
Geometric Computing with CGAL and LEDAKurt Mehlhorn and Stefan SchirraAbstract. LEDA and CGAL are platforms for combinatorial and geo-metric computing. We discuss the use of LEDA and CGAL for geometriccomputing and show that they provide a unique framework for exact, ef-�cient and convenient geometric computing.x1. IntroductionLEDA (Library of E�cient Data Structures and Algorithms) [16,17] and CGAL(Computational Geometry Algorithms Library) [8,26] are platforms for com-binatorial and geometric computing developed in the ESPRIT-projects AL-COM II, ALCOM-IT, CGAL, and GALIA. Concerning geometric computing,the systems provide number types, geometry kernels, geometric algorithms,and visualization. They by now provide a signi�cant fraction of the algorithmsand data structures described in the computational geometry literature, wherein this context computational geometry subsumes the �eld covered by the an-nual ACM Symposia on Computational Geometry. The systems are designedsuch that it is easy to build programs on top of them. The computationsin LEDA and CGAL are exact, i.e., behave according to their mathematicalspeci�cations. This is a strong point of both systems, distinguishing themform many other geometric software products.Based on the insight that algorithm design must include implementa-tion to have maximal impact, Kurt Mehlhorn and Stefan N�aher started thedevelopment of the LEDA software library of e�cient data structures and al-gorithms in Saarbr�ucken in '89 using C++ as programming language. LEDAis now developed at Max-Planck-Institut f�ur Informatik, Saarbr�ucken (Ger-many), and Martin-Luther-Universit�at Halle-Wittenberg (Germany). Theidea of CGAL was conceived in fall of '94, inspired by the success of LEDA andin order to bundle forces previously put into predecessors of CGAL [2,11,20].Development of CGAL was started in fall '96 in the CGAL-project and isCurve and Surface Design: Saint-Malo 1999 277Pierre-Jean Laurent, Paul Sablonni�ere, and Larry L. Schumaker (eds.), pp. 277{286.Copyright oc 2000 by Vanderbilt University Press, Nashville, TN.ISBN 0-8265-1356-5.All rights of reproduction in any form reserved.



278 K. Mehlhorn and S. Schirranow continued in the GALIA-project. GALIA is carried out by Max-Planck-Institut f�ur Informatik, Saarbr�ucken, ETH Z�urich (Switzerland), Freie Uni-versit�at Berlin (Germany), INRIA Sophia-Antipolis (France), Martin-Luther-Universit�at Halle-Wittenberg, Tel-Aviv University (Israel), and Utrecht Uni-versity (The Netherlands). The goal is to make the most important of the so-lutions and methods developed in computational geometry available to usersin industry and academia in a C++ library.x2. The Need for a Geometry Software LibraryReusing code that already exists and is used and thereby tested rather thanimplementing everything from scratch saves development time and hence re-duces cost [5]. It also eases maintenance of code. Software libraries also easethe transfer of state-of-the-art algorithmic knowledge into application areas.Since geometric computing is a wide area, many application areas can bene-�t from the availability of the re-usable code of a geometry software library.The importance of libraries of software components in subject area domainsis clearly stated in a recent report of the information technology advisorycommittee of the president of the US [22].In geometric computing, software libraries consisting of reliable compo-nents are particularly useful, since implementors of geometric algorithms arefaced with notoriously di�cult problems [18], especially the problems of ro-bustness and degeneracies.RobustnessTheory usually assumes exact computation with arbitrary real numbers, whilethe standard substitution for real numbers in scienti�c computing in practice,oating-point arithmetic, is inherently imprecise. In practice, implementa-tions of geometric algorithms compute garbage or completely fail more or lessoccasionally, because rounding errors lead to wrong and contradictory deci-sions, see [14,25,27]. With oating-point arithmetic, basic laws of arithmetic,on which the correctness proof of geometric algorithms is based, of course,don't hold anymore. We invite the reader to carry out the following simpleexperiment: Compute the point of intersection of the two lines with built-inoating point arithmetic. Then, again using built-in oating point arithmetic,check whether the computed intersection point lies on the intersecting lines.Figure 1 shows an incorrect result of a computation due to roundingerrors. The task is to compute the extreme points of intersection points of aset of line segments, where a point is called extreme with respect to a set ofpoints if its removal from the set changes the convex hull of the point set. Theline segments have randomly chosen endpoints lying on a circle. In a �rst stepthe intersection points of the line segments are computed, then a convex hullalgorithm is run on the points computed in the �rst step. With oating-pointarithmetic, some collinearities are not detected and too many extreme pointsare reported. Extreme points are shown as small disks in Figure 1. The pointssurrounded by a circle are actually not extreme. In the problem considered
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Fig. 1. Extreme points among intersection points of 30 line segments.here, the computed output might still be useful; for many other geometricproblems, however, failures of pure oating-point based implementations aremuch more drastically. They just crash.Adding epsilons by trial and error to equality tests used to be commonpractice in implementations of geometric algorithms, but it in no way leadsto a reliable correct implementations. Two main approaches to solving theprecision-caused robustness problem can be identi�ed. The �rst is re-designingalgorithms such that they can deal with imprecision, e.g. compute a good ap-proximate solution, but never crash. So far, this approach has been appliedsuccessfully to only very few basic problems in computational geometry, see[14,25,27]. The second approach is exact geometric computation [28], whichmeans computing with such a precision that an implementation behaves likeits theoretical counterpart, and therefore according to its mathematical speci-�cation. This is possible for many geometric problems, at least, theoretically.Note that in practice, the input does not involve arbitrary real numbers. Ofcourse, exact geometric computation slows down computation, but thanks toclever adaptive computation using oating-point arithmetic whenever knownto produce the correct result [10,15], it is now much closer to the speed ofoating-point computation than it used to be a decade ago. Since librariesmust be reliable in order to be usable in general, the exact geometric compu-tation approach is taken in LEDA and in CGAL.DegeneraciesRobustness problems caused by rounding errors are closely related to degen-eracies, i.e. \exceptional" input con�gurations. Theory often neglects degen-



280 K. Mehlhorn and S. Schirraeracies for the sake of a cleaner exposition of an algorithm, and also becausethey are rare from a theoretical point of view: they have measure zero in theset of all possible inputs over the real numbers. In practice, however, theyoccur frequently. Since theory papers often leave handling degenerate cases asan exercise to the reader, implementors are often left alone with the burdenof investigating the details of handling degeneracies. Furthermore, this leadsto treating degeneracies as an afterthought, which is, according to our expe-rience [3], not the most suitable way to think about them, since it leads tounnecessarily complicated and blown-up code. Considering degeneracies rightfrom the beginning seems to be a much better approach.Symbolic perturbation schemes have been proposed as a general approachto removing degeneracies, for an overview see [24]. With this approach, theinput is perturbed symbolically such that no degeneracies arise anymore. Theperturbed input can then be processed by an algorithm assuming generalposition. The computed output, however, does not correspond to the actualinput, but to the perturbed input. Therefore, the complexity of the outputmight be much larger than the output for the actual input [3]. For someproblems, the symbolic perturbation approach works out �ne; for others, apostprocessing step is required to deduce the actual output from the outputcomputed for the perturbed input. In many cases, this is a non-trivial task,as hard as dealing with degeneracies directly.Algorithms and data structures in CGAL and LEDA handle all possi-ble degenerate case by default. So a user need not to worry about all thedegenerate cases. If an algorithm or data structure should not handle a de-generate case, this is clearly stated in the documentation and this preconditionis checked in the implementation. However, mainly to support rapid proto-typing, CGAL also provides tools for symbolic perturbation. A general ran-domized symbolic perturbation scheme is available for the CGAL kernels [6].A new promising approach that has been started within the CGAL project,is controlled perturbation [23]. Here the input is perturbed numerically, suchthat general position is guaranteed.x3. Number TypesThe lowest level in geometric computing is the arithmetic level. LEDA andCGAL provide various number types to support exact geometric computation.LEDA provides leda integer, a number type for arbitrary precision integerarithmetic and leda rational, a number type for arbitrary precision rationalarithmetic, based on leda integer. Furthermore, it provides leda bigfloat,a number type for oating point arithmetic with extended precision. A usercan choose the mantissa length of the leda bigfloats or let the number typeincrease the mantissa length on demand. The most sophisticated number typein LEDA is the type leda real [4]. This number types models a subset ofalgebraic numbers: All integers are leda reals and leda reals are closedunder the operations +, �, �, =, and kp . leda reals record the computa-tion history in an expression dag, and use adaptive evaluation to guarantee



CGAL and LEDA 281that all comparison operations give the correct results. They use bigfloatsinternally. LEDA and CGAL also provide interval arithmetic. Furthermore,CGAL provides some �xed point arithmetic based on built-in floats, as wellas wrappers for the gnu multiple precision integer arithmetic [12] and thenumber types provided by CLN [13].x4. Geometry KernelsThe kernel of a geometry library contains the basic geometric objects andbasic operations on them like points, lines, planes, sideness test, intersectionand distance computations.LEDA provides an exact geometry kernel for rational computations. In-ternally, it uses oating-point �lters [10,15] to speed up exact computation.With oating-point �lters, an expression whose sign has to be computed is�rst evaluated using oating-point arithmetic. Moreover, an upper bound onthe error of the oating-point computation is computed as well. By compari-son of the absolute computed oating-point value with this error bound, it ischecked whether the oating-point computation is guaranteed to be reliable.If the sign cannot be deduced with oating-point arithmetic, the expression isre-evaluated with a more reliable arithmetic. In case of the rational geometrykernel in LEDA, arbitrary precision integer arithmetic is used. The rationalgeometry kernel of LEDA uses homogeneous coordinates and is coupled to thenumber types leda rational and leda integer.CGAL provides two families of geometry kernels, one based on Cartesiancoordinates and one based on homogeneous coordinates [9]. Both kernels areparameterized by a number type. All number types ful�lling a very smalllist of requirements can be used with the CGAL kernels. For example, theuser might choose the Cartesian kernel with rational arithmetic or the ho-mogeneous kernel with integer arithmetic. In particular, for computationsinvolving k-th root operations, the number type leda real can be used withthe CGAL kernels. There are also number types that use oating-point �ltertechniques using interval arithmetic to speed up exact computation. Thesenumber types assume that the data passed to a test function are exact. Hence,this technique is not suited for cascaded computations. The parameterizationallows a user to choose the arithmetic according to the actual needs. Usinga CGAL kernel with leda real is certainly the most convenient way to getreliable computation.LEDA also provides a kernel that uses double precision oating-pointarithmetic internally. Similarly, the CGAL kernels can be used with built-in oating point number types as well. This might be su�cient for someproblems, but since correctness can not be guaranteed, the use of these kernelsis not recommended in general.x5. Geometric Algorithms and Data StructuresCGAL and LEDA by now provide a signi�cant fraction of the algorithms anddata structures described in the computational geometry literature. They pro-



282 K. Mehlhorn and S. Schirravide several algorithms to compute convex hulls in low and higher dimensions.They provide algorithms and data structures for triangulations, constrainedtriangulations, Delaunay triangulations, regular triangulations, and Voronoidiagrams in two-dimensional space and Delaunay triangulations and regulartriangulations in three-dimensional space. Furthermore they provide severalalgorithms for line segment intersection and regularizing Boolean operationson polygons. CGAL and LEDA also provide a number of query data struc-tures. For example, there are range- and segment trees, kd-trees, as well asa data structure for range and nearest neighbor queries based on Delaunaytriangulations. CGAL provides data structures for polyhedral surfaces basedon a half-edge data structure, it provides a topological map data type anda planar map data structure, and a data structure for arrangements. Thelibraries also contain algorithms for curve reconstruction in the plane.CGAL and LEDA provide algorithms for a number of geometric opti-mization problems. There are algorithms computing smallest enclosing circles,smallest enclosing ellipses, and smallest enclosing spheres, the latter in anydimension. Furthermore, there are a number of algorithms based on matrixsearch like computing extremal polygons and rectangular p-centers. LEDAalso contains algorithms for computing smallest enclosing annuli with respectto area and width, and algorithms to compute minimum spanning trees for aset of points.The geometric algorithms of LEDA come in two versions, one using theexact rational geometry kernel and one using the unreliable oating-pointkernel. CGAL's algorithms and data structures are even more exible withrespect to the geometry kernel used. All algorithms and data structures ofCGAL are parameterized by a template parameter called traits class. Thistraits class provides an algorithm or data structure with all the type infor-mation it needs. It tells the algorithm on which types it should operate andwhich types it should use to do that.The parameterization and the resulting genericity of CGAL's algorithmsand data structures is best illustrated by a simple, but instructive example.Computing the convex hull of a set of points in the plane is an intensivelystudied problems in computational geometry. The input is a set of pointsin the plane, the output is the counterclockwise sequence of extreme points.Andrew's variant [1] of the Graham scan algorithm can be formulated in sucha way that it needs only two primitive operations on the points, namely aprimitive to compare two points in order to sort the points lexicographically bytheir Cartesian coordinates, and a primitive to check the order type of a tripleof points, more precisely, to check whether a sequence of three points forms aleft turn. The CGAL implementation of Andrew's algorithm is parameterizedby a point type and the two required primitive operations. The latter twoare passed as function object types and need to correspond to the point type.We call the parameter types of an algorithm or data structure the traits types.To avoid long lists of template parameters, the traits types are collected inthe traits class. Note that the parameterization is on the level of data types,not on the level of objects. In order to use the CGAL implementation of



CGAL and LEDA 283Andrew's algorithm with a point type from a CGAL kernel, no traits classneeds to be speci�ed. CGAL adds an appropriate one. If a user wants torun the algorithm on a di�erent point type, for example, a point type fromsome other C++ library or system, for example from LEDA or from someGeographical Information System, an appropriate traits class for this pointtype must be passed to the function in order to tell it which operations itshould use. That's it. Given such a traits class, the algorithm now workswith non-CGAL types as well. CGAL provides traits classes for both LEDAkernels.The parameterization by a traits class can be used to avoid explicit trans-formation of the data. Assume that we have points in three dimensional space.Using a traits class that provides a comparison primitive and an order typepredicate that both operate on x and y coordinates of the points only, theCGAL implementation of Andrew's algorithm can be used to compute the se-quence of three-dimensional points whose projections onto the xy-plane formthe convex hull of the projections of all points onto that plane. There is noneed to explicitly transform the points into two-dimensional points. Withan appropriate traits class, the algorithm can directly operate on the three-dimensional points. This saves time and space.This feature is most likely even more interesting for Delaunay triangula-tions. Assume we have a triangulated irregular network (TIN), and we wantto make a TIN with the same set of vertices without long and skinny triangles.This is usually accomplished by computing the two-dimensional Delaunay tri-angulation of the projections of the vertices of the TIN and lifting the verticesand triangles again. CGAL allows you to do this without explicit projectionusing an appropriate traits class. There are further examples where traitsclasses can be used nicely in the context of geometric transformations.x6. VisualizationIn LEDA, there is a data type leda window which provides an interface forgraphical input and output of basic geometric objects for both the X11 sys-tem on Unix platforms and Microsoft's Windows systems. This data typeworks with the basic geometric objects of both CGAL and LEDA. CGAL alsoprovides preliminary support for graphical output via OpenGL and geomview.A recent addition to CGAL and LEDA is the data type GeoWin. Itprovides an interface for the visualization of the result and progression ofgeometric algorithms using the window data type of LEDA. A GeoWin is aneditor for sets of geometric objects. GeoWin manages the geometric objects inso called scenes. A scene contains a container storing geometric objects (thecontents of the scene) and provides all operations that GeoWin needs to edit it.A geo scene maintains a container with geometric objects. The GeoWin datatype can be used for the construction and display of geometric objects anddata structures, the visualization of geometric algorithms, writing interactivedemos for geometric algorithms and debugging geometric algorithms.



284 K. Mehlhorn and S. Schirrax7. ConclusionsReliability means that software behaves as speci�ed. Unfortunately, there aremany exceptions to this rule for geometric software, mainly due to the issuesdiscussed in Section 2. Correctness and reliability are even more importantfor the components of a software library. You might be willing to acceptshortcomings of a program designed for a special purpose, if problematic inputinstances never arise in your context. Since library component need to begenerally applicable, any such shortcomings are not acceptable. CGAL (ifused with a number type for exact geometric computation) and LEDA (withthe rational kernel) provide geometric software that behaves according to itsmathematical speci�cation. That makes it easy to combine components formthese libraries, and to build larger entities out of these components.The use of exact computation alone cannot guarantee correctness. CGALand LEDA also use program checking [19] to increase reliability of its compo-nents. A program checker need not compute the output for a given input. Italready gets both input and output, and then has to verify that the outputis the correct output for the given input. While a program gets x and has tocompute f(x), a checker gets x and y and must only check whether y = f(x).The latter step should be computationally simpler, such that it is less likelythat its implementation is buggy.At present, LEDA and CGAL consists of more than 100,000 lines of C++code each. Neither library provides class libraries in the sense of Smalltalk, butboth provide fairly small class hierarchies if any. CGAL uses the generic pro-gramming paradigm that became known with the Standard Template Library(STL), which is now part of Standard C++. This makes CGAL very exible,more exible than LEDA. On the other hand, LEDA is a more complete,closed programming framework that also contains very useful components forcombinatorial computing. Due to its generic design, CGAL is more open. Itoften relies on other sources for basic non-geometric data structures, mainlyon the STL. Due to its generic design, it works well together with LEDA.Since CGAL has a more modern design and is developed by a larger groupof people, the future will certainly be with CGAL. However, LEDA's com-ponents for geometric computing will continue to be useful, especially withinCGAL. For more information and to download LEDA, seehttp://www.mpi-sb.mpg.de/LEDAFor more information and to download CGAL, seehttp://www.cs.uu.nl/CGALAcknowledgments. Work on this paper has been supported by ESPRIT-IVLTR project 28155 (GALIA).
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