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Abstract. Let G = (V, E) be a (directed) graph with vertex set V
and edge (arc) set E. Given a set P of (source-sink) pairs of vertices
of G, an important problem that arises in the computation of network
reliability is the enumeration of minimal subsets of edges (arcs) that con-
nect/disconnect all/at least one of the given source-sink pairs of P. For
undirected graphs, we show that the enumeration problems for conjunc-
tions of paths and disjunctions of cuts can be solved in incremental poly-
nomial time. For directed graphs both of these problems are NP-hard.
We also give a polynomial delay algorithm for enumerating minimal sets
of arcs connecting respectively two given nodes s1 and s2 to a given
vertex t1, and each vertex of a given subset of vertices T2.

1 Introduction

Let G = (V, E) be a (directed) graph on vertex set V and edge (arc) set E. Let
P be an arbitrary family of (source-sink) pairs of vertices of G: P = {(si, ti) ∈
V × V | i ∈ [k] = {1, . . . , k}}. We assume that si �= ti for all i ∈ [k], however
sources and sinks may coincide (i.e. for i �= j, we may have any of si = sj , ti = tj
or si = tj).

Consider the following two dual enumeration problems, stated as the gener-
ation of all minimal subsets of edges (arcs) E′ ⊆ E such that

Path-conjunction (PC): si is connected to ti in the (di)graph G′ = (V, E′)
for all i ∈ [k];
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Cut-disjunction (CD): si is not connected to ti in the (di)graph G′ = (V, E \
E′) for some i ∈ [k].

These problems play an important role in network reliability, where edges
or arcs represent communication or transportation links, which may work or
fail independently, and where the goal is to determine the probability that the
network is working, based on the individual edge/arc failure probabilities. It
turns out that such network reliability computations require in the general case
the list of all multipolar (directed) paths and cuts, depending on the type of
connectivity the network ought to maintain, see e.g. [1,4,5,11].

It is easy to see that for the path-conjunction and cut-disjunction problems
on undirected graphs, we can assume without loss of generality that the given
family of pairs P corresponds to all pairs in a given family of disjoint vertex sets
V1, . . . , Vk ⊆ V , i.e., P = V1

2 ∪. . .∪Vk

2 . Such path-conjunctions are usually referred
to in the literature as generalized Steiner trees. In other words, a generalized
Steiner tree is a minimal set of edges E′ ⊆ E connecting all vertices within each
set Vi, i.e. for each i = 1, . . . , k, all vertices of Vi must belong to a single connected
component of (V, E′). In particular, for k = 1 we obtain the usual definition
of Steiner trees. When each set Vi consists of two vertices {ui, vi}, generalized
Steiner trees are called point-to-point connections. By the same token, the general
case of the cut-disjunction problem for undirected graphs calls for enumerating
all minimal subsets of edges whose removal disconnects at least one of the given
vertex sets V1, . . . , Vk ⊆ V .

Given a (di)graph G = (V, E), we consider the problem of listing all sub-
graphs of G, or correspondingly, the family Fπ ⊆ 2E of all minimal subsets of
E, satisfying a certain monotone connectivity property π : 2E �→ {0, 1}:

GEN(Fπ, X ): Given a monotone connectivity property π and a subfamily X ⊆
Fπ of subgraphs of a (di)graph G satisfying π, either find a new subgraph
X ∈ Fπ \ X , or prove that the given partial list is complete: X = Fπ.

For instance, if π(X) is the property that the subgraph with edge set X ⊆ E
is connected, then Fπ is the family of spanning trees of G. In this paper, we
shall represent subgraphs of a given graph G = (V, E) as subsets of edges.
Enumeration algorithms for listing subgraphs satisfying a number of monotone
properties are well known. For instance, it is known [13] that the problems of
listing all minimal cuts or all spanning trees of an undirected graph G = (V, E)
can be solved with delay O(|E|) per generated set. It is also known (see e.g., [6,
7,12]) that all minimal (s, t)-cuts or (s, t)-paths, can be listed with delay O(|E|)
per cut or path. Furthermore, polynomial delay algorithms also exist for listing
directed spanning trees in a directed graph [9,14]. We consider the families of
minimal path conjunctions and cut disjunctions for a given graph G and family
of pairs P, denoted respectively by FPC(G, P), and FCD(G, P) .

Theorem 1. For any undirected graph G and any family of pairs of vertices P,
the two generation problems GEN(FPC(G, P), X ) and GEN(FCD(G, P), X ) can
be solved in polynomial time.
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Theorem 1 can be stated in the more general setting of generation problems
in matroids. These more general results will be described in Section 2. More gen-
erally, the above two problems GEN(FPC(G, P), X ) and GEN(FCD (G, P), X )
remain tractable if we fix some edges, and ask for minimal extensions that form
path conjunctions or cut disjunctions. The reduction is trivial: just contract these
edges and consider the problem on the resulting graph.

Now let us consider the analogous problems for directed graphs. In the spe-
cial case when P is the complete set of pairs of vertices of the graph G, problem
GEN(FPC (G, P), X ) calls for enumerating minimal strongly connected sub-
graphs of G, the status of which was determined to be incrementally polyno-
mially solvable in [3]. Problem GEN(FCD(G, P), X ), on the other hand, in this
special case is known to be NP-hard [3]. We show here that the general path
conjunction problem with arbitrary pairs is also NP-hard.

Theorem 2. Given a digraph G, a family of k disjoint pairs P of vertices of G,
and a subfamily X ⊆ FPC(G, P) of path conjunctions of G with respect to P, it
is NP-hard to decide if this subfamily is complete: X = FPC(G, P).

As for the disjunction of directed paths, it is still open whether their enumeration
can be done in incremental polynomial time. However, we prove in Section 5 that
the following related extension problem is NP-hard.

Theorem 3. Let G = (V, E) be a digraph and P be a family of pairs of vertices
of G. Fix a subset of arcs Y ⊆ E and let FPD(G, P, Y ) be the family of minimal
subsets of arcs X ⊆ E such that the graph (V, X ∪Y ) contains a directed path be-
tween at least one of the pairs of vertices in P. Given a sublist X ⊆ FPD(G, P, Y )
it is NP-hard to check if the given sublist is complete: X = FPD(G, P, Y ).

The same statement holds for the extension problem for disjunction of cuts.
These results should be contrasted with the corresponding results for undirected
graphs, where the extension problems are polynomially solvable.

Finally, we shall also prove the following positive result which generalizes
previously known results on generating directed spanning trees [9,14].

Theorem 4. Let G = (V, E) be a directed graph, s1, s2 ∈ V be two arbitrary
(not necessarily distinct) vertices, and t1, T2 ⊆ V be arbitrary vertex and sub-
set of vertices of V . Let P = {(s1, t1)}

⋃{(s2, t) : t ∈ T2}. Then problem
GEN(FPC(G, P), X ) can be solved with polynomial delay.

To prove Theorem 4, we use the backtracking method for enumeration (see
[13]). This method can generally be explained as follows. Suppose that we want
to enumerate all elements of a family F ⊆ 2E , where E = {1, 2, . . . , |E|}. The
algorithm works by building a search tree of depth |E| whose leaves contain the
elements of the family F . Each node of the tree is identified with two disjoint
subsets S1, S2 ⊆ E, and have at most two children. At the root of the tree,
we have S1 = S2 = ∅. The left child of any node (S1, S2) of the tree at level
i is (S1 ∪ {i}, S2) provided that there is an X ∈ F , such that X ⊇ S1 ∪ {i}
and X ∩ S2 = ∅. The right child of any node (S1, S2) of the tree at level i
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is (S1, S2 ∪ {i}) provided that there is an X ∈ F , such that X ⊇ S1 and
X ∩ (S2 ∪ {i}) = ∅. When we extend the set S1 by a new element i ∈ E to
get a new set S′

1, we may restrict our attention to subsets S′
1 satisfying certain

properties. More precisely, let F ′ ⊆ 2E be a family of sets such that we can test
in polynomial time if a set X ∈ F ′, and such that for every X ∈ F , there is a set
X ′ ∈ F ′ contained in X. The following is a sufficient condition for this method
to work in polynomial time:

(F) For any two disjoint subsets S1 ∈ F ′ and S2 ⊆ E, and for any i ∈ E \ (S1 ∪
S2) such that S1 ∪ {i} ∈ F ′, we can check in polynomial time if there is an
element X ∈ F , such that X ⊇ S1 ∪ {i} and X ∩ S2 = ∅.

This way, under assumption (F), we obtain a polynomial delay, polynomial space
algorithm for enumerating the elements of F in lexicographic order, by perform-
ing a depth-first search traversal on the nodes of the backtracking tree con-
structed as above.

The remainder of the paper consists of the proof of a more general result for
matroids in Section 2 instrumental in the proof of Theorem 1 in Section 3. The
proofs of Theorems 2, 3 and 4 are presented in Sections 4, 5 and 6, respectively.

2 Generation Problems in Matroids

Many generation problems for undirected graphs can be viewed more generally
as generation problems in graphical or co-graphical matroids, see [10,16] for
general background on Matroid Theory.

Let M be a matroid on ground set S of cardinality |S| = n. In general,
we assume that M is defined by an independence oracle, i.e. an algorithm O
which, given a subset X of S, can determine in unit time whether or not X is
independent in M . This assumption implies that the rank of any set X ⊆ S,
r(X) = max{|I| | I independent subset of X}, and in particular, the rank of the
matroid r(M) def= r(S) can be determined in O(n) time by the well-known greedy
algorithm. A set U ⊆ S is said to span an element s ∈ S if r(U ∪{s}) = r(U), to
span a set W ⊆ S if r(U∪W ) = r(U), and to span the whole matroid M if r(U) =
r(S) = r(M). In the last case S is called a spanning set. Minimal spanning sets
for S are called bases. Equivalently, a base B is a maximal independent set.
Further, |B| = r(M) for every base B in M . Minimal dependent sets in M are
called circuits.

Denote the hypergraphs of all bases and circuits of M by B(M) and C(M)
respectively. Given a matroid M , it is known that the complementary set Bc =
{S \ B | B ∈ B(M)} is the set of bases of another matroid M∗ on the same
ground set S. The matroid M∗ is called the dual matroid of M . The bases
of M∗ are called the co-bases of M and the circuits of M∗ are called the co-
circuits of M . Note that the rank of a set X ⊆ S in the dual matroid M∗,
r∗(X) = r(S \ X) + |X| − r(M), can also be computed in O(n) oracle time, and
thus, M can be used as an independence oracle for the dual matroid.
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In reliability theory we apply the above definitions to graphical and co-
graphical matroids. Given a connected multi-graph G = (V, E), we denote by
MG the graphical matroid for G. The elements of MG are the edges of G, and a
set E′ ⊆ E spans e = (v′, v′′) iff E′ contains a path between v′ and v′′. In partic-
ular, E′ is independent iff it is a forest, that is if (V, E′) contains no cycle. This
means that the bases MG are the spanning trees of G, and the circuits of MG are
the simple cycles of G. Thus the paths between vertices v′ and v′′ in G are iden-
tified with the circuits through the edge e = (v′, v′′) in MG. (If e = (v′, v′′) �∈ E,
we can add e to MG.) The bases of the dual (co-graphical) matroid M∗

G are
the complements to the spanning trees, i.e. the minimal transversals to the sim-
ple cycles, so called feedbacks. The circuits are the minimal transversals to the
spanning trees, that is minimal cuts for G.

We shall need the following Theorem from [2]

Theorem 5. Let M be a matroid with ground set S, let a ∈ S, and let C(M, a)
be the set of circuits C of M such that a ∈ C. Assuming that M is defined by an
independence oracle, all elements of C(M, a) can be enumerated in incremental
polynomial time.

The above theorem can be extended as follows.

Theorem 6. Given a matroid M with ground set S and two non-empty sets
D, A ⊆ V , all minimal subsets of D which span A can be enumerated in incre-
mental polynomial time. All maximal subsets of D which do not span A can also
be enumerated in incremental polynomial time.

Proof. Let α be a new element representing A, and let Mα be the matroid on
D ∪ α with the following rank function:

ρ(X) =
{

r(X), if α �∈ X
max{r((X \ α) ∪ a) | a ∈ A}, otherwise. (1)

It is easy to check that Mα is indeed a matroid. When M is a vectorial matroid
over a large field, α can be interpreted as the ”general linear combination” of all
elements of A; in general, ρ(X) is the so-called principal extension of r(X) on
A with value 1 (see e.g. [8]). Let SPAN(D, A) be the collection of all minimal
subsets of D which span A. When I ∈ SPAN (D, A) then I ∪α is a circuit in Mα

and conversely, for any circuit C in Mα containing α, the set C \ α belongs to
SPAN (D, A). Hence the enumeration problem for SPAN (D, A) is equivalent
with that for the set of all circuits through α in Mα. Given an independence
oracle for M , the rank function (1) of the extended matroid can be trivially
evaluated in oracle-polynomial time. Therefore the first claim of Theorem 6
directly follows from Theorem 5. To see the second claim note that the maximal
subsets of D which do not span A are in one-to-one correspondence with the
circuits of the dual matroid M∗

α which contain α. 
�
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3 Proof of Theorem 1

Let us consider first path-conjunctions (PC): In order to generate all minimal
subsets X of edges of a given (multi) graph G = (V, E) such that G(X) = (V, X)
contains paths between given pairs of vertices si, ti, for i ∈ [k], we add the set A
of k of ”new” edges ei = (si, ti) to E, and let D = E. Then each minimal subset
of D which spans A in the graphical matroid of G′ = (V, D∪A) is a minimal set of
edges of G connecting all pairs of vertices si, ti, and vice versa. Consequently, all
such minimal path conjunctions can be enumerated in incremental polynomial
time by the first part of Theorem 6.

Let us consider next cut-disjunctions (CD): Generating all minimal subsets
of edges of G = (V, E) which disconnect at least one pair of vertices si, ti for
k ∈ [k] is equivalent to the generation of all maximal subsets of E which do not
connect all the pairs. Letting as before D = E and A = {(si, ti) : i ∈ [k]}, we
conclude that all such maximal cut disjunction can be enumerated in incremental
polynomial time by the second part of Theorem 6. 
�
Remark. Suppose we are given a graph G = (V, E), a set of k terminals
{s1, . . . , sk} ⊆ V , and it is sought to enumerate all minimal sets of edges whose
removal disconnects the terminals {s1, . . . , sk} from each other. Such a minimal
set of edges is commonly referred to as a multiway cut, see [15].

Interestingly, the special case of enumerating cut conjunctions can be solved
in incremental polynomial time as follows. First of all, we can assume without
loss of generality that the input graph G = (V, E) contains no edges between
the given terminals s1, . . . , sk: if such edges exist, then any multiway cut must
remove all of them. Let A be the set of k−1 ”new” edges forming a spanning tree
on the terminals, say A = {a1 = (s1, s2), a2 = (s2, s3), ..., ak−1 = (sk−1, sk)}.
Let G′ = (V, E′), where E′ = E ∪ A, and let M∗ be the co-graphical matroid of
G′. An edge set X ⊆ E spans A in M∗ if and only if

r∗(X ∪ A) = r∗(X), (2)

where r∗(·) is the rank function of M∗. By definition, r∗(Z) = r(E′ \ Z) + |Z| −
r(M), where M is the graphical matroid of G′ and r(·) is the rank function of
M . So condition (2) can be written as follows: r(E \ X) + |A| = r(E′ \ X), or
equivalently, r(Y ) + |A| = r(Y ∪ A) where Y = E \ X is the complement of X
in G = (V, E). So if we remove X from G, and then start adding the edges of A
to the resulting graph (V, Y ), then each new edge from A should be decreasing
the number of connected components. But this is the same as saying that the
terminals s1, ..., sk are all in distinct connected components of (V, Y ), i.e. that X
is a multiway cut. So the enumeration problem for multiway cuts, in this case, is
equivalent to the enumeration of all minimal subsets X of E such that X spans
A in M∗, which, by Theorem 6, can be done in incremental polynomial time. 
�

Analogously, the special case of path disjunction, when the goal is to enu-
merate all minimal subsets of edges which connect at least one pair of vertices
in {s1, s2, . . . , sk}, can also be solved in incremental polynomial time.
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4 Proof of Theorem 2

We use a polynomial-time transformation from the satisfiability problem. Let
φ = C1 ∧ . . .∧Cm be a conjunctive normal form on 2n literals x1, x1, . . . , xn, xn.
We construct a digraph G = (V, E) on |V | = 6m + n + 2 vertices and |E| =
6m + 2n +

∑m
j=1 |Cj | arcs. An example of our construction is given in Figure 1.

Vertices: We associate with each clause Cj , for j = 1, . . . , m, 6 vertices of G:
sj , s

′
j , s

′′
j and tj , t

′
j , and t′′j . We associate with each variable xi, for i = 1, . . . , n a

vertex xi of V . In addition there are two other vertices u and v.
Arcs: For each clause Cj , for j = 1, . . . , m, we have 6 arcs (s′

j , sj), (sj , u), (u, s′′
j )

and (t′j , v), (v, tj), (v, t′′j ). For each i = 1, . . . , n, we also have two arcs (u, xi) and
(xi, v) representing positive and negative literals xi and xi respectively. Finally,
if xi appears in Cj we add an arc between sj and xi and if xi appears in Cj we
add an arc between xi and tj .
Pairs: We use the following set P of 3m disjoint pairs:

P = {(sj , tj) : j ∈ [m] = {1, . . . , m}}
⋃

{(s′
j , s

′′
j ) : j ∈ [m]}

⋃
{(t′j , t

′′
j ) : j ∈ [m]}.

Trivial path conjunctions: Note that any path conjunction must include the sets
of arcs Ej = {(s′

j , sj), (sj , u), (u, s′′
j ), (t′j , v), (v, tj), (tj , t′′j )}, for j = 1, . . . , m.

Thus, any path conjunction that connects the family of pairs specified by P
must be an extension of this set of arcs. We call such an extension trivial if it
includes both arcs (u, xi) and (xi, v) for some i ∈ [n]. This way, we define a set
of n trivial path conjunctions.
Non-trivial minimal path conjunctions: Let us now show that any non-trivial
minimal path conjunction yields a satisfying assignment for C and conversely,
any satisfying assignment for φ gives a non-trivial minimal path conjunction for
G with respect to P. This will prove Theorem 2. Note that any such non-trivial
path conjunction must avoid one of the arcs (u, xi), (xi, v) for each i = 1, . . . , n.

Let σ = (�1, �2, . . . , �n) be the set of literals assigned the value True in a sat-
isfying truth assignment for C. We define a non-trivial minimal path conjunction
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Fig. 1. An example of the NP-hard construction proof for Theorem 2 with CNF φ =
(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).
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Fig. 2. An example of the NP-hard construction proof for Theorem 3 with CNF φ =
(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).

X of G corresponding to σ as follows. First we include in X all sets of arcs be-
longing to Ej , for j = 1, . . . , m. Next, we append to X all arcs corresponding
to literals not appearing in σ. Then for each clause Cj , for j = 1, . . . , m, we
include one of the arcs (sj , xi) or (xi, tj) depending on which of the literals xi or
x̄i satisfies Cj , respectively. Now, the fact that σ is satisfying implies that there
is a path from sj to tj , for each j = 1, . . . , m.

Conversely, let X be a non-trivial minimal path conjunction connecting the
pairs of P. The non-triviality of X implies that, for each i = 1, . . . , n, one of
the arcs (u, xi) or (xi, v) is not included in X. Let us define a satisfying truth
assignment σ that assigns True to the literals corresponding to arcs not included
in X. Since X contains a path from sj to tj for each j ∈ [m], one of the arcs
(sj , xi) or (xi, tj) must be included in X, implying that φ is satisfiable.

5 Proof of Theorem 3

Again, we use a polynomial-time transformation from the satisfiability problem.
Let φ = C1 ∧ . . . ∧ Cm be a conjunctive normal form (CNF) on 2n literals
x1, x1, . . . , xn, xn. Assume that no clause contains a literal and its negation, and
that each of the 2n literals appears in at least one of the clauses. For a literal
�i, let d(�i) be the number of clauses in which the literal appears. We construct
a digraph G = (V, E) on |V | = m + 1 +

∑m
j=1 |Cj | + 2

∑n
i=1 d(xi)d(xi) vertices

and |E| ≤ 2
∑m

j=1 |Cj |+3
∑n

i=1 d(xi)d(xi) arcs. An example of our construction
is given in Figure 2.
Vertices: In addition to vertex C0, we associate a vertex Cj ∈ V with each
clause Cj , for j = 1, . . . , m. For each pair of clauses (Cj , Ck), j < k, such that
literal �i appears in Cj and �i appears in Ck, we define two vertices sjk−i, tjk−i.
Finally, for each clause Cj , for j = 1, . . . , m, and for each literal �i appearing in
Cj , we define a vertex �ij of V .
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Arcs: For each clause Cj and each literal �i appearing in Cj we define two arcs
(Cj−1, �ij) and (�ij , Cj). In addition, for each pair of clauses (Cj , Ck), j < k,
such that literal �i appears in Cj and �i appears in Ck, we include the arcs
(sjk−i, �ij), (Cj , Ck−1) and (�ik, tjk−i).
Pairs: We use a set P of

∑n
i=1 d(xi)d(xi)+1 disjoint pairs. P contains (C0, Cm)

and (sjk−i, tjk−i) for every pair of clauses (Cj , Ck), j < k, such that literal �i

appears in Cj and �i appears in Ck.
Fixed set of arcs Y : We include in Y all arcs of the form (sjk−i, �ij), (�ij , tjk−i)
and (Cj , Ck−1) for all j, k ∈ [m] and all literals �i appearing in Cj or Ck.

Clearly, for every pair of clauses (Cj , Ck), j < k, such that literal �i appears
in Cj and �i appears in Ck, the two arcs (�ji, Cj) and (�ik, Ck) extend Y to a
dipath connecting sjk−i to tjk−i. Thus apart form this set of

∑n
i=1 d(xi)d(xi)

paths, any other path disjunction must avoid one of the arcs (�ij , Cj) or (�ik, Ck)
for every j < k, such that literal �i appears in Cj and �i appears in Ck. The
only path that remains to be connected is the one from C0 to Cm and it is easy
to see that such path corresponds to a satisfying truth assignment for φ.

6 Proof of Theorem 4

Let G = (V, E) be a digraph. Given a node s ∈ V and a subset of nodes T ⊆ V ,
let us call an (s, T )-directed Steiner tree any minimal subset of arcs X ⊆ E
such that there is a dipath in (V, X) from s to every node in T . Note that the
minimality of X implies indeed that the underlying graph of (V, X) must be a
tree, whose leaves belong to T .

Given s ∈ V , [9,14] give algorithms for enumerating all directed trees con-
necting s to all other nodes in the graph. We begin first by showing how to use
the backtracking approach to enumerate all (s, T )-directed Steiner trees connect-
ing a given node s ∈ V to a given subset of nodes T ⊆ V . For this we need to
verify that (F) is satisfied. Let F be the family of directed (s, T )-Steiner trees,
and F ′ be the family of directed Steiner subtrees T′ connecting s to some subset
of vertices T ′ ⊆ T , and such that every leaf of T′ belongs to T ′, except possibly
one leaf u which is not in T , but there is a path from u to some t ∈ T \ T ′ that
does not use any vertex of T′. Consider any two disjoint subsets S1 ∈ F ′ and
S2 ⊆ E. Let T ′ be the subset of T reachable from s by using only arcs from S1. If
the tree (V, S1) has a leaf vertex u �∈ T , then any arc a ∈ E \ (S1 ∪S2) satisfying
S1 ∪ {a} ∈ F ′ must be of the form (u, v). Otherwise, any arc a = (u, v) ∈ E
can be used to extend S1 as long as u is reachable from s by a dipath in the
graph (V, S1). In both cases, the check whether S1 ∪ {a} can be extended to an
(s, T )-directed Steiner tree that avoids S2 can be done by simply deleting all the
vertices appearing in S1 and all the arcs appearing in S2 from G and checking
the reachability of some vertex in T \ T ′ from v.

Now we turn our attention to the case with two source vertices s1, s2 and
sinks t1 ∈ V and T2 ⊆ V . We assume that the graph (V, E) contains a dipath
connecting s1 to t1 and a directed Steiner tree connecting s2 to every vertex in
T2. Otherwise there is nothing to generate. Such a condition is easy to verify.
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Let us call a minimal P-linked subgraph, MPLS in short, any minimal col-
lection of arcs X such that there is a directed path in (V, X) from s1 to t1, and
from s2 to any node in T2. Given a digraph G and an (s, T )-Steiner tree T in G,
we call a cross path any (v1, v2)-dipath in (V, E \E(T)), where v1 and v2 are two
vertices such that there is no dipath from v2 to v1 in T. The following property
of MPLS holds.

Lemma 1. Let X ⊆ E be the union of an (s1, t1)-dipath P1 and an (s2, T2)-
Steiner tree T2. Then X is an MPLS if and only if X has no cross paths.

Proof. Suppose that X is an MPLS, but has a cross path from v1 to v2. Consider
the unique dipath s2 = x0, x1, . . . , xt = v2, in T2 from s2 to v2 and let xr be the
last vertex on this path that belongs to T2 ∪ {v1}, or lies on a path from s2 to
some vertex t ∈ T2 that does not pass through v2. Then, if we delete from X all
the arcs (xr, xr+1), . . . , (xt−1, xt), we would still have a path between s1 and t1
and between s2 and every vertex in T2. This contradicts the minimality of X.

Conversely, suppose that we drop an arc a ∈ X = E(P1) ∪ E(T2), and the
graph (V, X\{a}) still contains an (s1, t1)-dipath and an (s2, T2)-directed Steiner
tree. If a belongs to P1, then X contains two distinct dipaths between s1 and
t1, and if a belongs to T2, then X contains two distinct dipaths between s2 and
some t ∈ T2. In both cases, it easy to see that X must have a cross path. 
�

The two following corollaries are immediate from Lemma 1.

Corollary 1. Let X be an MPLS that is composed of the union of a directed
(s1, t1)-path P1 and a directed Steiner tree T2 connecting s2 to every node in
T2. Suppose that P1 and T2 contain common vertices v1 and v2 such that v1 lies
on the path between s1 and v2 in P1, and on the path between s2 and v2 in T2,
then P1 and T2 must contain exactly the same set of vertices between v1 and v2.

Corollary 2. In every MPLS X, the dipath from s1 to t1 is unique, and the
dipath from s2 to any t ∈ T2 is unique.

Yet, for more than two sources, Corollary 2 may not hold, as illustrated by the fol-
lowing example with three sources {s1, s2, s3} and three sinks {t1, t2, t3} (see Fig-
ure 3). Let G be a digraph on 10 vertices {s1, s2, s3, a, b, c, d, t1, t2, t3} and with
arcs {(s1, a), (s2, b), (s3, d), (b, t3), (c, t1), (d, t2), (a, b), (b, c), (a, d), (d, c), (c, a)}.
Clearly, in this example, there exists two dipaths between s1 and t1 namely,
s1, a, b, c, t1 and s1, a, d, c, t1. Yet, all the arcs are needed to maintain the con-
nectivity between s2 and t2 or between s3 and t3.

Lemma 2. Every (s1, t1)-dipath can be extended to an MPLS, and every MPLS
is an extension of some (s1, t1)-dipath.

Proof. The first part of the lemma is a consequence of Lemma 1. Indeed, fix an
(s1, t1)-dipath P1 and let T2 be an arbitrary directed (s2, T2)-Steiner tree. Let
us modify the union F = E(P1) ∪ E(T2) by deleting arcs from T2 to obtain an
MPLS X ⊆ F as follows. For every two vertices v1 and v2 in F such that there is
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Fig. 3. An example showing that Corollary 2 does not hold with 3 sources.

a cross path from v1 to v2, consider the unique dipath s2 = x1, x2, . . . , xt = v2,
in T2 from s2 to v2 and let xr �= v2 be the last vertex on this path that belongs
to T2∪{v1}, or lies on a path, in T2, from s2 to some vertex u ∈ T2 that does not
pass through v2. Then, we delete from F all the arcs (xr, xr+1), . . . , (xt−1, xt).
Clearly the resulting graph still contains an MPLS. We repeat this operation
until there are no cross paths left. The resulting graph will be an MPLS by
Lemma 1. To see the second part, note by Corollary 2 that an MPLS X contains
a unique path from s1 to every t ∈ T2. This readily defines an (s1, t1)-dipath of
which X is an extension. 
�

To prove Theorem 4, we apply backtracking as follows. First, we generate
an (s1, t1)-dipath P1 connecting s1 to t1. We can generate all such paths in
lexicographic order as explained above, and by Lemma 2 we know that each of
them can be extended to an MPLS, and that all such possible extensions are
exactly the set of MPLS’s. Furthermore, the MPLS extensions X and X ′ of any
two distinct (s1, t1)-dipaths P1 and P′

1 are distinct. This follows from the fact
that if X = X ′ then both of them contain P1 ∪ P′

1, and hence they contain at
least two different dipaths between s1 and t1, in contradiction to Corollary 2.

For each generated (s1, t1)-dipath P1, let us generate all possible extensions
to an MPLS using backtracking. Let F be the family of all such possible ex-
tensions, and F ′ be the family of all subsets X ⊆ E \ E(P1) of arcs such that
(i) X forms with some subset of arcs Y ⊆ E(P1) a directed Steiner subtree T′

2
connecting s2 to some subset of vertices T ′

2 ⊆ T2, (ii) every leaf of T′
2 belongs

to T ′
2, except possibly one leaf u which is not in T2, but there is a dipath in

G from u to some t ∈ T2 \ T ′
2 that does not use any vertex of T′

2, and (iii)
there are no cross paths in P1 ∪ T′

2. By Lemma 1, any set X ⊆ E satisfying (i),
(ii) and (iii) can be extended to an MPLS, and therefore, all we need to check
is that condition (F) is satisfied. Consider any two disjoint subsets S1 ∈ F ′

and S2 ⊆ E. Let T ′
2 be the subset of T2 reachable from s2 by using only arcs

from S1. If the subgraph (V, S1 ∪ E(P1)) has a leaf vertex (that is a vertex
with out-degree zero) u �∈ T2 ∪ {t1}, then any arc a ∈ E \ (S1 ∪ S2) satisfying
S1 ∪ {a} ∈ F ′ must be of the form (u, v). Otherwise, any arc a = (u, v) ∈ E
can be used to extend S1 as long as u is reachable from s2 by a dipath in the
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graph (V, S1∪E(P1)). In both cases, the check whether S1∪{a} can be extended
to an MPLS that avoids S2 can be done as follows. First, assume the path P1
consists of the vertices s1 = x1, x2, . . . , xr = t1 in that order, and let P be the
path s2 = y1, y2, . . . , yk = v from s2 to v in (V, S1 ∪E(P1)). If the paths P1 and
P intersect and P is the only path, from s2 to a node in T′

2, that intersects P1,
let l ∈ {1, . . . , k} be the largest index such that yl = xt for some t ∈ {1, . . . , r}.
Then all vertices on the sub-path xt+1, . . . , xr = t1 must be deleted from G to
avoid cross paths. Otherwise, if there is a path in T′

2, from s2 to some v′ �= v,
that intersects P1, then all the nodes on P1 must be deleted from G to avoid
cross paths. Next, we delete also from G all the vertices appearing in S1 and all
the arcs in S2. Finally, checking (F) reduces now to checking the reachability,
from v, of some vertex in T2 \ T ′

2 in the remaining graph.
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