,, /

V 2 ~ _ 0 -~
v3

://\ /\ /\ -3:

Fig. 4.6. a Part of crown C ~k) with the corresponding part of C ~k-*) (solid lines) b Hierarchical
representation of a in the (2, 3)-tree; shown is only the hierarchy information in the internal nodes.
From the upper node marked by e I one can find the corresponding prong w l w 6 v T v 6 of C ~k-2~ that
is not explicitly drawn in a

a possible intersection. We locally expand the polyhedron up to p(k) to find an
intersection if any. If g intersects ptk) in a prong of C (k) this point is reported;
intersections with tt's are neglected.

Depending on whether we already have found an intersection g c~ C or not,
we have to distinguish two cases.

A proper intersection (i.e., not only touching point) found in depth i is
processed by refining the respective segment to the next depth. One of the (at
most six) new bounding faces must again have an intersection with g; we
proceed analogously at depth i + 1.

If no intersection was found so far, the following invariant is maintained
before the start of the i-th iteration (i.e., computat ion at depth i), i = 2 k:

(INV. 1): S 1, S 2 are two segments of p , - 1) with the following property: If g
intersects pt/) with j>i , then g intersects one or both of the roofs over S 1, S 2.
$1 = S 2 is allowed.

For the second iteration the invariant is established as follows:

518 S. Hertel et al.

Intersect g with all bounding faces of p(l~. If no such intersection is found
intersect g with the roofs of all segments of p~l). Observe that such an
intersection is computable in constant time. Get at most two segments $1, S 2
whose roofs are intersected by g. Stop if no such segment exists.

The transition from the i-th to the (i + l) s t iteration, i_>_2, is performed as
follows:

Refine segments Sx, S 2 to depth i+ 1. Get at most six new segments. If no
intersection of g with one of the maximally 12 new bounding faces is found,
intersect g with the roofs of the new segments. Get at most two new segments
S 1, S 2 the roofs of which are intersected by g. Observe that, if segment S is
refined into two or three new segments, the roofs of the new segments are
contained in the roof of S, and, that roofs of segments not considered never
grow either. Stop if g does not intersect any roof.

Let us briefly mention two special cases that require some modification of
our procedure in the i-th iteration. If g touches pti~ in exactly one point on a
forward or " terminal" edge, we refine the two incident segments; if a part of g
lies in a prong of C "~ we refine, per iteration, the outermost two segments
concerned, in order to avoid reporting an intersection of g with an improper
edge.

Details of special cases are left to the reader. It suffices to realize that only
constant work is necessary per iteration. Due to the convexity of pti~, no
more than two search paths are followed in the tree, hence the time bound
follows. []

Corollary. Let C be a crown with c forward edges, and let e be an edge whose
left endpoint does not lie left of the base of C. C n e can be computed in time
O (log c).

By combining Lem m at a 2-4 we obtain

Lemma 5. The space-sweep algorithm using procedure T R A N S I T I O N described
above solves problem ICP' defined in Sect. 2 in time O(n logn).

Proof. The total cost for line (2) of T R A N S I T I O N is O(nlogn) according to
Lemma 3, as is, according to Lemma 4 including its corollary, the total cost for
lines (4) and (6). Line (8) needs O(degi(F)) per execution, that is, total t ime O(n)
since it is executed at most once per face F. For all other lines linear time
suffices in total. []

Together with L e m m a 1 we finally get our main result.

Theorem. The intersection of two convex polyhedra with a total of n corners can
be computed by space-sweep in time O(n logn).

5. Conclusions

We have seen that the space-sweep approach yields an efficient algorithm for
intersection of convex polyhedra that matches the performance of the best
known algorithm to this problem. Although the details are complex, we

Intersection of Two Convex Polyhedra 519

believe the ma in ideas of sweeping and of angular search are easier to under -
stand.

Thus there are effective space-sweep algori thms for selected problems. How-
ever, space-sweep does no t seem to offer as general an approach to solving
geometr ic problems in 3 d imens ions as plane-sweep does for 2 dimensions . It is
an open quest ion whether space-sweep can be effectively applied to more
general problems, such as those involving non-convex solids.

Acknowledgement. We are grateful to Klaus Hinrichs, Herbert Edelsbrunner, and Athanasios
Tsakalidis for helpful comments.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms.
Reading, MA: Addison-Wesley 1974

2. Bieri, H., Nef, W.: A Recursive Sweep-Plane Algorithm, Determining All Ceils of a Finite
Division of 1t. a. Computing 28, 189-198 (1982)

3. Bieri, H., Nef, W.: A Sweep-Plane Algorithm for Computing the Volume of Polyhedra
Represented in Boolean Form. Linear Algebra and Appl. 52/53, 69-79 (1983)

4. Dobkin, D.P., Kirkpatrick, D.G.: Fast Detection of Polyhedral Intersections. Proc. 9th ICALP,
Springer LNCS 140, 154-165 (1982)

5. Dobkin, D.R., Kirkpatrick, D.G.: A Linear Algorithm for Determining the Separation of
Convex Polyhedra. Manuscript, 1983

6. Hadwiger, H.: Eulers Charakteristik und kombinatorische Geometrie. J. Reine Angew. Math.
194, 101--110 (1955)

7. Hadwiger, H.: Eine Schnittrekursion fiir die Eulersche Charakteristik euklidiseher Polyeder mit
Anwendungen innerhalb der kombinatorischen Geometrie. Elem. Math. 23, 121-132 (1968)

8. Hertel, S.: Sweep-Algorithmen fiir Polygone und Polyeder. Univ. des Saarlandes, Saarbrticken,
Diss. 1984

9. Muller, D.E., Preparata, F.P.: Finding the Intersection of Two Convex Polyhedra. Theor.
Comput. Sci. 7, 217-236 (1978)

10. Mairson, H., Stolfi, J.: Personal communication, 1983
11. Nievergelt, J., Preparata, F.P.: Plane-Sweep Algorithms for Intersecting Geometric Figures.

Comm. ACM 25, 739-747 (1982)
12. Sehmitt, A.: Time and Space Bounds for Hidden Line and Hidden Surface Algorithms. Proc.

EUROGRAPHICS, pp. 43-56, 1981. Amsterdam: North-Holland, 1981
13. Shamos, M.I.: Geometric Complexity. Proc. 7th ACM STOC pp. 224-233, 1975
14. Shamos, M.I., Hoey, D.: Geometric Intersection Problems. Proc. 17th IEEE FOCS Syrup. pp.

208-215, 1976

Received September 27, 1983/August 27, 1984

