
Fast Error-Tolerant Search on Very Large Texts

Marjan Celikik
Max Planck Institute for Computer Science

Saarbrücken, Germany
mcelikik@mpi-inf.mpg.de

Holger Bast
Max Planck Institute for Computer Science

Saarbrücken, Germany
bast@mpi-inf.mpg.de

ABSTRACT
We consider the following spelling variants clustering prob-
lem: Given a list of distinct words, called lexicon, compute
(possibly overlapping) clusters of words which are spelling
variants of each other. This problem naturally arises in
the context of error-tolerant full-text search of the following
kind: For a given query, return not only documents match-
ing the query words exactly but also those matching their
spelling variants. This is the inverse of the well-known ”Did
you mean: ... ?” web search engine feature, where the error
tolerance is on the side of the query, and not on the side of
the documents.

We combine various ideas from the large body of litera-
ture on approximate string searching and spelling correction
techniques to a new algorithm for the spelling variants clus-
tering problem that is both accurate and very efficient in
time and space. Our largest lexicon, containing roughly 10
million words, can be processed in about 16 minutes on a
standard PC using 10 MB of additional space. This beats
the previously best scheme by a factor of two in running time
and by a factor of more than ten in space usage. We have
integrated our algorithms into the CompleteSearch engine in
a way that achieves error-tolerant search without significant
blowup in neither index size nor query processing time.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search pro-
cess; H.3.4 [Systems and Software]: Performance evalua-
tion (efficiency and effectiveness); H.5.2 [User Interfaces]:
Theory and Methods

General Terms
Algorithms, Experimentation, Measurement, Performance

Keywords
Spelling Variants, Approximate String Matching, Error-
Tolerant Search

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’09 March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03 ...$5.00.

Text search is still one of the primary means of access-
ing information. However, large collections of natural lan-
guage texts abound in misspellings, either produced by the
authors of the documents, or incurred in the process of con-
verting the document into electronic form, e.g., via optical
character recognition (OCR). Such errors can be a problem
when searching for information in a scenario where high re-
call matters, i.e., we do not want to miss a single relevant
document.

For example, in the current version of the DBLP dataset,
a very carefully maintained collection of meta data on over a
million computer science articles (http://dblp.uni-trier.
de), one of the paper titles is misspelled as “An accurate
probalistic model for error detection.” A query probabilistic
error detection will fail to retrieve this document, possibly
leading to the erroneous conclusion that it does not exist in
the database. In a study of [8], 10% of one million queries
returned irrelevant hits or no hits at all due to misspellings
and OCR errors in the searched text collection. Other stud-
ies [19, 20] show that the accuracy on short documents un-
der probabilistic IR and the vector space model decreases
rapidly as the number of OCR errors increases.

Our goal in this paper is error-tolerant text search: given
a query, retrieve not only those documents which contain
the query words, but also those documents which contain
misspellings of the query words. We will show that we can
realize this feature with high accuracy (most of the mis-
spellings will be caught), yet with only small extra cost in
both query processing time and index space, as compared
to ordinary text search. In contrast, all search engines we
know of that implement the kind of error-tolerant search we
consider here, have a slow down in query processing time
by an order of magnitude if that feature is activated; see
Section 2.

Note that our problem here is the exact opposite of the
well-known ”Did you mean . . . ?” feature of many of today’s
web search engines. This feature deals with the fact that
users tend to mistype their query, and in that case offers
the most likely correct version of the query. For example,
the analogon to our example above would be that a user
typed probalistic error detection, and the system would ask
”Did you mean: probabilistic error detection”. However, the
correctly typed query would not find documents where one
of the query words occurs only in misspelled form. The two
features are exactly complementary, and ideally one would
like to have both. From the perspective of a web search
engine operator, the ”Did you mean . . . ?” feature is more
important, since most queries are for popular topics with
an abundance of relevant documents (containing the query
words in correct spelling), but users tend to misspell their
queries. For more specialized queries or more homogeneous
collection, however, recall becomes a critical issue, and the
second feature becomes essential. Literature search is a good

http://dblp.uni-trier.de
http://dblp.uni-trier.de

example for that: we do not want to miss even a single
relevant paper.

The rest of the paper is organized as follows. In Section
2 we sift the large body of literature on approximate string
matching and spelling correction for work relevant to our
problem. In Section 3 and Section 4 we give a formal def-
inition of our problem and how a solution can be used for
the kind of error-tolerant search we consider here. In Sec-
tion 5 we present our new algorithm. Section 6 provides the
results of our experiments, where we compare our algorithm
against the six most relevant methods from the literature on
six different datasets ranging from small to very large and
with various kinds of spelling errors. We also compare the
efficiency of our error-tolerant text search with the state of
the art Lucene search engine.

2. RELATED WORK
The body of literature on approximate string matching,

spelling correction, and the like is enormous, and we have
done our best to get an as complete as possible overview of
that part of this work relevant to our problem.

2.1 Techniques for Similarity String Search
In this subsection, we give an account of all the techniques

we know of that can be meaningfully applied to solve the
problem of similarity string search efficiently: for a large set
of strings (words) and a given query word find all similar
words from the set. Section 5 describes a generic way of how
to use an algorithm for the similarity string search problem
to solve our spelling variants clustering problem. We will
make use of this generic way when comparing our algorithm
against most of the techniques discussed in the following.

We focus on algorithms based on the Levenshtein distance,
which we found most appropriate for our problem of error
tolerant search. We give some evidence for this decision in
Section 6. Essentially the same conclusion was reached in
[21].
Searching in metric spaces This is a general approach
in similarity searching which exploits the triangle inequal-
ity to preprocess a given data set in order to minimize the
number of distance computations at query time [13]. As
an extreme representative of this method we consider the
AESA algorithm, which has the fastest query time of any
algorithm in this class at the price of very expensive Θ(n2)
time and space preprocessing. Very recently there has been
a proposal (iAESA) which improves the efficiency of up to
75% [9]. In our experiments we will ignore the preprocessing
costs.
Signature-based algorithms and LSH These ap-
proaches work by mapping strings to smaller signatures or
fingerprints such that similar objects hash to the same sig-
nature with probability equal to their similarity. Hence,
the expensive string distance computations are reduced to
cheaper signature comparisons. The most powerful repre-
sentative of this class is locally sensitive hashing (LSH). All
LSH schemes we know of are based on simple distance like
Jaccard and Cosine distance [6] which are clearly inferior
to the Levenshtein distance as far as accuracy of our error-
tolerant search is concerned.
Searching with a trie A trie is an ordered tree data
structure used to store strings where all the descendants of
a node have a common prefix of the string associated with
that node. Using a trie is a classical approach to compute
the Levenshtein distance of a string against a dictionary of
strings (for an example, see [3]). The savings come from
the fact that the distance, up to their common prefixes, is
calculated for all strings in a single step. Pruning takes
place whenever the minimum value of the current column is
larger than the threshold since the minimum in all descen-

dant nodes will be also larger. The algorithm requires O(n)
space with a large constant. It’s inefficiency comes from
traversing a large fraction of the trie if the threshold is not
sufficiently low (e.g. 1 or 2).
Q-gram indexing and prefix filtering These methods
convert the constraint given by one distance function into
a weaker constraint, usually the Q-gram overlap constraint
and then integrate various filtering criteria (e.g. the prefix
filter) with a Q-gram index. Approaches based on inverted
indices usually address the similarity join problem (which is
similar to ours) [4, 2, 5]. A very recent algorithm given in
[5] outperforms all other in the same class. We conducted
a small experiment which measures the running time of an
ideal filtering algorithm based on the weaker constraint and
we assumed that the candidate generation takes no time.
Our observation was that verifying the candidate pairs alone
takes longer than the total time of the algorithms we con-
sider.
FastSS and neighborhood generation The FastSS al-
gorithm presented in [17] uses the deletion neighborhood of
a string to model the Levenshtein distance. It exploits the
fact that after performing a certain sequence of deletions
two strings will eventually end up being equal. The Leven-
shtein distance can then be efficiently computed. However,
generating the deletion neighborhoods is efficient only if the
strings are sufficiently short.

The algorithm has a good worst-case search complexity
of O(kmk), where k is the Levenshtein distance threshold
and m is the average string length. The space complexity
of the algorithm is O(mk+1n) and it can be problematic if
the indexed lexicon is large.
Universal Levenshtein automata (ULA) is a finite
state automaton which given special precomputed informa-
tion, for any pattern p can recognize all strings s with Lev-
enshtein distance less than a threshold [11]. Once a FSA
representation of the dictionary (trie) is computed its traver-
sal is navigated by backtracking the ULA, much in spirit
like the trie-based algorithm described above (thus suffer-
ing from the same problem). The pattern is then parti-
tioned and multiple subsearches with lower thresholds are
launched. The inefficiency comes from the potentially large
overlap of the multiple traversals. It should be noted that
our algorithm performed roughly seven times faster than
(their own implementation of) their algorithm.

2.2 Existing IR Systems
Most of the more widely used open source search engines

come with a fuzzy search feature similar to our error-tolerant
search feature. In all of those we have looked at, this feature
is realized by a simple disjunctive query expansion: just re-
place each query word q by a disjunction of all its spelling
variants v1, . . . , vl that occur in the collection. This badly
hurts efficiency in two ways: (i) a much larger number of
index items needs to be read from disk and processed, and
(ii) top-k techniques which avoid scanning the complete in-
dex lists for each query word do not pay off for large dis-
junctions. Indeed, our experiments in Section 6 will show
that for Lucene, the most prominent open source engine, the
query processing time for error-tolerant search is one to two
orders of magnitude higher than for ordinary search or our
implementation of error-tolerant search.

There is also a large number of research prototypes de-
veloped by the IR community. We have looked at Zettair,
Indri, Wumpus, MG, Terrier, and Galago, and none of them
seems to offer any kind of error-tolerant search. This is un-
derstandable, since these systems were built primarily as
research tools and are not meant to cover the whole spec-
trum of standard search engine functionality as required in
applications.

As far as the big commercial web search engines are con-

Figure 1: A screen shot of our error-tolerant search for the query probabilistic on DBLP. The box on the left shows
spelling variants and the number of hits they lead to. The box on the right shows selected hits for all spelling variants.
A click on a particular variant would show only the respective hits.

cerned (Google, Yahoo!, MSN, Amazon etc.), most of them
provide the ”Did you mean . . . ?” feature suggesting the
(presumable) correction of a mistyped query, but none of
them addresses the problem of error-tolerant search. As we
discussed earlier already, this makes sense in a web setting,
where relevant documents (with keywords correctly spelled)
abound.

3. PROBLEM DEFINITION
We define a lexicon to be the set of all terms that ap-

pear in a collection of documents. A term can be a valid
word or a non-word. Non-word can be a garbage string
or a misspelling and a misspelling on the other hand can
be a spelling-variant of a valid word (e.g. informatin for
information); a run-on, i.e., concatenation of two or more
valid words (e.g. informationprocessing) and a split word
(e.g. infor and mation). The latter two types of errors are
called word-boundary errors [10].

Definition: (Spelling variants clustering problem) Given
a lexicon of distinct words, compute (possibly overlapping)
clusters of words which are spelling variants of each other.

For example, consider the (very small) lexicon consist-
ing of the words: algorithm, alogritm, algorithm,
logarithm, logaythm, maschine, mahcine, machine and
logarithmmachine. Then a reasonable clustering would be
as follows:

algorithm logarithm machine
alogritm logaythm mahcine
alogrithm alogrithm maschine
alogrithm logarithmmachine logarithmmachine

The non-word alogrithm belongs to two clusters since it can
reasonably assumed to be a misspelling for both algorithm
and logarithm.

4. ERROR-TOLERANT SEARCH
Given a clustering according to the definition above, we

realize our error-tolerant search via the prefix search and
completion mechanism introduced in [1].

Definition: (Prefix search and completion) Given a query,
compute a ranked list of (ids of) documents, containing the
query words as prefixes, as well as for each query word a
ranked list of (ids of) words starting with that word.

For example, on DBLP the query err* tol* (to empha-
size the prefix search, we will here and in the following ap-
pend a star to every query word) will produce completions
err, error, errol (an author’s name), etc. for err, and
tolerant, tolerating, tolhuizen (another author’s name),
etc. for tol, and a list of hits containing any combination of
these completions.

In the following description, we view the search index as
consisting of postings, where each posting is a tuple (word,
document id, position, score). That is, each posting corre-
sponds to a particular occurrence of a particular word in a
particular document (if a word occurs three times in a doc-
ument, there will be three different postings, one for each
occurrence). We assume that scores are used in the standard
way, that is, the score of a matching document is computed
as the sum of the scores of the matching postings, and doc-
uments are then ranked by these score sums. Positions are
used for phrase and proximity queries. Scores and/or posi-
tions may be omitted in which case the index is not capable
of ranking and/or phrase and proximity queries.

Given a solution of the spelling variants clustering prob-
lem, we add the following postings to the index. At in-
dex time, for every posting corresponding to an occur-
rence of a misspelled word m, we create a copy of that
posting, changing the word to w:m, where w is the cor-
rect word corresponding to m. (If there is more than one
correct word, we create one copy for each.) For example,
for the posting alogritm, docid=3, pos=7, score=0.7 we
add the posting algorithm:alogritm, docid=3, pos=7,
score=0.7. With the index enhanced in this way, we
get the desired error-tolerant search via the prefix search
and completion defined above. For example, the one-
word query algorithm* now matches algorithm as well
as algorithm:alogritm, and in this way matches all doc-
uments containing algorithm or any of its spelling variants.

It is important to note that we are getting another valu-
able feature besides the error-tolerant search here. Namely,
for each query word we get a list of the spelling variants that
actually occur in the hit set; see Figure 1. This is important,
because it makes the error-tolerant search both transparent
and interactive. For example, a user would find that the
most frequent spelling variants in Figure 1 all look very rea-
sonable, and she could click on any particular variant and
check the corresponding hits.

Note that it is an option to lower the score of the occur-
rences of misspellings appropriately. Then documents with
correct words would tend to be ranked before documents
with misspellings, e.g. to alleviate the risk of false-positives.
In an extreme case, these scores could be lowered to zero,

which could be equivalent to removing all postings corre-
sponding to misspellings from the collection. This has the
advantage of not increasing the total number of postings
(however, the increase is small, see Section 6.6), but the dis-
advantage of throwing away potentially meaningful words.
Designing a good strategy of adjusting the scores of the ad-
ditional postings is beyond the scope of this work.

5. SPELLING VARIANTS CLUSTERING
In this section we present our spelling variants clustering

algorithm which, on a high level, does the following:

Step 1: Preprocessing

Filter out all garbage strings;

Compute a set V of words which are likely to be valid
(e.g. using a trusted dictionary) and a set M of words
which are not valid (non-words), not necessarily disjoint;

Step 2: Building clusters

Build an index for fast similarity searching on V and for
each w ∈ M find all v ∈ V with d(w, v) < δ;

For each v ∈ V initialize an empty cluster Cv. Then for
each v and all w with d(w, v) < δ set Cv = Cv ∪ {w}

Step 3: Postprocess the clusters (see Section 5.3)

5.1 Preprocessing
Text collections typically contain a large number of

garbage strings usually produced when an OCR device
tries to scan certain non-text document sections as images,
graphs, tables, etc. Our evidence shows that in some cases
they can take as much as 50% of the lexicon. Since garbage
strings can worsen the efficiency of our algorithm we clean
them out by using a discriminator based on qualities of En-
glish words in contrast of meaningless strings generated by
an OCR device. These rules were designed based on [18] and
make use of word length, layout of vowels and consonants,
consecutive repetitions of characters, number of digits, etc.

In this step we also determine the valid words in the lex-
icon, i.e., the words on which the error tolerant text search
should be enabled. We use a simple method which consists
of a lookup in a hash table of a large english dictionary of
approximately 400,000 words based on word lists from the
SCOWL project1. We note that one can be more ”loose”
and include a set of words which are not in the trusted dic-
tionary. These words should be included in both sets, V and
M . As a consequence the error-tolerant text search will be
enabled for these words as well.

5.2 Building Clusters
The core of our cluster building process is a fast similarity

searching algorithm. Given a set L of strings coming from
an alphabet Σ, a query string q, and a distance function
d : Σ∗ × Σ∗ → R, a similarity searching algorithm finds all
strings s ∈ L such that d(s, q) ≤ δ, where δ is a distance
threshold.

In our setting the set L overlaps with the set of valid
words V , and the query strings q come from the set of non-
words M . The algorithm we propose is based on normalized
Levenshtein distance which is based on Levenshtein distance
defined in Section 6.2. In Section 6 we give a short survey
over existing distance functions which encourages our choice
of a distance function.

Definition: (Normalized Levenshtein distance) Normalized
Levenshtein distance between strings s1 and s2 is defined as

ED(s1,s2)
max(|s1|,|s2|)

, where ED(s1, s2) is the Levenshtein distance

1http://wordlist.sourceforge.net

A normalized version of the Levenshtein distance (also pro-
posed in [4]) puts more penalty on short strings and less
penalty on long strings. Our motivation is to avoid assign-
ing a large fixed threshold (e.g. 3 symbols) on short strings.
According to [10] short words have more dense neighbor-
hoods of similar words and are more difficult to correct. An
older study given in [14] suggest that 43% of all miscorrec-
tions are generated from short words. In our setting this
translates to very large clusters of short words which incurs
additional overhead in the index size but also a lot of false-
positive misspellings and potentially false search results.

5.2.1 Basic Algorithm: Permuted Lexicon
A permuted lexicon is a simple data structure which

allows substring search queries to be answered by pre-
fix queries as follows. For each string s we make |s|
copies by rotating the string |s| times. For example
the rotations of variant are variant, ariantv, riantva,
iantvar, antvari, ntvaria, tvarian. Each rotations is
represented by a integer pointer to the original string and
another pointer for the rotation within that string (thus 5
bytes are more than sufficient). After sorting the permuted
lexicon the original words will be ordered in buckets with
respect to their common substrings (as opposed to common
prefixes). We can efficiently find all strings that share a
non-empty substring with a query string s by performing a
binary search for each of its rotations. The approach origi-
nally proposed by Zobel et al. in [21] scans fixed size neigh-
borhoods in the permuted lexicon that correspond to the
rotations of a query string. The assumption is that most of
the similar strings lie in these neighborhoods.

We propose a filtering algorithm based on permuted lex-
icons. A filtering algorithm consists of three phases: index-
ing or preprocessing phase, candidate generation phase and
verification phase where candidate pair strings that have
the potential of meeting the similarity threshold are verified
against the distance function. Our algorithm is based on
two filters together with probabilistic pruning to drastically
reduce the number of distance computations done. In addi-
tion, to improve the accuracy, short words are processed in
another phase of our algorithm.

5.2.2 Filter 1: Longest Common Substring
Let’s consider two string s1 and s2 where s2 is produced

by introducing a single error in s1. This means that the
sequence of symbols in s1 is at some point interrupted and as
a result s1 and s2 will share two substrings. In the best case
the longer substring has length |s1| and the in the worst case

d |s1|−1
2

e (when a deletion or a substitution error takes place
in the middle of s1). The longest substring however can
not be shorter than this. Similarly, two errors will break s1

into three parts and the longest substring will have at least

d |s1|−2
3

e symbols. Note that δ errors can break a string into
at most δ + 1 substrings.

Now let’s consider strings as conceptually circular, i.e., an
uninterrupted sequence of letters, where a substring from
the end of the string continues at the beginning. δ errors
break a circular string into at most δ parts instead of δ + 1
(which means that the common substrings has to be longer).

Lemma 1: Let the Levenshtein distance between two strings
s1 and s2 be δ. Then the longest common substring can-

not have less than dmax{|s1|,|s2|}−δ
δ+1

e symbols, accordingly

dmax{|s1|,|s2|}−δ
δ

e when s1 and s2 are considered circular
strings.

Transposition errors affect two consecutive symbols instead
of one. However, under the assumption that only one trans-
position error is allowed, transpositions make difference to

Lemma 1 only in the case when a single isolated transposi-
tion error takes place in a string with even number of sym-
bols. This case is problematic only when the (absolute)
threshold is 1. Strings with threshold of 1 (short strings)
are processed in a different phase of our algorithm which
does not rely on the lemma (see Section 5.2.5).

The aim is to filter out pairs of strings which do not
meet the longest common substring constraint. Our imple-
mentation is based on circular strings since they make the
constraint tighter. We combine this filter with the obvious
length constraint, i.e., we apply it only if ||s1| − |s2|| ≤ δ.

Note that we can make use of the normalized Levenshtein
distance to get tighter constraint on shorter strings since the
absolute threshold δ in Lemma 1 depends on the length of
the longer string. By plugging the normalized Levenshtein
distance one gets the following lower bound on the maximum
common substring length:

dmax {|s1|, |s2|} − bδn ·max {|s1|, |s2|}c
bδn ·max {|s1|, |s2|}c

e (1)

where 0 ≤ δn ≤ 1 is the normalized Levenshtein distance
threshold. Note that we assume that a misspelling can not
have more than 3 errors. This limits bδn · max {|s1|, |s2|}c
in Equation 1 by 3.

Example: Let |s1| = 6, |s2| = 7 and δn = 0.28. Then
the longest common (circular) substring between s1 and s2

must be at least dmax{7,6}−1
1

e = 6 symbols long.

Finding the longest common substrings of two strings
s1 and s2 with a dynamic programming algorithm requires
Θ(|s1||s2|) time, i.e., it costs equally as computing their Lev-
enshtein distance. We make use of the permuted lexicon and
apply Lemma 1 in this context.

We find all strings that share a non-empty substring (we
call this a a bucket) with the query string by performing
a binary search for each of its rotations. The strings with
longer common substrings will lie closer to these locations.
The algorithm then proceeds by scanning the strings below
and above the current location in the bucket as follows. We
compute the length of the common substring of the next
string in the bucket by computing the common prefix of the
corresponding rotations which can be done in constant time
by precomputing the lengths of the common prefixes of each
consecutive pair of rotations at the beginning of the algo-
rithm. A string is considered a candidate only if it meets
the constraint given by Equation 1 and pruned otherwise.
Of course the current rotation does not need to share the
longest common prefix (substring) with the current rotation
of the query string but it can still be pruned as the rota-
tion with the longest common substring is then in one of
the next buckets. Once it is assured that the distance is
below or above the threshold the string is marked as seen to
avoid redundant computations. Note that from Equation 1
we can compute minimum acceptable longest common sub-
string length of a string s of length |s| to any other string
and early terminate the scanning of the current bucket:

min
i
dmax {|s|, i} −min{3, bδn ·max {|s|, i}c}

min{3, bδn ·max {|s|, i}c} e (2)

where

max {|s| − 3, |s| − bδn · |s|c} ≤ i ≤ min{|s|+3, |s|+bδn · |s|
1− δn

c}

5.2.3 Filter 2: Intersection Size
While scanning the strings in a bucket we already compute

the common prefix with the next permuted word. We can

Table 1: Number of candidates which can poten-
tially meet the similarity threshold after applying
each filter. The experiment is to find all similar
non-words for each valid in the DBLP dataset of
approximately 1.5M words.

Filter / LCS Prune Intersection size

Candidate set size 212M 61.9M 29.7M 6.97M

exploit this to further apply another filter as follows.

Lemma 2: Let the Levenshtein distance between two strings
s1 and s2 (including transpositions) be at most δ and let
M(s1) and M(s2) be the multisets of the symbols in s1 and
s2. Then |M(s1) ∩M(s2)| ≥ max {|s1|, |s2|} − δ.

This lemma is special case of a well known property which
has originally appeared in the literature in [16]. This filter
is applied only if the current permuted query word and the
next permuted word in the bucket share long enough prefix.
Then we only need the size of the multiset intersection of
the suffixes which can be computed in time proportional to
the suffix length of the candidate string by accumulating the
symbol counts of the query string into an array at the be-
ginning of the query execution. Since the suffixes are short
this is not very expensive. Note that transposition errors do
not affect Lemma 2.

Table 1 shows the filtration effect, i.e., the number of can-
didate pairs that have the potential of meeting the similarity
threshold after applying each filter.

5.2.4 Probabilistic Pruning
For a small sacrifice (e.g. 5%) of the accuracy and addi-

tional improvement of the efficiency we can prematurely stop
the scanning of a certain bucket and decrease the number
of distance and filter computations done. A simple thresh-
old on the number of scanned strings in each bucket as in
[21] is inappropriate as some buckets require covering much
more strings than other. We employ a heuristic which al-
lows the number of similar strings found to remain close to
100%. The stopping criterion is based on upper bound on
the number of consecutive strings with normalized Leven-
shtein distance above the threshold which are encountered
while scanning a bucket. For a given accuracy (e.g. 95%)
we estimate this upper bound by probing and sampling from
the lexicon. Due to space limitation we omit further techni-
cal details.

5.2.5 Short Words
Since similar short strings can have small common sub-

strings there is the potential danger of being missed by the
premature stopping of the algorithm. Therefore we pro-
cessed them in another phase as follows. As short we define
all strings s such that there is no string s1 longer than 1
symbol with EDn(s, s1) ≤ δn, where EDn(., .) is the nor-
malized Levenshtein distance. This is equivalent to the con-
straint 2/(|s| + 2) > δn or |s| ≤ b2/δn − 2c. For example
if δn = 0.28, then as short are defined all strings that have
at most 5 symbols. Since short strings satisfying the above
constraint permit only one error we can use a specialized fast
algorithm adapted for this setting (e.g. [12], [17]). Currently
we are using a simple neighborhood2 generation paired with
dictionary look ups to find all similar string in the dictio-
nary. This phase usually takes a small fraction of the total
time of our main algorithm.

2All words that can be obtained by a single substitution,
insertion, deletion and transposition of symbols

5.2.6 Complexity
Our algorithm requires O(mN) space where N is the num-

ber of valid words in the dataset and (m ≈ 10) is the average
string length. Trivially, the average query complexity of our
algorithm is O(m3 log N) since we need m binary searches
and a number of distance computation per each rotation. As
for the constant factors, the average number of distance com-
putations per rotation on English words is below 1, meaning
that in average we do less than m distance computations
per query. On long (e.g. 20 symbols) and random strings
the number of distance computations per rotation is below
0.1 which means that our algorithm becomes more efficient.
This is expected as the number of correction candidates de-
creases and the filtering effectiveness increases.

5.3 Post-Processing
At the end of the similarity searching step, each cluster

is preprocessed as follows. First, false-positive misspellings
are post-filtered using a spelling-correction technique and
second, non-words which are not similar to any valid word
are checked for word-boundary errors and assigned to clus-
ters.

5.3.1 Post-Filtering
To eliminate false-positive misspellings we combine in-

sights from the noisy channel model for spelling-correction
proposed in [3] and insights from the EM fitting algorithm
given in [15]. Both of them can be applied to our problem
and both have shown good results in the literature.

Consider an intended word - misspelling pair w, m. The
model works by learning generalized edits of the form α → β
together with their probabilities, where α is a substring of w
and β is a substring of m. The probability P (w|m), that m is
a misspelling of w is modelled as the maximum probability
over all finite sequences S of generalized edits (including
null-edits) that transform w to m:

max
S:S(w)=m

Y
α→β∈S

p(α → β) (3)

The main problem is to correctly estimate the probabili-
ties p(α → β). The approach proposed in [3] is intricate
to implement since it either has to rely on heuristics or it
requires a large corpus of text together with all spelling vari-
ants identified. A more elegant EM algorithm for single edit
operations that only requires a collection of spelling-variant
pairs is proposed in [15]. We extended this algorithm to
tackle generalized edits.

The clusters are post-filtered by re-ranking the valid words
which they correspond to using Equation 3 and then choos-
ing the best k clusters for each misspelling, where k is small
(usually 2).

Note that if the collection comes from OCRed text we
leave out the post-filtering step even though we imply that
a similar technique can be used to fit a symbol confusion
matrix (instead of sequences of edits).

5.3.2 Word-Boundary Errors
Solving the word-boundary problem requires computing

all partitions of a string such that its components are valid
words and then choosing the most likely partition [10]. This
results in a combinatorial explosion in the number of possi-
ble partitions that must be checked. Nevertheless, we have
found that in some OCRed texts these errors can take up to
25% of all lexicon terms, whereas in human-typed text up
to 5%.

We approach both problems greedily and compute rea-
sonable approximations. For briefness technical details are
skipped. We note that this step takes negligible time in our
algorithm.

Table 2: Characteristics of our six datasets. The
last three columns give the size of the lexicon, the
number of valid words, and the average word length,
respectively (garbage strings has been cleared out).

Dataset Size # terms # valid avg len

20 Newsgroups 35 MB 140,559 40,920 13.1

MPII 235 MB 507,518 43,832 10.9

DBLP 1 GB 913,869 68,702 15.1

Wikipedia 4.9 GB 4,395,331 208,139 9.4

TREC Terabyte 164 GB 10,120,946 230,233 10.1

Artificial - 1,000,000 50,000 22.2

6. EXPERIMENTS
We compared our algorithms on six datasets ranging from

small to large and with different kinds of spelling errors. We
note that for the first three dataset we carry out quality
experiments and for the last three efficiency experiments.

6.1 Datasets
20 Newsgroups is a small collection of approximately

20,000 newsgroup documents, partitioned across 20 different
newsgroups. It contains human-typed text only.

MPII are the about 50,000 web pages of the Max Planck
Institute for computer science and it reflects the usual web
mess. It consists of both, human-typed text (including for-
eign languages) and OCRed text.

DBLP contains about 50,000 computer science articles,
many of them OCRed.

Artificial We generated an artificial lexicon containing
random strings with lengths coming from uniform U(3, 40)
distribution. The purpose was to evaluate the algorithms
on longer strings where a distance computations is more
expensive and filtering effectiveness more important.

Wikipedia is the (November 2007 dump of the) English
Wikipedia with about 3 million documents.

Terabyte is our largest collection, the standard TREC
.GOV collection with about 25 millions documents.

Details for each dataset are shown in Table 2.

6.2 Distance Functions
We considered the following distance function in our

study:

Levenshtein distance (modified) between two strings s1

and s2 is the minimum number of edit operations required to
transform s1 to s2. The edit operations include insertions,
deletions, substitutions and transposition of characters.

Jaccard similarity is defined as J(s1, s2) = | s1∩s2
s1∪s2

| where

s1 and s2 are the sets of Q-grams of the corresponding
strings.

Ukkonen’s Q-gram distance is defined as Ukk(s1, s2) =P
q∈s1∪s2

|w(q) − m(q)| where w(q) and m(q) indicate how

many times the Q-gram q appears in s1 (s2)

To experimentally assess which distance functions is the
most appropriate for our problem we compiled random sub-
sets from three of our datasets (see Section 6) and produced
a spelling variants clustering for each of them (excluding
any post-processing). For each distance function we chose a
threshold such that the average precision was more or less
fixed, i.e., close to 0.8 and then measured the recall of each
cluster. The average recall is shown in Table 3.

The main observation is that the Levenshtein distance
gives the best recall for reasonably high precision. From

Table 3: Average recall for the computed spelling
variants clustering for each distance function. The
thresholds are chosen such that the precision is ap-
proximately 0.8

Distance function 20 Newsgroups MPII DBLP

Levenshtein 0.97 0.94 0.92

Jaccard 0.90 0.78 0.61

Ukkonen’s 0.87 0.80 0.59

Table 3 it is clear that this effect is more prominent for
OCRed text as most of the errors in the DBLP dataset are
OCR-induced.

6.3 Algorithms
All algorithms in this section were written in C++ and

compiled with GCC 4.1.2 with -O3 flag. All experiments
were performed on a machine with 16 GB of main memory,
4 dual-core AMD Opteron 2.8 GHz processors (but we used
only one core at a time), operating in 32 bit mode and run-
ning Debian 4.1.1-19. For each of the approaches discussed
in Section 2, we picked the most competitive (off the shelf)
representative for each of the techniques discussed there.

• AESA We were interested in how well a metric space
based searching algorithm performs in our problem set-
ting.

• LSH is probabilistic signature-based algorithm for fast
similarity searching. We include it in our experiments for
efficiency comparison only.

• Trie We optimize the trie-based algorithm by the fact
that the queries are known in advance so that they can be
initially sorted. Then savings come based on potentially
large common prefixes of consecutive queries.

• Q-gram index is a Q-gram indexing based algorithm
exploiting the Q-gram overlap constraint.

• FastSS is an efficient algorithm based on deletion neigh-
borhood to model the Levenshtein distance. We use an
implementation from the Metric Spaces library3 written
in C.

• Permuted, FastPermuted Respectively the basic4 per-
muted lexicon approach from [21] (i.e. no filters) and our
own permuted lexicon approach. For both we set the ac-
curacy to 95%.

6.4 Clustering Efficiency
Table 4 shows the running times of ours and all compared

methods on our three largest datasets for the task of the
spelling variants clustering problem.

Our algorithm outperforms all of the compared algorithm
in both running time and number of distance computations
performed. Clearly, the reason for this is the small computa-
tional cost of FastPermuted. This is achieved via its careful
tradeoff between the effectiveness of its filters and their cost,
as appropriate for our setting with a relatively large number
of relatively short strings but also via exploiting the normal-
ized Levenshtein distance. The closest competitor is FastSS
with more than twice the running time of our algorithm.
However, FastSS pays for its high speed with a space usage
more than ten times higher than for our method. For our
artificial lexicon with 50,000 strings set as valid, which even
the Θ(n2) AESA algorithm could handle, FastSS required

3http://sisap.org/?f=library
4To achieve the desired accuracy with the basic Permuted
algorithm we had to process the short words in the same
way as for FastPermuted

Table 4: Clustering efficiency results. The first en-
try for each dataset corresponds to the running time
(in seconds) and the second corresponds to the num-
ber of (millions of) distance computations (if appli-
cable). The LSH method works with Jaccard dis-
tance. Some of the methods were space infeasible.

Dataset Wikipedia Terabyte Artificial

FastPermuted 399 47.8 963 117 21 0.21

Permuted 1303 1159 3498 2820 161 48.6

Q-gram index 4876 257 13K 807 67 0.18

Trie based 12K - 37K - 4547 -

FastSS 904 - 2241 - - -

AESA - - - - 24K 10

LSH∗ 866 218 2209 443 81 0.24

Table 5: Accuracy of the clustering produced by
our method for three of our datasets. A distance
threshold of 0.28 which gave the best tradeoff be-
tween quality, efficiency and index space overhead.

Dataset Precision Recall F-measure

20 Newsgroups 0.950 0.953 0.951

MPII 0.954 0.918 0.938

DBLP 0.901 0.890 0.894

more than 4 GB of memory which was infeasible on our
32-bit machine.

On random (and long) strings, our algorithm could easily
compute the exact answer with very small computational
effort. This is not surprising as first, filtering effectiveness
becomes much better, and second, the length of common
substrings among strings is then minimized and no proba-
bilistic pruning is required.

6.5 Clustering Quality
Table 5 summarizes the quality results of our spelling-

variants clustering. Manually computing spelling-variant
clusters on large datasets like Wikipedia or Terabyte re-
quired prohibitive effort and time. The results shown are
the average precision and recall for each dataset measured
against 100 manually computed clusters as explained in Sec-
tion 6.2.

The best quality results were achieved on the 20 News-
groups dataset as it contains human-made errors only. The
MPII and the DBLP datasets contain both human-made and
OCR errors which are harder to detect and correct and in
turn the clustering quality was slightly worse. To our knowl-
edge most of the spelling correction approaches are aimed
towards human-made errors and quality results on OCRed
texts are usually not shown.

We note that one can sacrifice some index space over-
head (and potentially some precision) by choosing a higher
distance threshold and achieve a better recall on OCRed
texts. Finally we note that we did not lose any quality as
a consequence of our approximate (and not exact) similar-
ity searching method. In fact, an exact similarity searching
algorithm produced the same clustering in most of the cases.

6.6 Search Efficiency
Table 6 compares the performance of our error-tolerant

search, as described in Section 4, with the same feature re-
alized by the state of the art Lucene search engine. The

Table 6: Average query processing time. The three
entries of CompleteSearch correspond to average
query processing time without tolerance, with toler-
ance and error-tolerant text search based on vanilla
implementation of disjunctive search

Dataset CompleteSearch Lucene

DBLP 32.7 ms 35.5 ms 1225 ms 776 ms

Wikipedia 205 ms 230 ms 5093 ms 6148 ms

TREC Terabyte 3414 ms 3630 ms ≈1 min ≈20 min

Table 7: Index and compressed vocabulary size with
and without error-tolerant text search.

Dataset Index size Lexicon size

DBLP 450 MB 532 MB 4.0 MB 5.2 MB

Wikipedia 2.24 GB 2.36 GB 26 MB 30 MB

TREC Terabyte 41.1 GB 41.9 GB 71 MB 80 MB

Table 8: Average number of hits with and with-
out the error-tolerant text search feature. The left
number of each entry corresponds to low-recall (≤
50 hits) queries and the right number corresponds
to all queries

Dataset DBLP Wikipedia Terabyte

Ordinary 20.8 1246 16.4 17.2K 22.5 106.0K

Error-tolerant 23.3 1256 22.1 17.3K 25.2 106.1K

entries in the table correspond to average execution time
over 20,000 queries ranging from 1 to 4 terms. The results
show that the disjunctive approach of Lucene incurs an enor-
mous blowup in query processing time. In contrast, our ap-
proach of adding the valid words to the index and accessing
them via CompleteSearch’s efficient prefix search achieves
the same feature at essentially no cost in query process-
ing time. We note that Lucene’s ordinary query processing
times are comparable to those of CompleteSearch (in fact
somewhat faster because Lucene employs top-k techniques,
which CompleteSearch, due to its extended search facilities
cannot easily do), that is, Lucene’s slow error-tolerant search
is indeed due to the inherent complexity of the disjunctive
approach.

The price paid for our fast error-tolerant text search is the
small overhead in index size due to the additional artificial
postings in the index. Table 7 summarizes the overhead of
CompleteSearch on three of our biggest datasets.

6.7 Search Quality
As shown in Table 8, error-tolerant search increases re-

call by 10-30 % for queries with 50 or less hits. Such low-
recall queries are the most interesting ones for error-tolerant
search; recall the literature search example from the intro-
duction. For the remaining higher-recall queries, the in-
crease in recall is less than 1%. Given the high accuracy of
our spelling variants clustering (Section 6.5), the precision of
the additional results will be about the same as the precision
of the results that would have been returned without error-
tolerant search. That is, the error-tolerant search increases
recall without sacrificing much precision. A manual investi-
gation has indeed confirmed this. A similar conclusion has
been drawn in [19].

7. CONCLUSIONS AND FUTURE WORK
We have defined the spelling variants clustering problem,

and presented a new and very fast algorithm for its solution.
We have shown how to use this solution for error-tolerant
full-text search with little extra cost, in neither query pro-
cessing time nor index size.

A weakness of our approach is that it relies on a dictionary
of valid words. An alternative would be to use supervised
learning to tell valid words from misspellings, as proposed
in [7]. The net result would be a widened coverage of valid
words at the price of a somewhat decreased accuracy.

We did not consider the case of so-called “real-word er-
rors”, that is, one valid word accidentally used in place of
another, for example, piece instead of peace. Other works
consider this by looking at the context of the surrounding
words. It is an open problem, however, how to achieve this
at the high efficiency we were aiming at in this paper.

8. REFERENCES
[1] H. Bast and I. Weber. Type less, find more: fast

autocompletion search with a succinct index. In SIGIR ’06,
2006.

[2] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs
similarity search. In WWW ’07, pages 131–140, 2007.

[3] E. Brill and R. C. Moore. An improved error model for
noisy channel spelling correction. In ACL’00, 2000.

[4] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive
operator for similarity joins in data cleaning. In ICDE ’06,
page 5, 2006.

[5] X. L. Chuan Xiao, Wei Wang and J. X. Yu. Efficient
similarity joins for near duplicate detection. In WWW
2008, 2008.

[6] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk,
R. Motwani, J. D. Ullman, and C. Yang. Finding
interesting associations without support pruning. ICDE’00,
page 489, 2000.

[7] D. C. Comeau and W. J. Wilbur. Non-word identification
or spell checking without a dictionary. JASIST, 55:169–177,
2004.

[8] H. Dalianis. Evaluating a spelling support in a search
engine. In NLDB ’02, pages 183–190, 2002.

[9] K. Figueroa, E. Chávez, G. Navarro, and R. Paredes. On
the least cost for proximity searching in metric spaces. In
WEA, pages 279–290, 2006.

[10] K. Kukich. Technique for automatically correcting words in
text. ACM Comput. Surv., 24:377–439, 1992.

[11] S. Mihov and K. U. Schulz. Fast approximate search in
large dictionaries. Comput. Linguist., pages 451–477, 2004.

[12] R. Muth and U. Manber. Approximate multiple string
search. In CPM’96, pages 75–86, 1996.

[13] G. Navarro and R. Baeza-yates. Searching in metric spaces.
ACM Comput. Surv., pages 273–321, 2001.

[14] J. J. Pollock and A. Zamora. Automatic spelling correction
in scientific and scholarly text. In Commun. ACM 27, 4
(Apr.), pages 358–368, 1984.

[15] E. S. Ristad and P. N. Yianilos. Learning string-edit
distance. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 20:522–532, 1998.

[16] E. Sutinen and J. Tarhio. Filtration with q-samples in
approximate matching. In CPM’96, pages 50–63, 1996.

[17] B. S. T. Bocek, E. Hunt. Fast Similarity Search in Large
Dictionaries. Technical report, Department of Informatics,
University of Zurich, 2007.

[18] K. Taghva, J. Borsack, and A. Condit. An expert system
for automatically correcting ocr output. In SPIE, pages
270–278, 1994.

[19] K. Taghva, J. Borsack, and A. Condit. Results of applying
probabilistic IR to OCR text. In Research and Development
in Information Retrieval, pages 202–211, 1994.

[20] K. Taghva, J. Borsack, and A. Condit. Effects of ocr errors
on ranking and feedback using the vector space model. Inf.
Process. Manage., 32:317–327, 1996.

[21] J. Zobel and P. W. Dart. Finding approximate matches in
large lexicons. Software - Practice and Experience,
25:331–345, 1995.

	Introduction
	Related work
	Techniques for Similarity String Search
	Existing IR Systems

	Problem definition
	Error-Tolerant Search
	Spelling variants clustering
	Preprocessing
	Building Clusters
	Basic Algorithm: Permuted Lexicon
	Filter 1: Longest Common Substring
	Filter 2: Intersection Size
	Probabilistic Pruning
	Short Words
	Complexity

	Post-Processing
	Post-Filtering
	Word-Boundary Errors

	Experiments
	Datasets
	Distance Functions
	Algorithms
	Clustering Efficiency
	Clustering Quality
	Search Efficiency
	Search Quality

	Conclusions and future work
	References

