Proceedings Article, Paper
@InProceedings
Beitrag in Tagungsband, Workshop


Show entries of:

this year (2019) | last year (2018) | two years ago (2017) | Notes URL

Action:

login to update

Options:








Author, Editor

Author(s):

Eigenwillig, Arno
Kettner, Lutz
Wolpert, Nicola

dblp
dblp
dblp

Not MPG Author(s):

Wolpert, Nicola

Editor(s):





BibTeX cite key*:

Eigenwillig2007b

Title, Booktitle

Title*:

Snap rounding of Bézier curves


EKW-BSnap-SCG07-authprep.pdf (241.12 KB); EKW-BSnap-SCG07-addendum.pdf (21.36 KB)

Booktitle*:

Proceedings of the Twenty-Third Annual Symposium on Computational Geometry (SCG'07)

Event, URLs

URL of the conference:

http://www.socg.org/2007/

URL for downloading the paper:

http://delivery.acm.org/10.1145/1250000/1247101/p158-eigenwillig.pdf?key1=1247101&key2=7348482811&coll=GUIDE&dl=GUIDE&CFID=26676770&CFTOKEN=94499352

Event Address*:

Gyeongju, South Korea

Language:

English

Event Date*
(no longer used):


Organization:

Association for Computing Machinery (ACM)

Event Start Date:

6 June 2007

Event End Date:

8 June 2007

Publisher

Name*:

ACM

URL:

http://www.acm.org/

Address*:

New York, NY, USA

Type:


Vol, No, Year, pp.

Series:


Volume:


Number:


Month:


Pages:

158-167

Year*:

2007

VG Wort Pages:

48

ISBN/ISSN:

978-1-59593-705-6

Sequence Number:


DOI:

10.1145/1247069.1247101



Note, Abstract, ©


(LaTeX) Abstract:

We present an extension of snap roundingfrom straight-line segments (see Guibas and Marimont, 1998)to Bézier curves of arbitrary degree, and thus the first method for geometric roundingof curvilinear arrangements.Our algorithm takes a set of intersecting Bézier curvesand directly computes a geometric rounding of their true arrangement, without the need of representing the true arrangement exactly.The algorithm's output is a deformation of the true arrangementthat has all Bézier control points at integer pointsand comes with the same geometric guarantees as instraight-line snap rounding: during rounding, objects do not movefurther than the radius of a pixel, and features of thearrangement may collapse but do not invert.

URL for the Abstract:

http://doi.acm.org/10.1145/1247069.1247101

Keywords:

Bézier curves, arrangement, snap rounding, geometric rounding, intersection computation, robustness, splines

HyperLinks / References / URLs:

http://doi.acm.org/10.1145/1247069.1247101

Copyright Message:

© ACM, 2007. This is the authors' version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in the Proceedings of the 23rd Annual Symposium on Computational Geometry (SCG 2007).


Download
Access Level:

Public

Correlation

MPG Unit:

Max-Planck-Institut für Informatik



MPG Subunit:

Algorithms and Complexity Group

Audience:

popular

Appearance:

MPII WWW Server, MPII FTP Server, MPG publications list, university publications list, working group publication list, Fachbeirat, VG Wort



BibTeX Entry:

@INPROCEEDINGS{Eigenwillig2007b,
AUTHOR = {Eigenwillig, Arno and Kettner, Lutz and Wolpert, Nicola},
TITLE = {Snap rounding of {B}{\'e}zier curves},
BOOKTITLE = {Proceedings of the Twenty-Third Annual Symposium on Computational Geometry (SCG'07)},
PUBLISHER = {ACM},
YEAR = {2007},
ORGANIZATION = {Association for Computing Machinery (ACM)},
PAGES = {158--167},
ADDRESS = {Gyeongju, South Korea},
ISBN = {978-1-59593-705-6},
DOI = {10.1145/1247069.1247101},
}


Entry last modified by Lutz Kettner, 02/28/2008
Show details for Edit History (please click the blue arrow to see the details)Edit History (please click the blue arrow to see the details)
Hide details for Edit History (please click the blue arrow to see the details)Edit History (please click the blue arrow to see the details)

Editor(s)
Arno Eigenwillig
Created
02/27/2007 03:28:44 PM
Revisions
15.
14.
13.
12.
11.
Editor(s)
Lutz Kettner
Uwe Brahm
Christine Kiesel
Christine Kiesel
Christine Kiesel
Edit Dates
01/16/2008 12:52:38 AM
2007-07-18 14:41:59
27.06.2007 16:31:11
26.06.2007 11:04:00
26.06.2007 10:56:08
Show details for Attachment SectionAttachment Section
Hide details for Attachment SectionAttachment Section

View attachments here:


File Attachment Icon
EKW-BSnap-SCG07-authprep.pdf
File Attachment Icon
EKW-BSnap-SCG07-addendum.pdf