Geometric Computing with CGAL and LEDA

Kurt Mehlhorn and Stefan Schirra

Abstract. LEDA and CGAL are platforms for combinatorial and geo-
metric computing. We discuss the use of LEDA and CGAL for geometric
computing and show that they provide a unique framework for exact, ef-
ficient and convenient geometric computing.

§1. Introduction

LEDA (Library of Efficient Data Structures and Algorithms) [16,17] and CGAL
(Computational Geometry Algorithms Library) [8,26] are platforms for com-
binatorial and geometric computing developed in the ESPRIT-projects AL-
COMII, ALCOM-IT, CGAL, and GALIA. Concerning geometric computing,
the systems provide number types, geometry kernels, geometric algorithms,
and visualization. They by now provide a significant fraction of the algorithms
and data structures described in the computational geometry literature, where
in this context computational geometry subsumes the field covered by the an-
nual ACM Symposia on Computational Geometry. The systems are designed
such that it is easy to build programs on top of them. The computations
in LEDA and CGAL are exact, i.e., behave according to their mathematical
specifications. This is a strong point of both systems, distinguishing them
form many other geometric software products.

Based on the insight that algorithm design must include implementa-
tion to have maximal impact, Kurt Mehlhorn and Stefan Naher started the
development of the LEDA software library of efficient data structures and al-
gorithms in Saarbriicken in '89 using C++ as programming language. LEDA
is now developed at Max-Planck-Institut fiir Informatik, Saarbriicken (Ger-
many), and Martin-Luther-Universitdt Halle-Wittenberg (Germany). The
idea of CGAL was conceived in fall of '94, inspired by the success of LEDA and
in order to bundle forces previously put into predecessors of CGAL [2,11,20].
Development of CGAL was started in fall ’96 in the CGAL-project and is
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now continued in the GALIA-project. GALIA is carried out by Max-Planck-
Institut fiir Informatik, Saarbriicken, ETH Ziirich (Switzerland), Freie Uni-
versitat Berlin (Germany), INRIA Sophia-Antipolis (France), Martin-Luther-
Universitat Halle-Wittenberg, Tel-Aviv University (Israel), and Utrecht Uni-
versity (The Netherlands). The goal is to make the most important of the so-
lutions and methods developed in computational geometry available to users
in industry and academia in a C++ library.

§2. The Need for a Geometry Software Library

Reusing code that already exists and is used and thereby tested rather than
implementing everything from scratch saves development time and hence re-
duces cost [5]. It also eases maintenance of code. Software libraries also ease
the transfer of state-of-the-art algorithmic knowledge into application areas.
Since geometric computing is a wide area, many application areas can bene-
fit from the availability of the re-usable code of a geometry software library.
The importance of libraries of software components in subject area domains
is clearly stated in a recent report of the information technology advisory
committee of the president of the US [22].

In geometric computing, software libraries consisting of reliable compo-
nents are particularly useful, since implementors of geometric algorithms are
faced with notoriously difficult problems [18], especially the problems of ro-
bustness and degeneracies.

Robustness

Theory usually assumes exact computation with arbitrary real numbers, while
the standard substitution for real numbers in scientific computing in practice,
floating-point arithmetic, is inherently imprecise. In practice, implementa-
tions of geometric algorithms compute garbage or completely fail more or less
occasionally, because rounding errors lead to wrong and contradictory deci-
sions, see [14,25.27]. With floating-point arithmetic, basic laws of arithmetic,
on which the correctness proof of geometric algorithms is based, of course,
don’t hold anymore. We invite the reader to carry out the following simple
experiment: Compute the point of intersection of the two lines with built-in
floating point arithmetic. Then, again using built-in floating point arithmetic,
check whether the computed intersection point lies on the intersecting lines.
Figure 1 shows an incorrect result of a computation due to rounding
errors. The task is to compute the extreme points of intersection points of a
set of line segments, where a point is called extreme with respect to a set of
points if its removal from the set changes the convex hull of the point set. The
line segments have randomly chosen endpoints lying on a circle. In a first step
the intersection points of the line segments are computed, then a convex hull
algorithm is run on the points computed in the first step. With floating-point
arithmetic, some collinearities are not detected and too many extreme points
are reported. Extreme points are shown as small disks in Figure 1. The points
surrounded by a circle are actually not extreme. In the problem considered
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Fig. 1. Extreme points among intersection points of 30 line segments.

here, the computed output might still be useful; for many other geometric
problems, however, failures of pure floating-point based implementations are
much more drastically. They just crash.

Adding epsilons by trial and error to equality tests used to be common
practice in implementations of geometric algorithms, but it in no way leads
to a reliable correct implementations. Two main approaches to solving the
precision-caused robustness problem can be identified. The first is re-designing
algorithms such that they can deal with imprecision, e.g. compute a good ap-
proximate solution, but never crash. So far, this approach has been applied
successfully to only very few basic problems in computational geometry, see
[14,25,27]. The second approach is exact geometric computation [28], which
means computing with such a precision that an implementation behaves like
its theoretical counterpart, and therefore according to its mathematical speci-
fication. This is possible for many geometric problems, at least, theoretically.
Note that in practice, the input does not involve arbitrary real numbers. Of
course, exact geometric computation slows down computation, but thanks to
clever adaptive computation using floating-point arithmetic whenever known
to produce the correct result [10,15], it is now much closer to the speed of
floating-point computation than it used to be a decade ago. Since libraries
must be reliable in order to be usable in general, the exact geometric compu-
tation approach is taken in LEDA and in CGAL.

Degeneracies

Robustness problems caused by rounding errors are closely related to degen-
eracies, i.e. “exceptional” input configurations. Theory often neglects degen-
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eracies for the sake of a cleaner exposition of an algorithm, and also because
they are rare from a theoretical point of view: they have measure zero in the
set of all possible inputs over the real numbers. In practice, however, they
occur frequently. Since theory papers often leave handling degenerate cases as
an exercise to the reader, implementors are often left alone with the burden
of investigating the details of handling degeneracies. Furthermore, this leads
to treating degeneracies as an afterthought, which is, according to our expe-
rience [3], not the most suitable way to think about them, since it leads to
unnecessarily complicated and blown-up code. Considering degeneracies right
from the beginning seems to be a much better approach.

Symbolic perturbation schemes have been proposed as a general approach
to removing degeneracies, for an overview see [24]. With this approach, the
input is perturbed symbolically such that no degeneracies arise anymore. The
perturbed input can then be processed by an algorithm assuming general
position. The computed output, however, does not correspond to the actual
input, but to the perturbed input. Therefore, the complexity of the output
might be much larger than the output for the actual input [3]. For some
problems, the symbolic perturbation approach works out fine; for others, a
postprocessing step is required to deduce the actual output from the output
computed for the perturbed input. In many cases, this is a non-trivial task,
as hard as dealing with degeneracies directly.

Algorithms and data structures in CGAL and LEDA handle all possi-
ble degenerate case by default. So a user need not to worry about all the
degenerate cases. If an algorithm or data structure should not handle a de-
generate case, this is clearly stated in the documentation and this precondition
is checked in the implementation. However, mainly to support rapid proto-
typing, CGAL also provides tools for symbolic perturbation. A general ran-
domized symbolic perturbation scheme is available for the CGAL kernels [6].
A new promising approach that has been started within the CGAL project,
is controlled perturbation [23]. Here the input is perturbed numerically, such
that general position is guaranteed.

§3. Number Types

The lowest level in geometric computing is the arithmetic level. LEDA and
CGAL provide various number types to support exact geometric computation.
LEDA provides leda_integer, a number type for arbitrary precision integer
arithmetic and leda_rational, a number type for arbitrary precision rational
arithmetic, based on leda_integer. Furthermore, it provides leda_bigfloat,
a number type for floating point arithmetic with extended precision. A user
can choose the mantissa length of the leda_bigfloats or let the number type
increase the mantissa length on demand. The most sophisticated number type
in LEDA is the type leda_real [4]. This number types models a subset of
algebraic numbers: All integers are leda_reals and leda_reals are closed
under the operations +, —, -, /, and §/. leda_reals record the computa-
tion history in an expression dag, and use adaptive evaluation to guarantee
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that all comparison operations give the correct results. They use bigfloats
internally. LEDA and CGAL also provide interval arithmetic. Furthermore,
CGAL provides some fixed point arithmetic based on built-in floats, as well
as wrappers for the gnu multiple precision integer arithmetic [12] and the
number types provided by CLN [13].

84. Geometry Kernels

The kernel of a geometry library contains the basic geometric objects and
basic operations on them like points, lines, planes, sideness test, intersection
and distance computations.

LEDA provides an exact geometry kernel for rational computations. In-
ternally, it uses floating-point filters [10,15] to speed up exact computation.
With floating-point filters, an expression whose sign has to be computed is
first evaluated using floating-point arithmetic. Moreover, an upper bound on
the error of the floating-point computation is computed as well. By compari-
son of the absolute computed floating-point value with this error bound, it is
checked whether the floating-point computation is guaranteed to be reliable.
If the sign cannot be deduced with floating-point arithmetic, the expression is
re-evaluated with a more reliable arithmetic. In case of the rational geometry
kernel in LEDA, arbitrary precision integer arithmetic is used. The rational
geometry kernel of LEDA uses homogeneous coordinates and is coupled to the
number types leda_rational and leda_integer.

CGAL provides two families of geometry kernels, one based on Cartesian
coordinates and one based on homogeneous coordinates [9]. Both kernels are
parameterized by a number type. All number types fulfilling a very small
list of requirements can be used with the CGAL kernels. For example, the
user might choose the Cartesian kernel with rational arithmetic or the ho-
mogeneous kernel with integer arithmetic. In particular, for computations
involving k-th root operations, the number type leda_real can be used with
the CGAL kernels. There are also number types that use floating-point filter
techniques using interval arithmetic to speed up exact computation. These
number types assume that the data passed to a test function are exact. Hence,
this technique is not suited for cascaded computations. The parameterization
allows a user to choose the arithmetic according to the actual needs. Using
a CGAL kernel with leda_real is certainly the most convenient way to get
reliable computation.

LEDA also provides a kernel that uses double precision floating-point
arithmetic internally. Similarly, the CGAL kernels can be used with built-
in floating point number types as well. This might be sufficient for some
problems, but since correctness can not be guaranteed, the use of these kernels
is not recommended in general.

§5. Geometric Algorithms and Data Structures

CGAL and LEDA by now provide a significant fraction of the algorithms and
data structures described in the computational geometry literature. They pro-
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vide several algorithms to compute convex hulls in low and higher dimensions.
They provide algorithms and data structures for triangulations, constrained
triangulations, Delaunay triangulations, regular triangulations, and Voronoi
diagrams in two-dimensional space and Delaunay triangulations and regular
triangulations in three-dimensional space. Furthermore they provide several
algorithms for line segment intersection and regularizing Boolean operations
on polygons. CGAL and LEDA also provide a number of query data struc-
tures. For example, there are range- and segment trees, kd-trees, as well as
a data structure for range and nearest neighbor queries based on Delaunay
triangulations. CGAL provides data structures for polyhedral surfaces based
on a half-edge data structure, it provides a topological map data type and
a planar map data structure, and a data structure for arrangements. The
libraries also contain algorithms for curve reconstruction in the plane.

CGAL and LEDA provide algorithms for a number of geometric opti-
mization problems. There are algorithms computing smallest enclosing circles,
smallest enclosing ellipses, and smallest enclosing spheres, the latter in any
dimension. Furthermore, there are a number of algorithms based on matrix
search like computing extremal polygons and rectangular p-centers. LEDA
also contains algorithms for computing smallest enclosing annuli with respect
to area and width, and algorithms to compute minimum spanning trees for a
set of points.

The geometric algorithms of LEDA come in two versions, one using the
exact rational geometry kernel and one using the unreliable floating-point
kernel. CGAL’s algorithms and data structures are even more flexible with
respect to the geometry kernel used. All algorithms and data structures of
CGAL are parameterized by a template parameter called traits class. This
traits class provides an algorithm or data structure with all the type infor-
mation it needs. It tells the algorithm on which types it should operate and
which types it should use to do that.

The parameterization and the resulting genericity of CGAL’s algorithms
and data structures is best illustrated by a simple, but instructive example.
Computing the convex hull of a set of points in the plane is an intensively
studied problems in computational geometry. The input is a set of points
in the plane, the output is the counterclockwise sequence of extreme points.
Andrew’s variant [1] of the Graham scan algorithm can be formulated in such
a way that it needs only two primitive operations on the points, namely a
primitive to compare two points in order to sort the points lexicographically by
their Cartesian coordinates, and a primitive to check the order type of a triple
of points, more precisely, to check whether a sequence of three points forms a
left turn. The CGAL implementation of Andrew’s algorithm is parameterized
by a point type and the two required primitive operations. The latter two
are passed as function object types and need to correspond to the point type.
We call the parameter types of an algorithm or data structure the traits types.
To avoid long lists of template parameters, the traits types are collected in
the traits class. Note that the parameterization is on the level of data types,
not on the level of objects. In order to use the CGAL implementation of
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Andrew’s algorithm with a point type from a CGAL kernel, no traits class
needs to be specified. CGAL adds an appropriate one. If a user wants to
run the algorithm on a different point type, for example, a point type from
some other C++ library or system, for example from LEDA or from some
Geographical Information System, an appropriate traits class for this point
type must be passed to the function in order to tell it which operations it
should use. That’s it. Given such a traits class, the algorithm now works
with non-CGAL types as well. CGAL provides traits classes for both LEDA

kernels.

The parameterization by a traits class can be used to avoid explicit trans-
formation of the data. Assume that we have points in three dimensional space.
Using a traits class that provides a comparison primitive and an order type
predicate that both operate on & and y coordinates of the points only, the
CGAL implementation of Andrew’s algorithm can be used to compute the se-
quence of three-dimensional points whose projections onto the xy-plane form
the convex hull of the projections of all points onto that plane. There is no
need to explicitly transform the points into two-dimensional points. With
an appropriate traits class, the algorithm can directly operate on the three-
dimensional points. This saves time and space.

This feature is most likely even more interesting for Delaunay triangula-
tions. Assume we have a triangulated irregular network (TIN), and we want
to make a TIN with the same set of vertices without long and skinny triangles.
This 1s usually accomplished by computing the two-dimensional Delaunay tri-
angulation of the projections of the vertices of the TIN and lifting the vertices
and triangles again. CGAL allows you to do this without explicit projection
using an appropriate traits class. There are further examples where traits
classes can be used nicely in the context of geometric transformations.

§6. Visualization

In LEDA, there is a data type leda_window which provides an interface for
graphical input and output of basic geometric objects for both the X11 sys-
tem on Unix platforms and Microsoft’s Windows systems. This data type

works with the basic geometric objects of both CGAL and LEDA. CGAL also

provides preliminary support for graphical output via OpenGL and geomview.

A recent addition to CGAL and LEDA is the data type GeoWin. It
provides an interface for the visualization of the result and progression of
geometric algorithms using the window data type of LEDA. A GeoWin is an
editor for sets of geometric objects. GeoWin manages the geometric objects in
so called scenes. A scene contains a container storing geometric objects (the
contents of the scene) and provides all operations that GeoWin needs to edit it.
A geo_scene maintains a container with geometric objects. The GeoWin data
type can be used for the construction and display of geometric objects and
data structures, the visualization of geometric algorithms, writing interactive
demos for geometric algorithms and debugging geometric algorithms.
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§7. Conclusions

Reliability means that software behaves as specified. Unfortunately, there are
many exceptions to this rule for geometric software, mainly due to the issues
discussed in Section 2. Correctness and reliability are even more important
for the components of a software library. You might be willing to accept
shortcomings of a program designed for a special purpose, if problematic input
instances never arise in your context. Since library component need to be
generally applicable, any such shortcomings are not acceptable. CGAL (if
used with a number type for exact geometric computation) and LEDA (with
the rational kernel) provide geometric software that behaves according to its
mathematical specification. That makes it easy to combine components form
these libraries, and to build larger entities out of these components.

The use of exact computation alone cannot guarantee correctness. CGAL
and LEDA also use program checking [19] to increase reliability of its compo-
nents. A program checker need not compute the output for a given input. It
already gets both input and output, and then has to verify that the output
is the correct output for the given input. While a program gets x and has to
compute f(x), a checker gets » and y and must only check whether y = f(x).
The latter step should be computationally simpler, such that it is less likely
that its implementation is buggy.

At present, LEDA and CGAL consists of more than 100,000 lines of C++
code each. Neither library provides class libraries in the sense of Smalltalk, but
both provide fairly small class hierarchies if any. CGAL uses the generic pro-
gramming paradigm that became known with the Standard Template Library
(STL), which is now part of Standard C++. This makes CGAL very flexible,
more flexible than LEDA. On the other hand, LEDA is a more complete,
closed programming framework that also contains very useful components for
combinatorial computing. Due to its generic design, CGAL is more open. It
often relies on other sources for basic non-geometric data structures, mainly
on the STL. Due to its generic design, it works well together with LEDA.
Since CGAL has a more modern design and is developed by a larger group
of people, the future will certainly be with CGAL. However, LEDA’s com-
ponents for geometric computing will continue to be useful, especially within
CGAL. For more information and to download LEDA, see

http://www.mpi-sb.mpg.de/LEDA
For more information and to download CGAL, see

http://www.cs.uu.nl/CGAL
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