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Abstract. We consider the problem of Online Facility Location, where demands arrive
online and must be irrevocably assigned to an open facility upon arrival. The objective
is to minimize the sum of facility and assignment costs. We prove that the competitive
ratio for Online Facility Location is Θ( log n

log log n
). On the negative side, we show that no

randomized algorithm can achieve a competitive ratio better than Ω( log n
log log n

) against an
oblivious adversary even if the demands lie on a line segment. On the positive side, we present
a deterministic algorithm achieving a competitive ratio of O( log n

log log n
). The analysis is based

on a hierarchical decomposition of the optimal facility locations such that each component
either is relatively well-separated or has a relatively large diameter, and a potential function
argument which distinguishes between the two kinds of components.

1 Introduction

The (metric uncapacitated) Facility Location problem is, given a metric space along with a facility
cost for each point and a (multi)set of demand points, to find a set of facility locations which
minimize the sum of facility and assignment costs. The assignment cost of a demand point is the
distance to the nearest facility. Facility Location provides a simple and natural model for network
design and clustering problems and has been the subject of intensive research over the last decade
(e.g., see [17] for a survey and [9] for approximation algorithms and applications).

The definition of Online Facility Location [16] is motivated by practical applications where
either the demand set is not known in advance or the solution must be constructed incrementally
using limited information about future demands. In Online Facility Location, the demands arrive
one at a time and must be irrevocably assigned to an open facility without any knowledge about
future demands. The objective is to minimize the sum of facility and assignment costs, where each
demand’s assignment cost is the distance to the facility it is assigned to.

We evaluate the performance of online algorithms using competitive analysis (e.g., [5]). An
online algorithm is c-competitive if for all instances, the cost incurred by the algorithm is at most
c times the cost incurred by an optimal offline algorithm, which has full knowledge of the demand
sequence, on the same instance. We always use n to denote the number of demands.
Previous Work. In the offline case, where the demand set is fully known in advance, there
are constant factor approximation algorithms based on Linear Programming rounding (e.g., [18]),
local search (e.g., [10]), and the primal-dual schema (e.g., [12]). The best known polynomial-time
algorithm achieves an approximation ratio of 1.52 [14], while no polynomial-time algorithm can
achieve an approximation ratio less than 1.463 unless NP = DTIME(nO(log logn)) [10].

Online Facility Location was first defined and studied in [16], where a simple randomized
algorithm is shown to achieve a constant performance ratio if the demands, which are adversarially
selected, arrive in random order. In the standard framework of competitive analysis, where not
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only the demand set but also the demand order is selected by an oblivious adversary, the same
algorithm achieves a competitive ratio of O( logn

log logn )1. It is also shown a lower bound of Ω(log∗ n)
on the competitive ratio of any online algorithm, where log∗ is the inverse Ackerman function.

Online Facility Location should not be confused with the problem of Online Median [15]. In
Online Median, the demand set is fully known in advance and the number of facilities increases
online. An O(1)-competitive algorithm is known for Online Median [15].

Online Facility Location bears a resemblance to the extensively studied problem of Online File
Replication (e.g., [4, 2, 1, 13, 8]). In Online File Replication, we are given a metric space, a point
initially holding the file, and a replication cost factor. Read requests are generated by points in
an online fashion. Each request accesses the nearest file copy at a cost equal to the corresponding
distance. In between requests, the file may be replicated to a set of points at a cost equal to the
replication cost factor times the total length of the minimum Steiner tree connecting the set of
points receiving the file to at least one point already holding the file. Similarly to Facility Location,
File Replication asks for a set of file locations which minimize the sum of replication and access
costs. The important difference is that the cost of each facility only depends on the location, while
the cost of each replication depends on the set of points which hold the file and the set of points
which receive the file.

Online File Replication is a generalization of Online Steiner Tree [11]. Hence, there are metric
spaces in which no randomized online algorithm can achieve a competitive ratio better than Ω(log n)
against an oblivious adversary. They are known both a randomized [4] and a deterministic [2]
algorithm achieving a competitive ratio of O(log n) for the more general problem of Online File
Allocation. For trees and rings, algorithms of constant competitive ratio are known [1, 13, 8].

Contribution. We prove that the competitive ratio for Online Facility Location is Θ( logn
log logn ). On

the negative side, we show that no randomized algorithm can achieve a competitive ratio better
than Ω( logn

log logn ) against an oblivious adversary even if the metric space is a line segment. The only
previously known lower bound was Ω(log∗ n) [16]. On the positive side, we present a deterministic
algorithm achieving a competitive ratio of O( logn

log logn ) in every metric space. To the best of our
knowledge, this is the first deterministic upper bound on the competitive ratio for Online Facility
Location.

As for the analysis, the technique of [2], which is based on a hierarchical decomposition/cover
of the optimal file locations such that each component’s diameter is not too large, cannot be
adapted to yield a sub-logarithmic competitive ratio for Online Facility Location. On the other
hand, it is not difficult to show that our algorithm achieves a competitive ratio of O( logn

log logn ) for
instances whose optimal solution consists of a single facility. To establish a tight bound for general
instances, we show that any metric space has a hierarchical cover with the additional property
that any component either is relatively well-separated or has a relatively large diameter. Then,
we prove that the sub-instances corresponding to well-separated components can be treated as
essentially independent instances whose optimal solutions consist of a single facility, and we bound
the additional cost incurred by the algorithm because of the sub-instances corresponding to large
diameter components.

Problem Definition. The problem of Online Facility Location is formally defined as follows. We
are given a metric space M = (C, d), where C denotes the set of points and d : C × C 7→ IR+

denotes the distance function which is symmetric and satisfies the triangle inequality. For each
point v ∈ C, we are also given the cost fv of opening a facility at v. The demand sequence consists
of (not necessarily distinct) points w ∈ C. When a demand w arrives, the algorithm can open some
new facilities. Once opened, a facility cannot be closed. Then, w must be irrevocably assigned to

1 Only a logarithmic competitive ratio is claimed in [16]. However, a competitive ratio of O( log n
log log n

) follows
from a simple modification of the same argument.



the nearest facility. If w is assigned to a facility at v, w’s assignment cost is d(w, v). The objective
is to minimize the sum of facility and assignment costs.

Throughout this paper, we only consider unit demands by allowing multiple demands to be
located at the same point. We always use n to denote the total number of demands. We distinguish
between the case of uniform facility costs, where the cost of opening a facility, denoted by f , is the
same for all points, and the general case of non-uniform facility costs, where the cost of opening a
facility depends on the point.
Notation. A metric space M = (C, d) is usually identified by its point set C. For a subspace
C ′ ⊆ C, D(C ′) = max

u,v∈C′
{d(u, v)} denotes the diameter of C ′. For a point u ∈ C and a subspace

C ′ ⊆ C, d(C ′, u) = min
v∈C′
{d(v, u)} denotes the distance from u to the nearest point in C ′. We use the

convention that d(u, ∅) = ∞. For subspaces C ′, C ′′ ⊆ C, d(C ′, C ′′) = min
u∈C′′

{d(C ′, u)} denotes the

minimum distance between a point in C ′ and a point in C ′′. For a point u ∈ C and a non-negative
number r, B(u, r) denotes the ball of center u and radius r, B(u, r) = {v ∈ C : d(u, v) ≤ r}.

2 A Lower Bound on the Competitive Ratio

In this section, we restrict our attention to uniform facility costs and instances whose optimal
solution consists of a single facility. These assumptions can only strengthen the proven lower
bound.

Theorem 1. No randomized algorithm for Online Facility Location can achieve a competitive ratio
better than Ω( logn

log logn ) against an oblivious adversary even if the metric space is a line segment.

Proof Sketch. We first prove that the lower bound holds if the metric space is a complete binary
Hierarchically Well-Separated Tree (HST) [3]. Let T be a complete binary rooted tree of height h
such that (i) the distance from the root to each of its children is D, and (ii) on every path from the
root to a leaf, the edge length drops by a factor exactly m on every step. The height of a vertex is
the number of edges on the path to the root. Every non-leaf vertex has exactly two children and
every leaf has height exactly h. The distance from a vertex of height i to each of its children is
exactly D

mi . Let f be the cost of opening a new facility, which is the same for every vertex of T .
For a vertex v, let Tv denote the subtree rooted at v. The lower bound is based on the following

property of T : The distance from a vertex v of height i to any vertex in Tv is at most m
m−1

D
mi ,

while the distance from v to any vertex not in Tv is at least D
mi−1 .

By Yao’s principle (e.g., [5, Chapter 8]), it suffices to show that there is a probability distribution
over demand sequences for which the ratio of the expected cost of any deterministic online algorithm
to the expected optimal cost is Ω( logn

log logn ).
We define an appropriate probability distribution by considering demand sequences divided

into h+ 1 phases. Phase 0 consists of a single demand at the root v0. After the end of phase i, if
vi is not a leaf, the adversary proceeds to the next phase by selecting vi+1 uniformly at random
and independently (u.i.r.) among the two children of vi. Phase i+ 1 consists of mi+1 consecutive
demands at vi+1.

The total number of demands is at most mh m
m−1 , which must not exceed n. The optimal

solution opens a single facility at vh and, for each phase i, incurs an assignment cost no greater
than D m

m−1 . Therefore, the optimal cost is at most f + hD m
m−1 .

Let Alg be any deterministic online algorithm. We fix the adversary’s random choices v0, . . . , vi
up to phase i, 0 ≤ i ≤ h−1, (equivalently, we fix Tvi

), and we consider the expected cost (conditional
on Tvi

) incurred by Alg for demands and facilities not in Tvi+1 . If Alg has no facilities in Tvi
when

the first demand at vi+1 arrives, the assignment cost of demands at vi ∈ Tvi
\ Tvi+1 is at least



A← ∅; L← ∅; /* Initialization */

For each demand w:
rw ← d(A,w)

x ; Bw ← {u ∈ L ∪ {w} : d(w, u) ≤ rw}; Pot(Bw)←
∑
u∈Bw

d(A, u);
if Pot(Bw) ≥ f then /* A new facility is opened */

if d(A,w) < f then
Let ν be the smallest integer:

either there exists exactly one u ∈ Bw such that
Pot
(
Bw ∩B

(
u, rw

2ν

))
> Pot(Bw)

2 ,

or, for any u ∈ Bw, Pot
(
Bw ∩B

(
u, rw

2ν+1

))
≤ Pot(Bw)

2 .

Let ŵ be any demand in Bw: Pot
(
Bw ∩B

(
ŵ, rw

2ν

))
> Pot(Bw)

2 .
else ŵ ← w;
A← A ∪ {ŵ}; L← L \Bw;

else L← L ∪ {w}; /* w is marked unsatisfied */
Assign w to the nearest facility in A.

Fig. 1. The algorithm Deterministic Facility Location – DFL.

mD. Otherwise, since vi+1 is selected u.i.r. among vi’s children, with probability at least 1
2 , there

is at least one facility in Tvi
\ Tvi+1 . Therefore, for any fixed Tvi

, the (conditional) expected cost
incurred by Alg for demands and facilities not in Tvi+1 is at least min{mD, f2 } plus the cost for
demands and facilities not in Tvi

. Since this holds for any fixed choice of v0, . . . , vi (equivalently,
for any fixed Tvi

), the (unconditional) expected cost incurred by Alg for demands and facilities not
in Tvi+1 is at least min{mD, f2 } plus the (unconditional) expected cost for demands and facilities
not in Tvi . Hence, at the beginning of phase i, 0 ≤ i ≤ h, the expected cost incurred by Alg for
demands and facilities not in Tvi is at least imin{mD, f2 }. For the last phase, Alg incurs a cost no
less than min{mD, f} inside Tvh

.
For m = h and D = f

h , the total expected cost of Alg is at least h+2
2 hD, while the optimal

cost is at most 2h−1
h−1 hD. For the chosen value of h, the quantity hh+1

h−1 must not exceed n. Setting

h =
⌊

logn
log logn

⌋
yields the claimed lower bound.

To conclude the proof, we consider the following embedding of T in a line segment. The root
is mapped to 0 (i.e., the center of the segment). Let v be a vertex of height i mapped to ṽ. Then,
v’s left child is mapped to ṽ − D

mi and v’s right child is mapped to ṽ + D
mi . It can be shown that,

for any m ≥ 4, this embedding results in a hierarchically well-separated metric space. ut

3 A Deterministic Algorithm for Uniform Facility Costs

In this section, we present the algorithm Deterministic Facility Location – DFL (Fig. 1) and prove
that its competitive ratio is O( logn

log logn ).
Outline. The algorithm maintains its facility configuration A and the set L of unsatisfied demands,
which are the demands not having contributed towards opening a new facility so far. A new demand
w is marked unsatisfied and added to L only if no new facilities are opened when w arrives. Each
unsatisfied demand u ∈ L can contribute an amount of d(A, u) to the cost of opening a new
facility in its neighborhood. We refer to the quantity d(A, u) as the potential of u. Only unsatisfied
demands and the demand currently being processed have non-zero potential. For a set S consisting
of demands of non-zero potential, let Pot(S) =

∑
u∈S d(A, u) be the potential of S.

The high level idea is to keep a balance between the algorithm’s assignment and facility costs.
For each demand w, the algorithm computes the set Bw consisting of w and the unsatisfied demands



at distance no greater than d(A,w)
x from w, where x is a sufficiently large constant. If Bw’s potential

is less than f , w is assigned to the nearest facility, marked unsatisfied and added to L. Otherwise,
the algorithm opens a new facility at an appropriate location ŵ ∈ Bw and assigns w to it. In this
case, the demands in Bw are marked satisfied and removed from L. The location ŵ is chosen as
the center of a smallest radius ball/subset of Bw contributing more than half of Bw’s potential.

An Overview of the Analysis. For an arbitrary sequence of n demands, we compare the algo-
rithm’s cost with the cost of a fixed offline optimal solution. The optimal solution is determined
by k facility locations c∗1, c

∗
2, . . . , c

∗
k. The set of optimal facilities is denoted by C∗. Each demand u

is assigned to the nearest facility in C∗. Hence, C∗ defines a partition of the demand sequence into
optimal clusters C1, C2, . . . , Ck. Let d∗u = d(C∗, u) denote the assignment cost of u in the optimal
solution, let S∗ =

∑
u d

∗
u be the total optimal assignment cost, let F∗ = kf be the total optimal

facility cost, and let σ∗ = S∗

n be the average optimal assignment cost.
Let ρ, ψ denote a fixed pair of integers such that ρψ > n. For any integer j, 0 ≤ j ≤ ψ, let

r(j) = ρjσ∗. We also define r(−1) = 0 and r(ψ + 1) = ∞. We observe that, for any demand u,
d∗u < r(ψ). Let λ be some appropriately large constant, and, for any integer j, −1 ≤ j ≤ ψ+ 1, let
R(j) = λ r(j). Throughout the analysis of DFL, we use λ = 3x+ 2.
The Case of a Single Optimal Cluster. We first restrict our attention to instances whose optimal
solution consists of a single facility c∗. The convergence of A to c∗ is divided into ψ + 2 phases,
where the current phase `, −1 ≤ ` ≤ ψ, starts just after the first facility within a distance of
R(` + 1) from c∗ is opened and ends when the first facility within a distance of R(`) from c∗ is
opened. In other words, the current phase ` lasts as long as d(A, c∗) ∈ (R(`), R(`+ 1)].

The demands arriving in the current phase ` and the demands remaining in L from the previous
phase are partitioned into inner demands, whose optimal assignment cost is less than r(`), and
outer demands. The last phase (` = −1) never ends and only consists of outer demands.

For any outer demand u, d(A, u) is at most λσ∗+(λρ+1)d∗u (Ineq. (3)). Hence, the assignment
cost of an outer demand arriving in phase ` can be charged to its optimal assignment cost. We
charge the total assignment cost of inner demands arriving in phase ` and the total facility cost
incurred by the algorithm in phase ` to the optimal facility cost and the optimal assignment cost
of the outer demands marked satisfied in phase `.

The set of inner demands is included in a ball of center c∗ and radius r(`). If R(`) is large enough
compared to r(`) (namely, if λ is chosen sufficiently large), we can think of the inner demands as
being essentially located at c∗, because they are much closer to each other than to the current
facility configuration A. Hence, we refer to the total potential accumulated by unsatisfied inner
demands as the potential accumulated by c∗ or simply, the potential of c∗. For any inner demand
w, Bw includes the entire set of unsatisfied inner demands. Therefore, the potential accumulated
by c∗ is always less than f (Lemma 3).

However, a new facility may decrease the potential of c∗, because (i) it may be closer to c∗,
and (ii) some unsatisfied inner demands may contribute their potential towards opening the new
facility, in which case they are marked satisfied and removed from L. As a result, the upper bound
of f on the potential accumulated by c∗ cannot be directly translated into an upper bound on the
total assignment cost of the inner demands arriving in phase ` as in [16].

Each time a new facility is opened, the algorithm incurs a facility cost of f and an assignment
cost no greater than f

x . The algorithm must also be charged with an additional cost accounting
for the decrease in the potential accumulated by c∗, which cannot exceed f . Hence, for each new
facility, the algorithm is charged with a cost no greater than 2x+1

x f .
Using the fact that R(`) is much larger than r(`), we show that if the inner demands included

in Bw contribute more than half of Bw’s potential, the new facility at ŵ is within a distance of
R(`) from c∗ (Lemma 4). In this case (Lemma 8, Case Isolated.B), the current phase ends and the
algorithm’s cost is charged to the optimal facility cost. Otherwise (Lemma 8, Case Isolated.A), the



algorithm’s cost is charged to the potential of the outer demands included in Bw, which is at least
f/2. The optimal facility cost is charged O(ψ) times and the optimal assignment cost is charged
O(λρ) times. Hence, setting ψ = ρ = O( logn

log logn ) yields the desired competitive ratio.
The General Case. If the optimal solution consists of k > 1 facilities c∗1, . . . , c

∗
k, the demands are

partitioned into the optimal clusters C1, . . . , Ck. The convergence of A to an optimal facility c∗i is
divided into ψ + 2 phases, where the current phase `i, −1 ≤ `i ≤ ψ, lasts as long as d(A, c∗i ) ∈
(R(`i), R(`i+1)]. For the current phase `i, the demands of Ci are again partitioned into inner and
outer demands, and the inner demands of Ci can be thought of as being essentially located at c∗i .

As before, the potential accumulated by an optimal facility c∗i cannot exceed f . However, a
single new facility can decrease the potential accumulated by many optimal facilities. Therefore, if
we bound the decrease in the potential of each optimal facility separately and charge the algorithm
with the total additional cost, we can only guarantee a logarithmic upper bound on the competitive
ratio. To establish a tight bound, we show that the average (per new facility) decrease in the total
potential accumulated by optimal facilities is O(f).

We first observe that as long as the distance from the algorithm’s facility configuration A to
a set of optimal facilities K is large enough compared to the diameter of K, the inner demands
assigned to facilities in K are much closer to each other than to A. Consequently, we can think
of the inner demands assigned to K as being located at some optimal facility c∗K ∈ K. Therefore,
the total potential accumulated by optimal facilities in K is always less than f (Lemma 3). This
observation naturally leads to the definition of an (optimal facility) coalition (Definition 2).

Our potential function argument is based on a hierarchical cover (Definition 1) of the subspace
C∗ comprising the optimal facility locations. Given a facility configuration A, the hierarchical cover
determines a minimal collection of active coalitions which form a partition of C∗ (Definition 3).

A coalition is isolated if it is well-separated from any other disjoint coalition, and typical other-
wise. A new facility can decrease the potential accumulated by at most one isolated active coalition.
Therefore, for each new facility, the decrease in the total potential accumulated by isolated active
coalitions is at most f (Lemma 8, Case Isolated).

On the other hand, a new facility can decrease the potential accumulated by several typical
active coalitions. We prove that any metric space has a hierarchical cover such that each component
either is relatively well-separated or has a relatively large diameter (i.e., its diameter is within a
constant factor from its parent’s diameter (Lemma 1). Typical active coalitions correspond to the
latter kind of components. Hence, we obtain a bound on the relative length of the interval for which
an active coalition remains typical (Lemma 2), which can be translated into a bound of O(f) on
the total decrease in the potential accumulated by an active coalition, while the coalition remains
typical (potential function component Ξ(2)

K and Lemma 7).
In the remaining paragraphs, we prove the following theorem by turning the aforementioned

intuition into a formal potential function argument.

Theorem 2. For any constant x ≥ 10, the competitive ratio of Deterministic Facility Location is
O( logn

log logn ).

Hierarchical Covers and Optimal Facility Coalitions. We start by showing that any metric
space has a hierarchical cover with the desired properties.

Definition 1. A hierarchical cover of a metric space C is a collection K = {K1, . . . ,Km} of
non-empty subsets of C which can be represented by a rooted tree TK in the following sense:

(A) C belongs to K and corresponds to the root of TK.
(B) For any K ∈ K, |K| > 1, K contains sets K1, . . . ,Kµ, each of diameter less than D(K), which

form a partition of K. The sets K1, . . . ,Kµ correspond to the children of K in TK.



We use K and its tree representation TK interchangeably. By definition, every non-leaf set has
at least two children. Therefore, TK has at most 2|C|−1 nodes. For a set K different from the root,
we use PK to denote the immediate ancestor/parent of K in TK. Our potential function argument
is based on the following property of metric spaces.

Lemma 1. For any metric space C and any γ ≥ 16, there exists a hierarchical cover TK of C such
that for any set K different from the root, either D(K) > D(PK)

γ2 or d(K,C \K) > D(PK)
4γ .

Proof Sketch. Let C be any metric space, and let D = D(C). We first show that, for any integer
i ≥ 0, C can be partitioned into a collection of level i groups Gi1, . . . , G

i
m such that (i) for any

j1 6= j2, d(Gij1 , G
i
j2

) > D
4γi , and (ii) if D(Gij) >

D
γi , then Gij does not contain any subset G ⊆ Gij

such that both D(G) ≤ D
γi+1 and d(G,Gij \ G) > D

4γi . Since the collection of level i groups is a
partition of C, for any Gij , d(G

i
j , C \Gij) > D

4γi .
Level i groups are further partitioned into level i componentsKi

1, . . . ,K
i
m′ such that (i)D(Ki

j) ≤
D
γi , and (ii) either D(Ki

j) >
D
γi+1 or d(Ki

j , C \ Ki
j) >

D
4γi . To ensure a hierarchical structure, we

proceed inductively in a bottom-up fashion. We create a single level i component for each level
i group Gij of diameter no greater than D

γi . We recall that d(Gij , C \ Gij) > D
4γi . If D(Gij) >

D
γi ,

Gij is partitioned into level i components of diameter in the interval ( D
γi+1 ,

D
γi ]. For γ ≥ 16, such a

partition exists, because Gij does not contain any well-separated subsets of small diameter. Finally,
we eliminate multiple occurrences of the same component at different levels. ut

Definition 2. A set of optimal facilities K ⊆ C∗ with representative c∗K ∈ K is a coalition with
respect to the facility configuration A if d(A, c∗K) ≥ λD(K). A coalition K is called isolated
if d(K,C∗ \ K) ≥ 2 d(A, c∗K), and typical otherwise. A coalition K becomes broken as soon as
d(A, c∗K) < λD(K).

Given a hierarchical cover TK of the subspace C∗ comprising the optimal facility locations, we
choose an arbitrary optimal facility as the representative of each set K. The representative of K
always remains the same and is denoted by c∗K . Then, TK can be regarded as a system of optimal
facility coalitions which hierarchically covers C∗. The current facility configuration A defines a
minimal collection of active coalitions which form a partition of C∗.

Definition 3. Given a hierarchical cover TK of C∗, a coalition K ∈ TK is an active coalition with
respect to A if d(A, c∗K) ≥ λD(K) and for any other coalition K ′ on the path from K to the root
of TK, d(A, c∗K′) < λD(K ′).

Lemma 2. For any γ ≥ 8λ, there is a hierarchical cover TK of C∗ such that if K is a typical active
coalition with respect to the facility configuration A, then λD(PK)

γ2 < d(A, c∗K) < (λ+ 1)D(PK).

Proof. For some γ ≥ 8λ, let TK be the hierarchical cover of C∗ implied by Lemma 1. We show that
TK has the claimed property. The root of TK is an isolated coalition by definition. Hence, we can
restrict our attention to coalitions K ∈ TK different from the root for which the parent function
PK is well-defined.

Since K is an active coalition, its parent coalition PK must have become broken. The upper
bound on d(A, c∗K) follows from the triangle inequality and the fact that c∗K also belongs to PK .

For the lower bound, we consider two cases. If K has a relatively large diameter (D(K) >
D(PK)
γ2 ), the lower bound on d(A, c∗K) holds as long as K remains a coalition. If K is relatively well-

separated (d(K,C∗ \K) > D(PK)
4γ ) and the lower bound on d(A, c∗K) does not hold, we conclude

that 2 d(A, c∗K) < d(K,C∗ \K) (K is an isolated coalition), which is a contradiction. ut



Notation. The set of active coalitions with respect to the current facility configuration A is denoted
by Act(A). For a coalition K, `K denotes the index of the current phase. Namely, `K is equal to
the integer j, −1 ≤ j ≤ ψ, such that d(A, c∗K) ∈ (R(j), R(j + 1)]. If d(A, c∗K) > R(ψ), `K = ψ
(the first phase), while if d(A, c∗K) ≤ R(0), `K = −1 (the last phase). Let CK =

⋃
c∗

i
∈K Ci be

the optimal cluster corresponding to K. Since Act(A) is always a partition of C∗, the collection
{CK : K ∈ Act(A)} is a partition of the demand sequence. For the current phase `K , the demands
of CK are partitioned into inner demands In(K) = {u ∈ CK : d∗u < r(`K)} and outer demands
Out(K) = CK \ In(K). Let also ΛK = L ∩ In(K) be the set of unsatisfied inner demands assigned
to K.

We should emphasize that `K , In(K), Out(K), and ΛK depend on the current facility config-
uration A. In addition, ΛK depends on the current set of unsatisfied demands L. For simplicity
of notation, we omit the explicit dependence on A and L by assuming that while a demand w is
being processed, `K , In(K), Out(K), and ΛK keep the values they had when w arrived.
Properties. Let K be a coalition with respect to the current facility configuration A. Then,
d(A, c∗K) ≥ λmax{D(K), r(`K)}. The diameter of the subspace comprising the inner demands of
K is D(In(K)) < 3 max{D(K), r(`K)}. We repeatedly use the following inequalities. Let u be any
demand in CK and let c∗u ∈ K be the optimal facility to which u is assigned. Then,

d(A, u) ≤ d(A, c∗K) + d(c∗K , c
∗
u) + d(c∗u, u) ≤ d(A, c∗K) +D(K) + d∗u ≤ λ+1

λ d(A, c∗K) + d∗u (1)

If u is an inner demand of K (u ∈ In(K)),

d(u, c∗K) ≤ d(u, c∗u) + d(c∗u, c
∗
K) < r(`K) +D(K) ≤ 2 max{D(K), r(`K)} ≤ 2

λd(A, c
∗
K) (2)

If u is an outer demand of K (u ∈ Out(K)),

d(A, u) ≤ (λ+ 1)σ∗ + ((λ+ 1)ρ+ 1)d∗u (3)

Proof of Ineq. (3). Since u is an outer demand, it must be the case that d∗u ≥ r(`K). In addition,
by Ineq. (1), d(A, u) ≤ λ+1

λ d(A, c∗K) + d∗u. If the current phase is the last one (`K = −1), then
d(A, c∗K) ≤ λσ∗, and the inequality follows. Otherwise, the current phase cannot be the first one
(i.e., it must be `K < ψ), because d∗u < r(ψ) and u could not be an outer demand. Therefore,
d(A, u) ≤ R(`K + 1) = λ ρ r(`K) ≤ λ ρ d∗u, and the inequality follows. ut

Lemma 3 and Lemma 4 establish the main properties of DFL.

Lemma 3. For any coalition K, Pot(ΛK) =
∑
u∈ΛK

d(A, u) < f .

Proof. In the last phase (`K = −1), Pot(ΛK) = 0, because there are no inner demands (In(K) = ∅).
If `K ≥ 0, for any inner demand u of K (u ∈ In(K)),

d(A, u) ≥ d(A, c∗K)− d(c∗K , u) > 3xmax{D(K), r(`K)} ,

where the last inequality follows from (i) d(A, c∗K) ≥ λmax{D(K), r(`K)}, because K is a coalition,
(ii) d(u, c∗K) < 2 max{D(K), r(`K)}, because of Ineq. (2), and (iii) λ = 3x+ 2.

Let w be the demand in ΛK which has arrived last, and let Aw be the facility configuration
when w arrived. The last time Pot(ΛK) increased was when w was added to L (and hence, to ΛK).
Since D(In(K)) < 3 max{D(K), r(`K)} < d(A,w)

x ≤ d(Aw,w)
x , Bw must have contained the entire

set ΛK (including w). Pot(Bw) must have been less than f , because w was added to L. Therefore,
Pot(ΛK) ≤ Pot(Bw) < f . ut

Lemma 4. Let w be any demand such that Pot(Bw) ≥ f , and, for a coalition K, let ΛwK =
Bw ∩ In(K). If there exists an active coalition K such that Pot(ΛwK) > Pot(Bw)

2 , then d(ŵ, c∗K) <
8 max{D(K), r(`K)}.



Proof. We first consider the case that d(A,w) ≥ f and ŵ coincides with w. If there exists an
active coalition K such that w ∈ In(K), the conclusion of the lemma follows from Ineq. (2). For
any active coalition K ′ such that w 6∈ In(K ′), Lemma 3 implies that Pot(ΛwK′) < Pot(Bw)

2 , because
Pot(Bw \ ΛwK′) ≥ d(A,w) ≥ f .

We have also to consider the case that d(A,w) < f . We observe that any subset of Bw
including a potential greater than Pot(Bw)

2 must have a non-empty intersection with ΛwK . If
rw

2ν < 6 max{D(K), r(`K)}, let u be any demand in ΛwK ∩B(ŵ, rw

2ν ). Since u is an inner demand of
K, using Ineq. (2), we show that

d(ŵ, c∗K) ≤ d(ŵ, u) + d(u, c∗K) < 6 max{D(K), r(`K)}+ 2 max{D(K), r(`K)} .

Otherwise, it must be rw

2ν+1 ≥ 3 max{D(K), r(`K)} > D(In(K)). Therefore, for any u ∈ ΛwK , Bw ∩
B
(
u, rw

2ν+1

)
includes the entire set ΛwK and hence, a potential greater than Pot(Bw)

2 . Consequently,
there must be a single demand u ∈ Bw such that Pot

(
Bw ∩B

(
u, rw

2ν

))
> Pot(Bw)

2 . Since the previous
inequality is satisfied by any demand u ∈ ΛwK , there must be only one demand in ΛwK , and ŵ must
coincide with it. The lemma follows from Ineq. (2), because ŵ is an inner demand of K. ut
Potential Function Argument. We use the potential function Φ to bound the total algorithm’s
cost. Let TK be the hierarchical cover of C∗ implied by Lemma 2.

Φ =
∑
K∈TK ΦK , where ΦK = (2x+1)(λ+1)

x(λ−2) ΞK − λ+1
λ ΥK .

The function ΞK is the sum of three components, ΞK = Ξ(1)
K + Ξ(2)

K + Ξ(3)
K , where

Ξ(1)
K =

ψ∑
j=0

ξ(1)(K, j) , ξ(1)(K, j) =
{
f if d(A, c∗K) > R(j).
0 if d(A, c∗K) ≤ R(j).

Ξ(2)
K =


0 if K is the root of TK.

f max

{
ln

(
min{d(A, c∗K), (λ+ 1)D(PK)}

λD(PK)
γ2

)
, 0

}
otherwise.

Ξ(3)
K =

2f if K is a typical coalition.
f if K is an isolated coalition.
0 if K has become broken.

The function ΥK is defined as ΥK =
{∑

u∈ΛK
d(A, c∗K) if K ∈ Act(A).

0 otherwise.
Let K be an active coalition. The function Ξ(1)

K compensates for the cost of opening the facility
concluding the current phase of K. Ξ(2)

K compensates for the additional cost charged to the algo-
rithm while K is typical active coalition (Lemma 7). Ξ(3)

K compensates for the cost of opening a
facility which changes the status of K either from typical to isolated or from isolated to broken.
The function ΞK never increases and can decrease only if a new facility closer to c∗K is opened. The
function ΥK is equal to the potential accumulated by c∗K . ΥK increases when an inner demand of
K is added to L and decreases when a new facility closer to c∗K is opened.

In the following, ∆Φ denotes the change in the potential function because of a demand w.
More specifically, let Φ be the value of the potential function just before the arrival of w, and let
Φ′ be the value of the potential function just after the algorithm has finished processing w. Then,
∆Φ = Φ′ − Φ. The same notation is used with any of the potential function components above.

We first prove that ΦK remains non-negative (Lemma 5). If a demand w is added to L (i.e.,
no new facilities are opened), the algorithm incurs an assignment cost of d(A,w), while if w



is not added to L (i.e., a new facility at ŵ is opened), the algorithm incurs a facility cost of
f and an assignment cost of d(ŵ, w) < f

x . In the former case, we show that d(A,w) + ∆Φ ≤
(λ + 1)σ∗ + ((λ + 1)ρ + 1)d∗w (Lemma 6). In the latter case, we show that f + d(ŵ, w) + ∆Φ ≤
4(λ+1)
λ−2

[
(λ+ 1)σ∗|Bw|+ ((λ+ 1)ρ+ 1)

∑
u∈Bw

d∗u
]

(Lemma 8).

Lemma 5. For any coalition K, if `K ≥ 0, then ΥK < λ
λ−2f , while if `K = −1, then ΥK = 0.

Proof. In the last phase (`K = −1), ΥK = 0 because there are no inner demands (In(K) = ∅).
Otherwise, DFL maintains the invariant that Pot(ΛK) < f (Lemma 3). In addition, for any u ∈ ΛK ,
d(A, u) > λ−2

λ d(A, c∗K), because of Ineq. (2). Therefore, ΥK < λ
λ−2Pot(ΛK) < λ

λ−2f . ut
Lemma 5 implies that ΦK is non-negative, because if K is an active coalition and `K ≥ 0, then

λ+1
λ ΥK < λ+1

λ−2f ≤
(2x+1)(λ+1)
x(λ−2) Ξ(1)

K . On the other hand, if either K is not an active coalition or
`K = −1, then ΥK = 0.

Lemma 6. If the demand w is added to L, then d(A,w) + ∆Φ ≤ (λ+ 1)σ∗ + ((λ+ 1)ρ+ 1)d∗w.

Proof. Let K be the unique active coalition such that w ∈ CK . If w is an inner demand of K,
w is added to ΛK , and ∆Φ = −λ+1

λ ∆ΥK = −λ+1
λ d(A, c∗K). Using Ineq. (1), we conclude that

d(A,w) + ∆Φ ≤ d∗w. If w is an outer demand of K, then ∆Φ = 0. Using Ineq. (3), we conclude
that d(A,w) + ∆Φ ≤ (λ+ 1)σ∗ + ((λ+ 1)ρ+ 1)d∗w. ut

We have also to consider demands w which are not added to L (i.e., a new facility at ŵ is
opened). Let A be the facility configuration just before the arrival of w, and let A′ = A∪ {ŵ}. We
observe that if either K is not an active coalition or `K = −1, ΥK = 0 and ΦK cannot increase
due to the new facility at ŵ. Therefore, we focus on active coalitions K such that `K ≥ 0.

Lemma 7. Let ŵ be the facility opened when the demand w arrives. Then, for any typical active
coalition K, the quantity (2x+1)(λ+1)

x(λ−2) ΞK − (2x+1)(λ+1)
xλ ΥK cannot increase due to ŵ.

Proof. If either the current phase ends (d(ŵ, c∗K) ≤ R(`K)) or K stops being a typical active
coalition due to ŵ, then ∆ΞK ≤ −f , and the lemma follows from −∆ΥK < λ

λ−2f .
If K remains a typical active coalition with respect to A′ and the current phase does not end

(d(ŵ, c∗K) > R(`K)), let τwK = d(A,c∗K)
d(A′,c∗

K
) ≥ 1 be factor by which d(A, c∗K) decreases because of

the new facility at ŵ. K cannot be the root of TK, which is an isolated coalition by definition.
Moreover, since K is a typical active coalition with respect to both A and A′, Lemma 2 implies
that (λ+ 1)D(PK) > d(A, c∗K) ≥ d(A′, c∗K) > λD(PK)

γ2 . Therefore,

∆Ξ(2)
K =

[
ln

(
d(A′, c∗K)

λD(PK)
γ2

)
− ln

(
d(A, c∗K)

λD(PK)
γ2

)]
f = ln

(
d(A′, c∗K)
d(A, c∗K)

)
f = − ln(τwK) f

If Bw ∩ In(K) = ∅, no demands are removed from ΛK , and −∆ΥK ≤ (1 − 1
τw

K
) ΥK ≤ ln(τwK) ΥK .

Otherwise, we can show that τwK > x
3 > 3, and −∆ΥK ≤ ΥK < ln(τwK) ΥK . In both cases, the

lemma follows from ΥK < λ
λ−2f . ut

Lemma 8. Let ŵ be the facility opened when the demand w arrives. Then,

f + d(ŵ, w) + ∆Φ ≤ 4(λ+1)
λ−2 [(λ+ 1)σ∗|Bw|+ ((λ+ 1)ρ+ 1)

∑
u∈Bw

d∗u] .

Proof Sketch. Let Λw be the set of inner demands in Bw, and let Mw = Bw \Λw be the set of outer
demands in Bw. We recall that f + d(ŵ, w) ≤ x+1

x f .



Case Isolated. There exists an isolated active coalitionK such that d(ŵ, c∗K) < d(A, c∗K). Lemma 7
implies that for any typical active coalition K ′, ∆ΦK′ ≤ 0. In addition, for x ≥ 10, we can prove
that (i) for any isolated active coalition K ′ different from K, d(ŵ, c∗K′) ≥ d(A, c∗K′), and (ii) for
any active coalition K ′ different from K, Bw ∩ In(K ′) = ∅. As a result, for any isolated active
coalition K ′ different from K, ∆ΦK′ = 0. In addition, only inner demands of K are included in
Bw (Λw ⊆ In(K)).

We have also to bound x+1
x f + ∆ΦK . Since −∆ΥK < λ

λ−2f and λ = 3x + 2, x+1
x f + ∆ΦK <

2(λ+1)
λ−2 f + ∆ΞK . We distinguish between two cases depending on the potential contributed by Λw.

Case Isolated.A. Pot(Λw) ≤ Pot(Bw)
2 . Then, 2(λ+1)

λ−2 f cannot exceed 4(λ+1)
λ−2 Pot(Mw). We also recall

than ∆ΞK ≤ 0. Hence, both the algorithm’s cost and the increase in the potential function can be
charged to the potential of the outer demands in Bw. Using Ineq. (3), we conclude that

x+1
x f + ∆ΦK < 4(λ+1)

λ−2 Pot(Mw) ≤ 4(λ+1)
λ−2 [(λ+ 1)σ∗|Bw|+ ((λ+ 1)ρ+ 1)

∑
u∈Bw

d∗u] .

Case Isolated.B. Pot(Λw) > Pot(Bw)
2 . Since Λw ⊆ In(K), Lemma 4 implies that d(ŵ, c∗K) <

8 max{D(K), r(`K)}. Hence, either the current phase ends or the coalition K becomes broken.
In both cases, ∆ΞK ≤ −f and the decrease in ΞK compensates for both the algorithm’s cost and
the decrease in ΥK .
Case Typical. For any isolated active coalition K, d(ŵ, c∗K) ≥ d(A, c∗K). Therefore, no inner
demands of K are included in Bw, because it would be d(ŵ, c∗K) < x

3d(A, c
∗
K) otherwise. As a

result, ∆ΦK = ∆ΥK = 0.
If w is an inner demand, let Kw be the unique typical active coalition such that w ∈ In(Kw).

Similarly to the proof of Lemma 7, we can show that x+1
x f + ∆ΦKw ≤ 0. In addition, for any

typical active coalition K ′ different from Kw, Lemma 7 implies that ∆ΦK′ ≤ 0.
If w is an outer demand, using the following upper bound on Pot(Bw), we can charge the

algorithm’s cost to the potential of Bw.

x+1
x f ≤ Pot(Bw) ≤ x+1

x

[
(λ+ 1)σ∗|Bw|+ ((λ+ 1)ρ+ 1)

∑
u∈Bw

d∗u

]
− x+1

x
λ+1
λ

∑
K∈Act(K)

∆ΥK

We conclude the proof by applying Lemma 7 for each typical active coalition. ut
In addition to the initial credit provided by the potential function Φ, a demand’s optimal

assignment cost is considered at most once by Lemma 6 (i.e., when the demand is added to L) and
at most once by Lemma 8 (i.e., when the demand is removed from L). Therefore, the algorithm’s
total cost cannot exceed 2(2x+1)(λ+1)

x(λ−2)

[
ψ + 3 + ln

(
λ+1
λ γ2

)]
F∗ + 5λ+2

λ−2 [(λ+ 1)ρ+ λ+ 2]S∗. Setting

γ = 8λ and ψ = ρ = O( logn
log logn ) yields the claimed competitive ratio. ut

4 The Algorithm for Non-Uniform Facility Costs

In this section, we outline the algorithm Non-Uniform Deterministic Facility Location – NDFL,
which is a generalization of DFL and can handle non-uniform facility costs.

The algorithm first rounds down the facility costs to the nearest integral power of two. For
each demand w, the algorithm computes rw, Bw, Pot(Bw), and ŵ as in Fig. 1. If |Bw| > 1, NDFL
opens the cheapest facility in B(w, rw) ∪ B(ŵ, rw) if its cost does not exceed Pot(Bw). Ties are
always broken in favour of ŵ. Namely, if there are many facilities of the same (cheapest) cost, the
one nearest to ŵ is opened. If a new facility is opened, the demands of Bw are removed from L.
Otherwise, w is added to L. If |Bw| = 1, NDFL keeps opening the cheapest facility in B(w, rw)
while there is a facility of cost no greater than Pot(Bw). In this case, ŵ coincides with w and ties



are broken in favour of w. After opening a new facility, the algorithm updates rw and Pot(Bw)
according to the new facility configuration and iterates. After the last iteration, w is added to L.
As in Fig. 1, the algorithm finally assigns w to the nearest facility.

The following theorem can be proven by generalizing the techniques described in Section 3.

Theorem 3. For any constant x ≥ 12, the competitive ratio of NDFL is O( logn
log logn ).

5 An Open Problem

In the framework of incremental clustering (e.g., [6, 7]), an algorithm is also allowed to merge some
of the existing clusters. On the other hand, the lower bound of Theorem 1 on the competitive ratio
for Online Facility Location crucially depends on the restriction that facilities cannot be closed.
A natural open question is how much the competitive ratio can be improved if the algorithm is
also allowed to close a facility by re-assigning the demands to another facility (i.e., merge some of
the existing clusters). This research direction is related to an open problem of [7] concerning the
existence of an incremental algorithm for k-Median which achieves a constant performance ratio
using O(k) medians.
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