
An Efficient Indexing Scheme for
Multi-dimensional Moving Objects�

Khaled Elbassioni1, Amr Elmasry1, and Ibrahim Kamel2

1 Computer Science Department, Alexandria University, Egypt
{elbassio,elmasry}@paul.rutgers.edu

2 College of Information Systems, Zayed University, United Arab Emirates
Ibrahim.Kamel@zu.ac.ae

Abstract. We consider the problem of indexing a set of objects mov-
ing in d-dimensional space along linear trajectories. A simple disk-based
indexing scheme is proposed to efficiently answer queries of the form:
report all objects that will pass between two given points within a spec-
ified time interval. Our scheme is based on mapping the objects to a
dual space, where queries about moving objects translate into polyhe-
dral queries concerning their speeds and initial locations. We then present
a simple method for answering such polyhedral queries, based on parti-
tioning the space into disjoint regions and using a B-tree to index the
points in each region. By appropriately selecting the boundaries of each
region, we can guarantee an average search time that almost matches a
known lower bound for the problem. Specifically, for a fixed d, if the
coordinates of a given set of N points are statistically independent,
the proposed technique answers polyhedral queries, on the average, in
O((N/B)1−1/d.(logB N)1/d +K/B) I/O’s using O(N/B) space, where B
is the block size, and K is the number of reported points. Our approach
is novel in that, while it provides a theoretical upper bound on the aver-
age query time, it avoids the use of complicated data structures, making
it an effective candidate for practical applications.

1 Introduction

Maintaining a database of moving objects arises in a wide range of applica-
tions, including air-traffic control, digital battlefields, and mobile communica-
tion systems [3,7]. Traditionally, a database management system assumes that
data stored in the database remain constant until they are explicitly modified
through an update. With moving objects, storing the continuously changing lo-
cations of these objects directly in the database becomes infeasible, considering
the large update overhead. An obvious solution, to overcome this problem, is
to represent each object by its parameters (velocity and initial location), which
will be stored in the database, and update the database only when one of these
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parameters changes. There has been some recent work on extending the current
database technology to handle moving objects; see for example [18].

Given a database of N objects moving in d-dimensional space along linear
trajectories, we consider, in this paper, the problem of constructing an index
on these objects to efficiently answer range queries over their locations in the
future. An example of such queries, in a database of moving cars, is: ”Report
all cars that will pass through some given region, within the next ten minutes”.
It is assumed that each object moves along a straight line; an assumption that
applies to a large class of problems such as cars in an almost straight-line high-
way. Furthermore, many non-linear functions can be approximated by connected
straight line segments.

Specifically, assume that the position of an object moving with velocity vector
v = (v1, . . . , vd) starting from location a = (a1, . . . , ad), at time t ≥ 0, is given
by y = a + vt. Given two locations y′, y′′ ∈ R

d, and two time instances t′, t′′

(where y′ ≤ y′′ and t′ ≤ t′′), it is required to report all objects which will pass
between these two locations, during the time period [t′, t′′] (see Figure 1:a for the
one-dimensional case). In other words, we are interested in reporting all moving
objects whose coordinates in the (d+1)-dimensional space (t, y1, . . . , yd) satisfy

y′
i ≤ yi(t) = vit + ai ≤ y′′

i , for i = 1, . . . , d,
t′ ≤ t ≤ t′′, (1)

where y′ = (y′
1, y

′
2, . . . , y′

d), y′′ = (y′′
1 , y′′

2 , . . . , y′′
d ) and y(t) = (y1(t), . . . , yd(t)).

In the standard external memory model of computation [4], the efficiency of
an algorithm is measured in terms of the number of I/O’s required to perform
an operation. Let B be the page size, i.e., the number of units of data that can
be processed in a single I/O operation. If K is the number of objects reported
in a given query, then the minimum number of pages to store the data is n

def=
�N

B � and the minimum number of I/O’s to report the answer is k
def= �K

B �.
Thus the time and space complexity of a given algorithm, under such model,
will be measured in terms of these parameters n and k. Finally to simplify the
presentation, we shall assume, when using the O(·) notation, that the dimension
d is constant.

The paper is organized as follows. In Section 2, we briefly survey related
work. Section 3 states the main contribution of this paper and Section 4 gives
an overview of the technique and the duality transformations used. We present
the index structure and the search algorithm in Section 5, and the bound on
the average query performance in Section 6. Preliminary experimental results
on the one-dimensional case, comparing the performance of our method with
other traditional techniques such as R-trees, are reported in Section 7. Finally,
our conclusion is made in Section 8.

2 Related Work

One can generally distinguish two directions of research in the context of indexing
moving objects. In the first one, techniques with theoretically guaranteed worst-
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case query time have been developed. Most of these techniques resort to duality
to transform queries about moving objects to polyhedral queries involving their
parameters (velocities and initial locations). For the latter problem, Matoušek
[15] gave an almost optimal main memory algorithm for simplex range searching
using partition trees. Given a static set of N points in d-dimensions and an
O(N) space, his technique answers any simplex range query in O(N (d−1)/d+ε +
K) time, after an O(N log N) preprocessing time, for any constant ε > 0. For
the lower bound, Chazelle and Rosenberg [8] showed that simplex reporting in
d-dimensions, using only linear space, requires Ω(N (d−1)/d + K) I/O’s. These
bounds have been adapted to the external memory model by Kollios et al. [12],
implying in particular, a query time of O(n1−1/2d+ε + k) I/O’s for answering
queries of type (1), using linear space. Building on partition trees, Agarwal et
al. [1] were able to obtain an index for moving objects in two-dimensions, for
which the worst-case query time is O(n

1
2+ε+k) I/O’s using O(n) space. However,

these techniques might be practically inefficient since they use complicated data
structures, and the constants hidden under their complexity bounds might be
quite large if a small ε is sought. It should also be mentioned that if space is
not an issue and is allowed to increase non-linearly with n, then logarithmic
query time can be achieved; see [1,12] for examples. In the second approach,
practical techniques have been developed that use the commercially available
index structures such as B-trees, R-trees, R*-trees, etc [5,11,14]. Examples of
this approach include the quad-tree method of [19], the time-parameterized R*-
trees (TPR trees) of [16] and [6], and the work of Kollios et al. [12]. However, no
theoretical bounds on the average query time were shown for these techniques.

In this paper, we propose a simple indexing structure that uses only B-trees
in its implementation. We also provide an average case analysis of the query
time given a random set of objects in the database. Our solution is based on a
simple internal memory index structure, which we developed in [9], for answering
polyhedral queries (i.e., queries determined by a finite set of linear constraints),
whose average query time is as good as the worst-case query time obtained by the
more complicated techniques. Such queries arise naturally in Spatial database
applications; see [2,10] and the references therein.

3 The Contribution of the Paper

We can summarize the results of this paper as follows:

– Given a set of N points in R
d, we propose an index structure to enable ef-

ficient answering of polyhedral queries about these points. Under a natural
assumption on the points coordinates, namely that they are statistically inde-
pendent, we can answer a query, on the average, in O(mn1−1/d.(logB n)1/d +
mk) I/O’s using O(n) space, where m is the number of linear constraints
bounding the query region. Moreover, this result is valid for any data distri-
bution (not necessarily uniform), and does not require the distribution func-
tion to be explicitly given. This gives an upper bound that almost matches



428 K. Elbassioni, A. Elmasry, and I. Kamel

the worst-case bound obtained by the more complicated algorithms such as
[15]. However, our algorithm is much simpler since it requires only B-trees
for its implementation. Moreover, the query algorithm works directly on the
original query region, and does not require partitioning it into simplices as
is usually required by other algorithms.

– For a set of N objects moving in one-dimensional space, with any distribution
of velocities and initial locations, we use the above method in the dual space
to answer queries of type (1), on the average, in O(

√
n logB n + k) I/O’s

using O(n) space.
– For a set of N objects moving in d-dimensional space, with uniform distribu-

tions of velocities and initial locations, we answer queries (1), on the average,
in O(n1−1/3d.(logB N)1/3d + k) I/O’s using O(n) space.

4 Duality Transformations

One of the main challenges in indexing moving objects is that the trajectories
of the objects are monotonically increasing with time. Thus, representing each
object by a Minimum Bounding Box (MBB) is not appropriate since the overlap
between the MBB’s can be excessive, leading to bad performance. It is more
efficient to represent each object by its parameters vi and ai and transform
queries about moving objects into queries concerning these parameters. One
commonly used transformation is to map each object with velocity vector v =
(v1, . . . , vd) and initial location a = (a1, . . . , ad) into a 2d-dimensional point
(v1, a1, . . . , vd, ad) (for d = 1, this is called the Hough-X transform in [13]).
Under this transformation, query region (1) becomes a 2d-dimensional region,
bounded by a set of linear constraints for d = 1, and a mix of linear and quadratic
constraints for d ≥ 2 (see Figure 1:b):

Proposition 1. The d-dimensional query (1) can be expressed in the
(v1, a1, . . . , vd, ad) space as follows:

(i) The d constraints
{

y′
i − vit

′′ ≤ ai ≤ y′′
i − vit

′, if vi > 0
y′

i − vit
′ ≤ ai ≤ y′′

i − vit
′′, if vi ≤ 0 for i = 1, . . . , d.

(ii) The set of
(

d
2

)
constraints, for 1 ≤ i < j ≤ d:




y′
ivj − y′′

j vi ≤ aivj − ajvi ≤ y′′
i vj − y′

jvi, if vi > 0 and vj > 0
y′′

i vj − y′′
j vi ≤ aivj − ajvi ≤ y′

ivj − y′
jvi, if vi > 0 and vj ≤ 0

y′
ivj − y′

jvi ≤ aivj − ajvi ≤ y′′
i vj − y′′

j vi, if vi ≤ 0 and vj > 0
y′′

i vj − y′
jvi ≤ aivj − ajvi ≤ y′

ivj − y′′
j vi, if vi ≤ 0 and vj ≤ 0.

Proof. Use the Fourier-Motzkin elimination method [17] to eliminate the variable
t from the set of constraints in (1). ��

Since our proposed index can only deal with linear constraints, we shall
get rid of such quadratic constraints by resorting to another type of duality
transformation. Specifically, assuming vi �= 0 (for objects having vi = 0, the
problem can be reduced to a lower-dimensional problem; see Section 6), we let
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ui
def= 1/vi and wi

def= ai/vi be the new transformed parameters (this is the so-
called Hough-Y transform in [13]). Note that for vi > 0, this gives a one-to-one
correspondence between (vi, ai) and (ui, wi). Thus, with such a transformation,
our query region becomes a 2d-dimensional polyhedron:

Proposition 2. The d-dimensional query (1) can be expressed in the
(u1, w1, . . . , ud, wd)-space as follows:

(i) The d constraints
{

y′
iui − t′′ ≤ wi ≤ y′′

i ui − t′, if ui > 0
y′′

i ui − t′′ ≤ wi ≤ y′
iui − t′, if ui ≤ 0 for i = 1, . . . , d.

(ii) The set of
(

d
2

)
constraints, for 1 ≤ i < j ≤ d:




y′
iui − y′′

j uj ≤ wi − wj ≤ y′′
i ui − y′

juj , if ui > 0 and uj > 0
y′

iui − y′
juj ≤ wi − wj ≤ y′′

i ui − y′′
j uj , if ui > 0 and uj < 0

y′′
i ui − y′′

j uj ≤ wi − wj ≤ y′
iui − y′

juj , if ui < 0 and uj > 0
y′′

i ui − y′
juj ≤ wi − wj ≤ y′

iui − y′′
j uj , if ui < 0 and uj < 0 .

However, there is a problem with such transformation: the bound on the
performance of our index uses the independence assumption. While it is natural
to assume that the parameters a1, v1, . . . , ad, vd are statistically independent,
this is not the case for the transformed variables u1, w1, . . . , ud, wd. We handle
this problem in Section 6: we use a property of the Hough-Y transform to show
how the index structure can be modified in this case.

t

y

Object A

Object B

Query region

t t

a

amin

max

Q

’ ’’

y’’

y’

vv vmaxmin

Object A
Object B

Query region

a

amin

amax

 Q’ 

y’

y’’

a: Native space. b: Dual space.

Fig. 1. Query region in the native and dual spaces for d = 1.

Having transformed the query region into a polyhedron, we develop, in the
next section, an index structure, which we call the MB-index, to answer such
queries efficiently. Thus, to summarize, for d = 1, we use the Hough-X duality
transform and the MB-index in the 2-dimensional space (v1, a1). For d ≥ 2,
we use the Hough-Y transform and the MB-index in the 2d-dimensional space
(u1, w1, . . . , ud, wd).
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5 MB-Index for Answering Polyhedral Queries in R
d

Given a set P of N d-dimensional points distributed in a rectangular box B =
[L1, U1] × . . . × [Ld, Ud] ⊆ R

d. The location x = (x1, . . . , xd) of each point can
be regarded as a random variable distributed in the interval L1 ≤ x1 ≤ U1,
. . . ,Ld ≤ xd ≤ Ud, with probability density function f(x1, . . . , xd). It is natural
to assume that these locations are statistically independent along each direction,
i.e., f(x1, . . . , xd) =

∏d
i=1 fi(xi), where fi(xi) is the probability density function

along the ith direction. We further assume without loss of generality that the
points are in general position.

Given a set of half-spaces determined by the hyperplanes H = {H1, . . . ,Hm},
it is required to report all the points that lie in the intersection of these half-
spaces. In this section, we describe an index structure which enables us to effi-
ciently answer such polyhedral queries about the given point set.

Index structure and search algorithm. The general idea is to partition the
space into disjoint rectangular regions, and index the points of each region on
one of the dimensions using a B-tree. Given a query polyhedron, the polyhedron
will be intersected with each region, and the intersection will be approximated
by a Minimum Bounding Box (MBB) (see Figure 2). Finally, the points in each
MBB are reported including possibly some false hits. By selecting the region
boundaries so as to balance the number of points in each region, we can guarantee
that the number of false hits is not too large.

a

vv vmin max

a

amax

min

s partitions

a

vv v

y’’

y’

min max

a

amax

min

a: Partitioning the space. b: Partitioning the query region.

Fig. 2. Partitioning the space and the query region.

In more details, to build the MB-index, we fix one dimension, say the dth
dimension, and split the box B in each other dimension i = 1, . . . , d − 1, using s
(d−1)-dimensional hyperplanes, perpendicular to the ith dimension. To minimize
the number of false hits (see Lemma 1 below), we select the number of partitions
s as follows:

s =
(

n

logB n

) 1
d

.
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Let µi(j) be the point on the ith axis defining jth hyperplane in the ith dimension
(i.e., the hyperplane is {x ∈ R

d | xi = µi(j)}), where i = 1, . . . , d − 1 and
j ∈ [s] def= {0, 1, . . . , s − 1}. Thus µi(0) = Li and µi(s) = Ui for i = 1, . . . , d − 1.
To bound the error probability, these hyperplanes will be chosen such that for
all i and j

∫ µi(j+1)

µi(j)
fi(xi)dxi =

1
s

(2)

is satisfied. Clearly, if the distributions of the coordinates are uniform, then the
resulting partitions will be equi-distant. In general, numerical (or analytical)
integration can be used to obtain the required partitioning as described by (2),
for any density function fi(xi). Practically speaking, (2) says that the number
of points in each interval should be 1/s of the total number N . Thus, for i =
1, . . . , d−1 and j ∈ [s], the region boundary µi(j) can be selected so as to make
|{p ∈ P | µi(j) ≤ pi ≤ µi(j + 1)}| = N/s.

Thus, with the above partitioning, we obtain a set of sd−1 sub-boxes
{BJ | J ∈ J }, where J def= {(j1, . . . , jd−1) | ji ∈ [s], for all i = 1, . . . , d−1}, and
BJ = Bj1,... ,jd−1 is the sub-box of B defined by the two corner points (µ1(j1),
. . . , µd−1(jd−1)) and (µ1(j1 + 1), . . . , µd−1(jd−1 + 1)). A B-tree T (BJ) is then
constructed to index the points in each such sub-box BJ . Obviously, the points
in each of these B-trees are ordered by the value of their dth coordinate.

For a hyperplane H = {x ∈ R
d | a1x1 + . . . + adxd = c}, let us denote

respectively by H− and H+ the closed half-spaces {x ∈ R
d | a1x1+. . .+adxd ≤ c}

and {x ∈ R
d | a1x1 + . . . + adxd ≥ c}. Suppose we are interested in reporting all

the points that lie on one side of H, say H−. To do this, we intersect H with each
of the sub-boxes BJ . The highest point, with respect to the dth coordinate, in
each intersection is determined, and all the points that lie below this point (have
smaller value in the dth dimension) are reported. Next, each of these points is
checked, and only accepted if it lies in the required half-space defined by H.
More precisely, for i = 1, . . . , d − 1, define

αi =
{

1 if ai > 0
0 otherwise. (3)

Then the dth coordinates of the lowest and highest point in BJ that intersect
H, for J = (j1, . . . , jd−1) ∈ J , are given by

λ(J) =
c

ad
−

d−1∑

i=1

ai

ad
· µi(ji + αi), Λ(J) =

c

ad
−

d−1∑

i=1

ai

ad
· µi(ji + 1 − αi),

(4)

provided ad �= 0. If ad = 0, then λ(J), Λ(J) are set to ±∞, depending on the
signs of c −

∑d−1
i=1 ai · µi(ji + αi), c −

∑d−1
i=1 ai · µi(ji + 1 − αi), respectively.

Now, given a set H = {H1, . . . ,Hm} of hyperplanes, where Hq = {x ∈
R

d | aq
1x1 + . . . + aq

dxd = cq}, let us assume, without loss of generality that,
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aq
d ≥ 0 for r = 1, . . . , m. Suppose it is required to report all the points that lie in

the intersection
(⋂

q∈Q+ H+
q

) ⋂ (⋂
q∈Q− H−

q

)
, where Q+ ∪Q− = {1, . . . , m}. In

the following procedure, we denote by αq
i , λ

q, Λq, the values of these parameters
as computed, using (3), (4), with respect to the hyperplane Hq.

Search Algorithm:
Input: An MB-index containing a set P ⊆ R

d of n points, a set of m hyperplanes
H, and a partition Q+ ∪Q− of {1, . . . , m}.
Output: All points that lie in

(⋂
q∈Q+ H+

q

) ⋂ (⋂
q∈Q− H−

q

)
.

For each J ∈ J
1. Compute λq(J), Λq(J), for q = 1, . . . , m as described above.
2. Let l← argmax{λq(J) | q ∈ Q+} a, r ← argmin{Λq(J) | q ∈ Q−}.
3. Search the B-tree T (BJ) for the set of candidates

C = {p ∈ T (BJ) | λl(J) ≤ pd ≤ Λr(J)}
inside the sub-box BJ satisfying the query.

4. For each p ∈ C, if p lies inside the query polyhedron, report p.

a where argmin means an index at which the minimum value is attained

It is easy to see that the above procedure is conservative in the sense that no
false dismissals are possible. On the other hand, using the assumption about sta-
tistical independence and our partitioning strategy (2), the following key lemma,
which is proved in [9], follows:

Lemma 1. For any half-space query, the expected number of false hits is at most
(d − 1)n

s I/O’s.

Insertions/Deletions. Finally, let us explain how to make our index dynamic.
Clearly, each insertion/deletion requires O(logB n) I/O’s. However, after a num-
ber of updates, say insertions, the number of points in some trees may increase
significantly, possibly degrading the query performance. In that case, every over-
crowded tree is split into smaller trees. Since the split cost is non-trivial, it is
reasonable to split only when the number of objects in the tree increases by
some predefined factor. Similarly, if after deleting an object from a given tree,
the number of objects drops below some factor of the original number, then
the tree is merged with one or more adjacent trees. Moreover, when the total
number of points increases/decreases by some predefined factor of the original
number, the whole structure is rebuilt. This way the insert/delete operation will
only take O(logB n) I/O’s in the amortized sense.

Using Lemma 1, we get the following result about the performance of the
MB-index.

Theorem 1. Under the statistical independence assumption, the average num-
ber of I/O’s required by the MB-index to report all the points in the intersection

of m half-spaces is O(mn1− 1
d log

1
d

B n + mk). The space required is O(n), the pre-
processing is O(N logB n), and the amortized update time is O(logB n).
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6 Bounding the Average Query Performance

As stated earlier, the bound on the MB-index performance is based on the in-
dependence assumption. However, this assumption can be violated if we use the
transformation ui = 1

vi
, wi = ai

vi
. In this section, we discuss how to handle this

problem.
Let us consider moving objects whose speeds and intercepts v = vi and a = ai

in a given direction i are independent and uniformly distributed in the intervals
[vmin, vmax] and [amin, amax] respectively. Assume without loss of generality that
amin = −amax (by translating the points along the a axis), and that vmin >
0 (points with vmin < 0 are handled similarly, while points with v ≈ 0 are
considered fixed and handled separately).

To be able to use the results of the previous section, we show in the Appendix
that, the Hough-Y transform exhibits a nice property. Namely, for independent
and uniformly distributed a, v, and for any η′ ≤ η′′, µ′ ≤ µ′′, the variables
u = 1/v and w = a/v satisfy the inequalities

∫ η′′

u=η′

∫ µ′′

w=µ′
f(u, w)dudw ≤




4
∫ η′′

η′ g(u)du
∫ µ′′

µ′ h(w)dw, if µ′ ≤ amax
E[v] and µ′′ ≥ amin

E[v]
1
4

(
1 − vmin

vmax

) ∫ η′′
η′ g(u)du, otherwise,

(5)

where g and h are respectively the probability density functions of u and w, f
their joint density function, and E[v] = (vmax + vmin)/2 is the average speed.

Then, using the MB-index technique of the previous section, we fix one direc-
tion, say ud, and partition the space along each direction ui, i = 1, . . . , d−1 into s

intervals determined by the points ηi(0), . . . , ηi(s), such that
∫ ηi(j+1)

ηi(j)
gi(ui)dui =

1/s, where s = (n/ logB n)1/(2d). Similarly, we partition the the space along
each direction wi, i = 1, . . . , d into s intervals determined by the points
µi(0), . . . , µi(s), such that

∫ µi(j+1)
µi(j)

hi(wi)dwi = 1/s. If for every i = 1, . . . , d we
further have vi,min/vi,max ≥ 1 − 1/s, then (5), applied to ui, wi for i = 1, . . . , d,
would imply that the probability of a false hit in any sub-region is upper-bounded
as follows:

Pr[FH] =
∫ η1(j1+1)

η1(j1)

∫ µ1(j′
1+1)

µ1(j′
1)

· · ·
∫ ηd(jd+1)

ηd(jd)

∫ µd(j′
d+1)

µd(j′
d
)

f(u1, w1, . . . , ud, wd)du1dw1 . . . duddwd

≤ 4d
d∏

i=1

∫ ηi(ji+1)

ηi(ji)
gi(ui)dui

d∏
i=1

∫ µi(j′
i+1)

µi(j′
i
)

hi(wi)dwi.

Consequently, we conclude by summing up all these probabilities that the total
probability of error is upper-bounded by 4d

s (see the proof of Lemma 1 in [9]).
However, for i = 1, . . . , d, the interval [vi,min, vi,max] may be large making the
assumption vi,min/vi,max ≥ 1 − 1/s invalid. To solve this problem, we partition
this interval into k = �s ln(vi,max/vi,min)� intervals [vi(0), vi(1)], . . . , [vi(k −
1), vi(k)], where vi(0) = vi,min, vi(k) = vi,max, and vi(j +1) = vi(j).s/(s−1) for
j = 0, . . . , k − 1. Clearly, in each such interval, the variable vi is still uniformly
distributed and vi(j)/vi(j + 1) ≥ 1 − 1/s, as required. Performing such a a
partitioning for i = 1, . . . , d, we obtain at most σsd different regions, where
σ

def=
∏d

i=1 ln(vi,max/vi,min).
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Thus to summarize, given a set of N d-dimensional moving objects, the index
construction goes as follows:
1. Partition the set of points into 3d groups according to whether vi < 0, vi = 0,
or vi > 0, for i = 1, . . . , d.
2. Within each group, further partition the points, as explained above, into σsd

groups, according to which region of [vi(0), vi(1)], [vi(1), vi(2)], . . . contains vi

for i = 1, . . . , d.
3. Finally, for each of the resulting groups, represent the points in the (u1, w1, . . . ,
ud, wd) space, and use an MB-index (consisting of s2d−1 B-trees) to store them.

Let us now estimate the average query time of the resulting index. The total
number of B-trees used is σ(3s)d.s2d−1 = σ3ds3d−1. The probability of error in

each tree is at most 4d/s as pointed out above. Thus selecting s =
(

n
σ logB n

) 1
3d

,

we achieve an average search time of O(n1− 1
3d (σ logB n)

1
3d +k), for a fixed d. Of

course, for d = 1, we can use the MB-index directly in the (v1, a1)-space, and
achieve an average query time of O(

√
n logB n + k). We summarize our results

in the following Theorem.

Theorem 2. (i) For a set of N objects moving in one-dimensional space, with
statistically independent velocities and initial locations, we can use the MB-index
method to answer queries (1), on the average, in O(

√
n logB n + k) I/O’s using

O(n) space. The preprocessing is O(N logB n), and the amortized update time is
O(logB n).
(ii) For a set of N objects moving in d-dimensional space, with uniformly dis-
tributed and independent velocities and initial locations, queries (1) can be an-
swered, on the average, in O(n1−1/3d(σ logB n)1/3d +k) I/O’s using O(n) space.
The preprocessing is O(N logB n), and the amortized update time is O(logB n).

7 Experimental Results

In this section, preliminary experimental results on the proposed indexing ap-
proach for the one-dimensional case are presented, and compared against R-tree
based methods. As stated earlier, representing each object by a minimum bound-
ing box (MBB) and using MBB-based indexing structures, such as R-trees, is
not appropriate since the overlap between the MBB’s will be excessive. Thus, to
have a fair comparison with R-tree techniques, we first mapped each object into
the dual space, where the query region becomes a trapezoid. Then we used the
algorithm proposed in [10] to perform the intersection test between a trapezoid
and a rectangle. For comparison purposes, two variants of R-trees have been
used. The first is Guttman’s R-tree [11] with quadratic splitting strategy. Ob-
jects were inserted incrementally, one at a time, so no preprocessing of the data
was done. In the second variant, we used a Packed R-tree, where data is packed
in the leaves of the tree in such a way to improve both node utilization and
query processing time [14].
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In the experiments, we used both uniform and non-uniform distribution of
objects. In each case, two query sizes were used: 8% and 1% of the total space.
The average number of I/O’s over 1000 uniformly generated queries were then
computed for each indexing technique. The page size used is 4096 bytes.
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a: Query size=8% of space. b: Query size=1% of space.

Fig. 3. Average query performance for various indexing techniques with Uniform dis-
tribution.

In the first set of experiments, we generated N = 100K, 200K, . . . , 500K uni-
formly distributed objects, where each object was generated by picking, at ran-
dom, its velocity v and its starting location a, where v ∈ [0.16, 1.66], a ∈ [0, 200].
All speeds were assumed positive for simplicity. Figures 3:a,b present our results
for the two types of queries. In these two figures, we show the average number
of I/O’s per query versus the number of objects in the database. As can be seen
from the figures, the MB-index approach outperformed the R-tree based tech-
niques. This gain in performance (approximately a factor of 2.5) is contributed
to by two main components. The first is that the MB-index minimizes the dead
space, so the number of I/O’s can be significantly smaller. The second compo-
nent is the fan-out of tree nodes. For the same page size, the B-tree has a larger
fan-out than the R-tree since the B-tree is built on one dimensional data, while
each entry in the R-tree contains a rectangle.

In the second experiment, we examined the effect of changing the distribution
of speeds on the average number of I/O’s for various techniques. For this exper-
iment a normal distribution of speeds with mean (vmin + vmax)/2 and standard
deviation 1 was used. Table 1 presents the results for 8% and 1% queries. In the
table, we show the average number of I/O’s for different values of N . As seen
from the table, while the performance of the simple R-tree degrades significantly
with such distribution, both the packed R-tree and the MB-index methods re-
main almost invariant. The MB-index method remains superior to the packed
R-tree technique for this case too.
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Table 1. Average query performance for Normal distribution.

N I/O’s for query size=8% I/O’s for query size=1%
MB-index R-tree Packed R-tree MB-index R-tree Packed R-tree

100K 31.908 489.998 68.281 8.553 244.096 14.634
150K 43.964 729.965 98.476 13.016 372.229 18.845
200K 56.232 966.029 128.455 13.870 493.500 24.282
250K 68.163 1209.458 157.413 14.926 624.128 29.860
300K 83.375 1441.948 190.943 18.961 740.153 33.986
350K 92.011 1688.847 217.671 21.987 868.695 39.315
400K 100.383 1933.160 252.462 22.858 990.933 45.241
450K 118.355 2146.008 280.440 22.529 1110.461 49.073
500K 140.457 2394.094 306.693 26.791 1245.052 54.106

8 Conclusion

In this paper we proposed a new technique for indexing objects moving in d-
dimensional space along straight lines. We showed that this technique exhibits
an efficient average query time under moderate assumptions on the object dis-
tributions. A by-product of our technique is an efficient method for indexing
multi-dimensional queries determined by linear constraints. One distinguishing
feature of our index is its simplicity which makes it practically applicable. Ex-
perimental results indicate that this technique outperforms, by a factor of almost
2.5, the performance of other traditional methods based on R-trees. In future
work, we intend to address extensions for other types of queries.
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Appendix: Proof of Inequality (5)

Define L =
∫ η′′

u=η′
∫ µ′′

w=µ′ f(u, w)dudw and R =
∫ η′′

u=η′ g(u)du
∫ µ′′

w=µ′ h(w)dw, and
note that

L = Pr[
1
η′′ ≤ v ≤ 1

η′ , µ
′v ≤ a ≤ µ′′v],

R = Pr[
1
η′′ ≤ v ≤ 1

η′ ]. Pr[µ′v ≤ a ≤ µ′′v].

By uniformity and independence of v, a, these probabilities are proportional to
the areas of the corresponding regions in the (v, a) space (in particular, L is equal
to the area of the shaded region in Figure 4). We consider 7 cases according
to how the lines a = µ′v and a = µ′′v cross the borders of the probability
region (Figures 4:a,b, and 8:c-g, respectively). Any other case is implied by, or
can be reduced to, one of these cases. Below, we use for brevity the notation
ht = vmax − vmin and at = amax − amin. The symbols x, x′, y, y′, y′′, h′, h′′, and
h′′′, in each case, denote the distances shown in the corresponding figure.

Case 1. L = (x+y)h
2atht

, R = (x′+y′)ht

2atht
. h
ht

. Then L
R = x+y

x′+y′ < 2. (see Figure 4:a.)
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Case 2. L
R = 2x′

2x′h′/ht+(x′+y)(h′′−h′)/ht+(y+y′)(1−h′′/ht)
. Since y

x′ ≥ 1 − h′′
ht

, we get
L
R ≤ 2x′

x′(h′+h′′)/ht+x′(1−h′/ht)(1−h′′/ht)+y′(1−h′′/ht)
< 2.

Case 3. L
R = 2x′h′/h+(x′+x)(h′′−h′)/h+(x+y)(h−h′′)/h

2x′h′/ht+(x′+x)(h′′−h′)/ht+(x+y′)(1−h′′/ht)
< 2, since x

x′ ≥ 1 − h′′
ht

.

For cases 4,5, and 6 below, assume first that µ′′ ≥ amin

E[v] .

Case 4. L
R = x′+x

yh′/ht+y′(h′−h′′)/ht
. Using the assumption µ′′ ≥ amin

E[v] , we get
h′/ht ≥ 1/2, implying that L

R ≤ 2y
y/2+y′(h′−h′′)/ht

< 4.

Case 5. L
R = (x+y)

x′h′′/ht+(x′+y′)(h′−h′′)/ht
≤ 2x′

x′h′/ht+y′(h′−h′′)/ht
< 4.

Case 6. L
R = (x′+x)(h′′−h′′′)/h+(x+y)(h′′′+h−h′′)/h

xh′′/ht+(x+y′)(h′−h′′)/ht
≤ 2x

xh′/ht+y′(h′−h′′)/ht
< 4.

On the other hand, if µ′′ < amin

E[v] , that is, if h′/ht < 1/2, then as we can
see in Figure 4:g, the probability L is bounded by h/h′ times the ratio of the
area of the shaded region to the total area of the probability space. Noting that
amin = −amax and h/ht =

∫ η′′

u=η′ g(u)du, we conclude that

L ≤ (µ′′vmin − amin)h
2atht

<
1
4

(
1 − vmin

E[v]

)
.
h

ht
<

1
4

(
1 − vmin

vmax

) ∫ η′′

u=η′
g(u)du

as desired. ��
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Fig. 4. The case analysis proof of Inequality (5).
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Fig. 4 (Cont.) The case analysis proof of Inequality (5).


	Introduction
	Related Work
	The Contribution of the Paper
	Duality Transformations
	MB-Index for Answering Polyhedral Queries in $@mathbb R^d$
	Bounding the Average Query Performance
	Experimental Results
	Conclusion

