
Sample Sort on Meshes

Jop F. Sibeyn∗

Abstract
In this paper various algorithms for sorting on
processor networks are considered. We focus on
meshes, but the results can be generalized easily
to other decomposable architectures. We consider
the k-k sorting problem in which every PU initially
holds k packets. We present well-known random-
ized and deterministic splitter-based sorting algo-
rithms. We come with a new deterministic sorting
algorithm which performs much better than pre-
vious ones. The number of routing steps is re-
duced by a refined deterministic splitter selection.
Hereby deterministic sorting might become com-
petitive with randomized sorting in practice.

1 Introduction
1.1 Problem and Machine

Meshes. One of the most thoroughly investigated
interconnection schemes for parallel computation
is the n × n mesh, in which n2 processing units,
PUs, are connected by a two-dimensional grid of
communication links. Its immediate generaliza-
tions are d-dimensional n×· · ·×n meshes. While
meshes have a large diameter in comparison to the
various hypercubic networks, they are nonetheless
of great importance due to their simple structure
and efficient layout. Numerous parallel machines
with mesh topologies have been built, and various
algorithmic problems have been analyzed on theo-
retical models of the mesh.

Routing and Sorting. Routing and sorting are
probably the two most extensively studied algorith-
mic problems on fixed-connection networks. In a
routing problem, a set of packets has to be redis-
tributed in the network such that every packet ends
up at the PU specified in its destination field. On
a mesh, the PUs can be identified by simply giving
their coordinates. A routing problem in which each

∗Max-Planck-Institut für Informatik, Im Stadtwald, 66123
Saarbrücken, Germany. Email: jopsi@mpi-sb.mpg.de.

PU is the source and destination of at most k pack-
ets is called a k-k routing problem.

In a sorting problem, instead of a destination
address each packet contains a key from a totally
ordered set, and they have to be rearranged such
that the packet of rank i ends up in the memory po-
sition with index i with respect to some fixed in-
dexing of the memory positions. In the k-k sorting
problem each PU holds at most k packets. Thus,
in a routing problem the destinations of the pack-
ets are given as part of the input, while in a sort-
ing problem, the destinations have to be computed
from the key values. For an introduction on the
problems of routing and sorting, and a survey of ba-
sic results, we refer to Leighton’s book [22].

1.2 Earlier Work and Results

Routing and Sorting. On d-dimensional n ×
· · · × n meshes a lower bound of k · n/2 for k-k
routing and k-k sorting is implied by the bisection
width of the network. Several algorithms running
in max{2 · d · n, k · n}+ o(k · n) steps have been
presented [15, 16, 17, 19, 26]. For k ≥ 4 · d, they
match the lower-bound up to a lower order term,
which is usually called optimality. This ‘optimal-
ity’ is a doubtful notion if we take into account that
the lower order term typically is 10 · k5/6 · n2/3 or
larger. It means that only for fairly large input sizes
these algorithms outperform more down-earth al-
gorithms with sub-optimal performance (see [26]
for more details). In this paper we consider ran-
domized and deterministic sorting algorithms. Our
special attention goes to the size of the ‘lower-
order’ term. Implicitly we assume rather small n
and fairly large k as these reflect the practically im-
portant cases. Reasonable orders of magnitude are
24 ≤ nd ≤ 216 and 104 ≤ k · nd ≤ 107.

Often randomized algorithms are simpler and
faster than deterministic algorithms. For example,
on a hypercube with N PUs, randomized 1-1 sort-
ing can be performed in O(logN) [23], whereas
the best deterministic algorithm takes O(logN ·

1

log logN) steps [9]. This has lead to a widespread
believe that the development of deterministic algo-
rithms is just a theoretical game. In this paper we
show that for sorting on meshes this is not neces-
sarily so.

Sample Sort. As a parallel sorting strategy, sam-
ple sort was developed by Reischuk [24]. It was
applied to sorting on networks in [23, 14]. Most
sorting algorithms on meshes implicitly or explic-
itly apply sample sort. That is, the mesh is di-
vided into non-overlapping submeshes, and then
somehow they proceed according to the following
scheme:

Algorithm BASIC-SORT

1. Select a small subset of the packets as split-
ters. Broadcast the splitters to all submeshes.

2. In every submesh, for every splitter deter-
mine how many packets are smaller.

3. In every submesh, determine the exact
global ranks of the splitters by adding together
the locally computed numbers.

4. Estimate the ranks of the packets by compar-
ison with the splitters.

5. Route the packets to their preliminary desti-
nations.

6. Complete the sorting locally, exploiting the
fact that the ranks of the splitters are known.

If the routing in Step 5 consists of two phases, a
(pseudo-) randomization and a greedy routing, then
the first phase can be overlapped with Step 1, 2
and 3.

Splitters in Deterministic Algorithms. In re-
cent deterministic algorithms [19, 17, 26], the split-
ters have become obsolete and were omitted: if the
packets are suitably redistributed (unshuffled), then
the rank of a packet can be estimated by comparing
its value with the other packets in its submesh. In
this paper we reintroduce splitters in deterministic
sorting algorithms. By reducing their number to a
minimum, applying a variant of ‘successive sam-
pling’ (term used in [3], see Section 5 for a descrip-
tion of the method), handling and comparing the
packets with them is considerably cheaper than be-
fore.

In the context of selection and ranking, com-
parable splitter selection methods have been used
before. The idea originates with Cole and Yap.

In [8] they give a parallel comparison model al-
gorithm for finding the median based on succes-
sive sampling. For selection on a hypercube it has
been applied by Berthomé ea. [3]; for selection on
a PRAM by Chaudhuri, Hagerup and Raman [4].
Our variant turns out to resemble most the applica-
tion in [3]. Application of successive sampling for
meshes requires specific adaptation to the features
of the network. It appears that we are the first to
apply it for sorting.

1.3 Contents
We start with preliminaries. Then we consider the
presented basic sorting algorithm in more detail,
giving basic deterministic and randomized variants
and refinements thereof. Our main deterministic
sorting algorithm is presented in Section 5 et seq.

2 Preliminaries

Model of Computation. A d-dimensional mesh
consists of N = nd processing units, PUs laid out
in a d-dimensional grid of side length n. Every PU
is connected to each of its (at most) 2 · d imme-
diate neighbors by a bidirectional communication
link. We assume that in a single step of the com-
putation, a PU can perform an unbounded amount
of internal computation, and exchange a bounded
amount of data with each of its neighbors. This ba-
sic amount is called a packet and consists of some
data plus the information for routing it to its desti-
nation.

Indexing Schemes. We only consider two-
dimensional meshes, the definitions for higher di-
mensional meshes are analogous. Let Pi,j be the
PU located in row i and column j. Here position
(0, 0) lies in the upper left corner of the mesh. [x, y]
denotes the set {x, x+ 1, . . . , y}.

The index of a PU is determined by an indexing
scheme, a bijection I : [0, n − 1]2 → [0, n2 −
1]. For a given indexing, Pi denotes the PU with
index i. The most natural indexing is the row-
major order under which Pi,j has index i · n +
j. In a k-k sorting problem, the packet of rank
i has to be moved to the PU with index ⌊i/k⌋.
Throughout this paper we assume some blocked
indexing scheme. That is, the mesh is regularly di-
vided into m×m submeshes for some m, and the
PUs in the submesh with index j, 0 ≤ j < n2/m2,
have indices in [j · m2, (j + 1) · m2 − 1]. We

2

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

15 16 17

18 19 20

21 22 23

24 25 26

27 28 29

30 31 32

33 34 35

36 37 38

39 40 41

42 43 44

45 46 47

48 49 50

51 52 53

54 55 56

57 58 59

60 61 62

63 64 65

66 67 68

69 70 71

72 73 74

75 76 77

78 79 80

Figure 1: A blocked ‘snake-like’ indexing for a 9×
9 mesh. The blocks have size 3 × 3. Within the
blocks the PUs are indexed in row-major order.

assume that the submeshes are indexed such that
block j is adjacent to block j + 1 for all 0 ≤ j <
n2/m2−1. An example is given in Figure 1. Such
a blocked indexing is particularly suited for sorting
algorithms like BASIC-SORT (but more general in-
dexings can be used as well, as was shown in [26]).

In some subroutines we will sort the packets in
semi-layered order. This means that the packet
with rank r, 0 ≤ r ≤ k · n2, stands in memory
position ⌊r/n⌋ mod k of P⌊r/(k·n)⌋,rmodn. This is

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

32 33 34 35

36 37 38 39

40 41 42 43

44 45 46 47

Figure 2: The semi-layered order for 3-3 sorting on
a 4× 4 mesh.

the indexing that is obtained when the n× n mesh
with k memory positions per PU is perceived as a
k · n× n mesh with row-major indexing. See Fig-
ure 2.

Chernoff Bounds We use a variant of Chernoff
bounds [5] to bound the tail probabilities of bi-
nomial distributions. Let X be the random vari-
able denoting the number of heads in n indepen-

dent flips of a biased coin, where the probability of
a head in each coin flip is p. Thus, X has binomial
distribution B(n, p). Then for all 0 < h < n · p,
we have [11]

Pr{X ≥ n · p+ h} ≤ e−h2/(3·n·p),

Pr{X ≤ n · p− h} ≤ e−h2/(2·n·p).

Finally, we say that an event A happens with high
probability if Pr(A) ≥ 1 − n−ϵ, for some ϵ >
0. All results claimed for randomized algorithms
hold with high probability. The following lemma
follows directly from the above bounds:

Lemma 1 Let X0, . . . , Xt−1 be random variables
with t = poly (n) and Xi = B(n, p) for 0 ≤ i < t.
Then |Xi − p · n| = O((p · n · log n)1/2) for all
0 ≤ i < t, with high probability.

Randomizations. We consider the operation of
sending all packets to random destinations:

Definition 1 A k-randomization is a distribution
of packets in which initially every PU holds at most
k packets, that have to be routed to randomly cho-
sen destinations.

Using Lemma 1, it is easy to show that

Lemma 2 [15] On d-dimensional meshes, if k ≥
4 · d, then k-randomizations can be routed in k ·
n/4 +O((k · n · log n)1/2) steps.

Proof: Consider a two-dimensional mesh. An es-
sential idea is to ‘color’ half of the packets white
and the other half black. The white packets are first
routed along the rows to their destination columns,
and then along the columns to their destinations.
The black packets go ‘column-first’. If several
packets compete for the use of the same connec-
tion, then the packet which has to go farthest gets
priority (farthest-first strategy). For more details
we refer to [15]. 2

Unshuffles. We formally define the ‘handing-out
operation’ under which the packets are regularly
redistributed over the whole mesh. This operation
is the deterministic counterpart of a randomization.
See [17] for details.

Definition 2 Consider a processor network of N
PUs and a division in blocks with M PUs each.

3

Suppose that every PU holds k packets. Consider
the packet p in position i, 0 ≤ i < k, in PU j,
0 ≤ j < N/M , in block l, 0 ≤ l < M . Let
r = l ·N/M+k ·j+i. Then, under the (N,M, k)-
unshuffle, p has to be routed to block r mod M ,
and there to PU ⌊r/M⌋ mod (N/M), and in this
PU to position ⌊r/N⌋.

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

7→

0
16

4
20

8
24

12
28

1
17

5
21

9
25

13
29

2
18

6
22

10
26

14
30

3
19

7
23

11
27

15
31

Figure 3: A (16, 4, 2)-unshuffle on a two-
dimensional mesh. The 32 packets are indicated
by the value r from Definition 2. Here we as-
sumed that the submeshes and the PUs within the
submeshes are indexed in row-major order.

An unshuffle is a completely regular routing op-
eration, under which from every block the same
number of packets has to go to every block. An ex-
ample is given in Figure 3. On meshes, it can be
easily figured out how to schedule the packets such
that never two packets are competing for the use of
the same connection. This means that no conflict-
resolution strategy is required. If such a routing
is supported by hardware, it might be much faster
than a randomization. Using such a schedule the
routing can be performed without loosing a single
step:

Lemma 3 On a d-dimensional mesh, if k ≥ 4 · d,
and the number of packets in a submesh is a multi-
ple of the number of submeshes, then an unshuffle
can be performed in k · n/4 steps.

3 Basic Sample Sort
We consider a randomized and a deterministic
sample-sort algorithm of the type of BASIC-SORT

in Section 1. Both algorithms are well-known and
only the essential points are recalled. The number
of packets to sort is N .

Definition 3 The inaccuracy of an algorithm of
the type of BASIC-SORT, is the maximum difference

between the rank of a packet as estimated in Step 4,
and its actual rank.

3.1 Randomized Sample Sort
Each key is selected as splitter independently and
uniformly with probability M/N , for some 0 ≤
M ≤ N . Choosing too few splitters means that the
inaccuracy becomes too large; choosing too many
of them means that handling them and ranking the
keys among them becomes too expensive. De-
note the resulting inaccuracy by inac(N,M). Us-
ing elementary probability theory it can easily be
estimated that any two consecutive splitters lie at
most O(logN ·N/M) apart, with high probability.
Thus, using that the exact ranks of the splitters are
determined before the packets are compared with
them to estimate their ranks,

inac(N,M) = O(logN ·N/M), (1)

with high probability. We can take the number of
splitters as large as the inaccuracy: then the sorting
operations in Step 2 and Step 6 can be performed in
submeshes of approximately the same size. The re-
sult is a well-balanced algorithm with minimal total
cost. Solving gives

MR1 = (N · logN)1/2.

For Step 5 of BASIC-SORT we can first route all
packets to random positions [27, 15]. From there
they are routed to their preliminary destinations.
This second routing is approximately the inverse of
a randomization. Working out the details gives

Theorem 1 [16] randomized k-k sorting can be
performed in

TR1(k, d, n) = k · n/2 +

O(k1−
1

2·d · n1/2 · log
1

2·d (k · nd)),

steps, for all k ≥ 8 · d.

Proof: We must perform sorting and rearrange-
ment operations in submeshes with side lengths
n′ = ((N ·logN)1/2/k)1/d. These take k ·n′ steps.
Substituting N = k · nd gives the theorem. 2

The algorithm in [16] is slightly different. There
the ranks of the packets are estimated before the
global ranks of the splitters are determined. In this
way the routing and the other operations can be

4

maximally overlapped, and there is no additional
term O(n) already for k ≥ 4 · d. The price is
that much more splitters must be selected to assure
a sufficient accuracy.

3.2 Deterministic Sample Sort
Instead of selecting approximately M splitters ran-
domly, we can also sort the packets that stand in
submeshes holding M ′ packets each, and selecting
from these packets those with ranks i · N/M , for
0 ≤ i < M ′ ·M/N . In order to balance the costs of
the various routing and sorting operations it is best
to choose M ′ = M . By comparison with the split-
ters the rank of a packet among the packets from a
submesh can be determined up to N/M positions.
There are N/M submeshes, so

inac(N,M) = (N/M)2. (2)

Again we should have that the inaccuracy equals
the number of splitters, and thus we should take

MD1 = N2/3.

This idea is the basis of [17, 19], and was already
present in [20, 25].

In a deterministic algorithm, the routing in
Step 5 of BASIC-SORT can be achieved by perform-
ing two suitable unshuffles. This yields

Theorem 2 [26] Deterministic k-k sorting can be
performed in

TD1(k, d, n) = k · n/2 +O(k1−
1

3·d · n2/3),

steps, for all k ≥ 4 · d.

TD1 > TR1, but the routing operations are sim-
pler: they are perfectly regular off-line operations
and the packets can be scheduled in such a way that
no contentions for connections arise.

4 Subsplitter Selection
There is a method to reduce the number of split-
ters considerably. It can be used to reduce the
amount of work in PRAM algorithms, and also in
network algorithms it is advantageous. Probably
this method has been applied for the first time by
Reif and Valiant in [23].

4.1 Selection Method
Suppose that we have selected M splitters ran-
domly, as we did in Section 3.1. The resulting in-
accuracy is expressed in (1). Now consider the fol-
lowing procedure to select the splitters:

Algorithm SUBSPLITTERS

1. Select each packet as splitter with probabil-
ity M/N .

2. Sort all splitters.

3. Select the elements with ranks i · logN , for
all 1 ≤ i ≤ M/ logN as subsplitters.

Let M ′ = M/ logN be the number of subsplit-
ters. The following lemma states that the subsplit-
ters are almost optimal:

Lemma 4 With the computed set of subsplitters,

inac(N,M ′) = O(N/M ′).

Proof: With help of the Chernoff bounds we bound
the maximum number of packets that lie between
any pair of consecutive subsplitters. Consider an
arbitrary subset of α · logN ·N/M , which are con-
secutive in the sorted order. The expected number
of selected splitters from among them is α · logN .
For sufficiently large α at least logN of them are
actually selected. Hence there are no intervals of
length larger than 2 ·α · logN ·N/M = O(N/M ′)
without selected subsplitters. 2

4.2 Application for Meshes
In a practical algorithm subsplitter selection has
been used for sorting on meshes by Hightower,
Prins and Reif [12]. The idea was also present in
[15], but there it was not applied in a very profitable
way. It is important to perform the sorting in Step 2
of SUBSPLITTERS on the whole mesh such that all
PUs hold on the average only M/nd splitters dur-
ing the sorting.

We consider some details of an implementation
on two-dimensional n×n meshes. We give a high-
level description:

Algorithm RANDSORT

1. SUBSPLITTERS is performed on the whole
mesh. The number of selected subsplitters is
M ′ = M/ logN .

2. The splitters are broadcast to all n′×n′ sub-
meshes, with n′ = (M ′/k)1/2.

5

3. Perform Step 2 through 6 of BASIC-SORT.
The operations in Step 6 are performed in n′′ ×
n′′ submeshes, with n′′ = O((N/(k ·M ′))1/2).

Theorem 3 For M = N1/2 · logN , RANDSORT

performs k-k sorting on two-dimensional meshes
in

TR2(k, n) = k·n/2+O((k·n)1/2·(k1/4+log1/2(k·n)))

for all k ≥ 26.

Proof: Next to the routing in Step 5 of BASIC-
SORT, there are three operations that may deter-
mine the costs: sorting the M splitters, sorting in
n′ × n′ submeshes, and sorting in n′′ × n′′ sub-
meshes.

Sorting M numbers can be performed in
O(M/n) steps. Sorting in n′ × n′ meshes takes
O((k · M/ logN)) steps, and sorting in n′′ × n′′

meshes takes O((k · N · logN/M)) steps.
Substitute M = N1/2 · logN , and N = k · n2.

The constant 26 is determined as follows: in or-
der not to get an additional term O(n) for small k,
the first phase of the routing in Step 5 of BASIC-
SORT (randomizing the packets), must be over-
lapped with Step 1, 2 and 3. The randomization
takes k ·n/4+O((k ·n · log(k ·n))1/2). For small
k, Step 1, 2 and 3 take 4

1/2 · n+ 2 · n+ 2 · n steps
together. 2

Many details remain to be spelled out before
RANDSORT can actually be used, but there are no
fundamental problems.

5 Better Splitter Selection
The improved randomized algorithm RANDSORT

of Section 4.2 leaves little to desire: it is fairly sim-
ple, and the additional term is almost as small as we
could hope for.1 On the other hand, the determinis-
tic algorihm of Section 3.2 gives a much larger ad-
ditional term, reducing its practicality to very large

1Sorting with an algorithm of the type of BASIC-SORT

takes at least k · n/2 +Ω(k3/4 · n1/2). We give a sketch of a
proof. k ·n/2 are needed for the routing. If M (sub-) splitters
are selected, then they somehow must be compared with the
packets. This is at least as expensive as sorting all subsets of
M elements. The resulting inaccuracy is at least N/M . This
implies that finally we still have to sort subsets of size N/M .
The costs are minimal for M =

√
N , in that case the addi-

tional operations take Θ(k · (
√
N/k)1/2) = Θ(k3/4 · n1/2)

steps.

k and n. In this section we present a refined deter-
ministic splitter selection method. In Section 7 we
show how it can be applied to obtain a deterministic
algorithm with performance comparable to RAND-
SORT.

We reconsider the selection of the splitters. Sup-
pose that we are given a large set S of packets with
keys. #S = N . Without loss of generality we as-
sume that all keys are different.2 We want to se-
lect a very good splitter set of some size M . The
optimum would be that the splitters regularly sub-
divide S . That is, by comparison with the splitters
we could estimate the rank of a packet accurate up
to N/M . Computing such a splitter set appears to
require almost as much time as sorting. Neverthe-
less, we can come close to this in much less time.
Similar methods were used before in [8, 3, 4] (see
Section 1.2 for a short discussion).

5.1 Selection Method
First we give a high-level description of the algo-
rithm without considering details of the network. S
is divided in N/M subsets of size M each. Sup-
pose that N/M = yx, for some y and x. Thus,

x = log(N/M)/ log y. (3)

The subsets are sorted. Then, the following proce-
dure is repeated x times:

Algorithm REDUCE

1. Merge y subsets together.

2. Only retain elements p with ranks rp = j ·y,
for all 1 ≤ j ≤ M .

The M packets that finally come out of this process
are called the splitters. REDUCE is an almost triv-
ial operation which can be performed efficiently on
networks (see Section 7 for an example on meshes
with y = 4).

5.2 Analysis
We prove that the ranks of the packets gradually be-
come less accurate, but not too much:

Lemma 5 Let 1 ≤ t ≤ x, denote the number of
so far performed iterations of REDUCE. Consider
a packet p, which has rank rp in its actual subset

2Each PU Pi can attach to the packet in its memory posi-
tion j the unique identifier k ·i+j. The identifiers can be used
as secondary sorting criterion.

6

Tp,t of M elements. Let Rp,t denote the rank of p in
the subset of yt ·M elements that has been reduced
to Tp,t. Then

rp ·yt ≤ Rp,t ≤ (rp+(t−1) · (1−1/y)) ·yt. (4)

Proof: In the first iteration, y subsets of M packets
each are sorted together and the packets with ranks
i · y, for 1 ≤ i ≤ M are selected. Clearly the rank
Rp,1 of the packet p with rank rp among the M se-
lected packets equals y·rp, and hence (4) is satisfied
for t = 1.

We proof the lower bound on Rp,t by applying
induction on t. So, assume that Rp,t−1 ≥ rp ·yt−1,
for all p for some t > 1. Consider some packet p
with rank rp in Tp,t. Denote the y subsets that were
merged to obtain Tp,t by Ai, 1 ≤ i ≤ y. With-
out loss of generality we may assume that p ∈ A1.
Define

αi = #{packets q ∈ Ai|q ≤ p}

(here we identified a packet and its key). Remind
that all keys are different. By the selection in Step 2
of REDUCE, we know that

y∑
i=1

αi = rp · y,

and thus, applying the induction assumption,

Rp,t ≥
y∑

i=1

αi · yt−1

= rp · yt.

Let δt be the number such that

Rp,t ≤ rp · yt + δt.

That δ1 = 0 was shown above. For t > 1 we have

Rp,t ≤ α1 · yt−1 + δt−1

+
y∑

i=2

((αi + 1) · yt−1 − 1 + δt−1)

= rp · yt + y · δt−1 + (y − 1) · (yt−1 − 1).

Thus, δt is given by the following recurrence:

δ1 = 0,

δt = y · δt−1 + (y − 1) · (yt−1 − 1).

By induction we proof that

δt ≤ (t− 1) · (y − 1) · yt−1. (5)

for all t > 1. Suppose (5) holds for some t − 1,
then

δt ≤ (t− 2) · (y − 1) · yt−1

+ (y − 1) · (yt−1 − 1)

= (t− 1) · (y − 1) · yt−1 − y + 1. 2

From this we obtain an estimate on the quality of
the selected splitters:

Theorem 4

inac(N,M) <
y − 1

y · log y
· log(N/M) ·N/M.

Proof: Denote by M the set of selected splitters.
And for any packet p by Rp its rank among the N
packets in S . REDUCE is iterated x times, for x as
in (3). Hence, omitting the factor (1−1/y), for any
p ∈ M, with rank rp in M, we know that Rp =
Rp,x satisfies

rp ·N/M ≤ Rp ≤ (rp + x− 1) ·N/M.

For any packet q ̸∈ M, we can find p, p′ ∈ M,
such that rp′ = rp + 1 and p < q < p′. So, Rp <
Rq < Rp′ , and hence,

rp ·N/M < Rq < (rp + x) ·N/M. 2

The optimum is reached for

M = Θ((N · logN)1/2).

For this M , the inaccuracy is of the same order as
the number of elements on which the merge opera-
tions are performed.

5.3 Refinement
In the spirit of Section 4, it may be profitable to re-
duce the number of selected splitters further with-
out substantially impairing the accuracy of the es-
timated ranks. This may have a positive effect on
the cost of handling them, once they are selected.

In view of the inaccuracy given in Theorem 4,
the number of splitters can be reduced by a factor
O(log(N/M)). We will see that a reduction by a
factor

z = (1− y − 1

y · log y
) · log(N/M)

is a reasonable choice. We summarize the splitter-
selection procedure:

7

Algorithm SELECT1
1. Sort subsets of M packets;
2. for i := 1 to x do

apply REDUCE;
3. only retain elements with ranks

j · z for all 1 ≤ j ≤ M/z.

With the chosen z, the inaccuracy is hardly larger
than before:
Theorem 5

inac(N,M/z) < log(N/M) ·N/M.

Proof: The proof is analogous to the proof of
Lemma 4. Important is that (y − 1)/(y · log y) ·
log(N/M) + z = log(N/M). 2

6 Several Applications
We briefly consider the possibilities of application
of the deterministic splitter selection on RAMs,
PRAMs and hypercubes. The results are not fabu-
lous and are mainly given for the sake of complete-
ness. They are potential starting points for further
research. More interesting results for meshes are
presented in Section 7.

6.1 RAMs
For sorting N numbers on a sequential RAM com-
puter we can apply a recursive algorithm based on
the described splitter selection. Counting the num-
ber of required comparisons, such an algorithm can
impossibly beat merge sort: merge sort runs in N ·
logN − N + 1 comparisons, which is less than
N/2 away from the theoretical optimum (logN !).
Several other algorithms are in practice even bet-
ter. Therefore, the main purpose of this section is
theoretically in nature: to show that the algorithm
actually has runtime O(N · logN).

Analysis. M = (N · logN)1/2 numbers are
selected as splitters. The selection involves sort-
ing all subsets of M elements and then repeatedly
merging and reducing pairs of them (we take y =
2). The merging takes O(N) steps all together.
Hereafter the problem is reduced to sorting sets of
less than (N ·logN)1/2 elements. Denote by T (N)
the number of comparisons required to sort a set of
N numbers, then we have

Theorem 6 For sorting sequentially,

T (N) = O(N · logN).

Proof: T (N) is given by the following recurrence:

T (N) = 2·(N/ logN)1/2·T ((N ·logN)1/2)+O(N).

The recursion can be finished with a constant num-
ber of comparisons as soon as N has come below
a threshold value. As an induction hypothesis we
propose

T (N) = α(N) ·N · logN.

This gives the condition

α(
√
N) ·N · (logN + 2 · log logN − 2)

+O(N) ≤ α(N) ·N · logN. (6)

For α(N) a constant function, this would not hold,
but we can chooseα(N) a slowly growing function
bounded by a constant. We consider sufficiently
large N , such that (6) can be simplified to

α(N)− α(
√
N) ≥ log−1/2N.

This condition is satisfied by

α(N) =
log logN∑

i=0

2−i/2.

So α(N) < 1/(1− 1/
√
2) ≃ 3.41. 2

Implementation We have written a Pascal pro-
gram implementing the algorithm. No further re-
cursion is applied for segments of length six and
less. We used it to sort random inputs. For sort-
ing 4.194.304 = 222 numbers, it takes about one
hour of computation on a Sparc-10 workstation.
For random inputs, the best choice for M is M =
sqrtN . The number of comparisons is growing
slowly from 2.41 · N · logN for N = 2048 to
2.62 · N · logN for N = 16.777.216 = 224. We
never found that the estimated rank of a packet was
wrong by more than 9 ·N/M .

An hour for sorting 222 numbers is extremely
slow. Optimizing the program and using C instead
of Pascal would speed the program up consider-
ably. But, even a fully optimized variant will not
be super fast. From the beginning this was not our
goal, rather we wanted to obtain a feeling for the
size of the leading constant. Its relatively small
value suggests that under certain circumstances im-
plementations on processor networks may be com-
petitive.

8

In comparison with other deterministic sequen-
tial algorithms, our algorithm has one advantage:
at all times it operates on sets consisting of only
approximately

√
N numbers. If paging is applied,

this means that large problems do not imply contin-
uously swapping pages. We actually observed this
phenomenon in our implementation.

6.2 PRAMs

Basic Result. On a PRAM, the time T (N) for
sorting N numbers by an algorithm based on the
deterministic selection of M = (N · logN)1/2

splitters, satisfies the following recurrence

T (N) = 2 · T ((N · logN)1/2) + Tsel(N). (7)

Here Tsel(N) is the time for selecting the splitters.
In our analysis we need

Lemma 6 [18] On a CREW PRAM with N/
log logN PUs, two sorted arrays of length N each
can be merged to one sorted array of length 2 · N
in log logN time.

With (7) this immediately yields

Lemma 7 On a CREW PRAM with P ≤
N/ log2 logN PUs, N numbers can be sorted in
N · logN/P time.

Proof: Tsel(N) = O(logN · log logN), for all
P ≥ N/(logN · log logN). Now use induction
to proof that T (N) = O(logN · log2 logN) for
P = N/ log2 logN . 2

The lemma states that for P not too close to N the
algorithm is work optimal. We will modify SE-
LECT1, and refine our analysis to obtain a work-
optimal algorithm running in O(log log logN ·
logN) time.

Modified Splitter Selection. The splitters are se-
lected as in SELECT1, by repeatedly applying RE-
DUCE. However, the parameter y is no longer a
constant: in every iteration of REDUCE, the num-
ber of candidate-splitters is halved, but the number
of available PUs remains constant. The resulting
surplus of PUs can be used to increase the number
of sorted arrays that are merged at the same time:

Algorithm SELECT2
i := 0;
Sort subsets of M packets;

while there are arrays to merge do
apply REDUCE with λ = 22

i
;

apply REDUCE with λ = 22
i
;

i := i+ 1.

The number of reduce operations is much
smaller than in SELECT1: less than log logN .3

This also means that the inaccuracy is much
smaller than before. Analogously to the proof of
Lemma 5 it can be shown that

inac(N,M) < log logN ·N/M.

Thus, the optimal choice for M is

M = (N · log logN)1/2.

In our estimate of Tsel(N), the time for perform-
ing SELECT2, we need the following result:

Lemma 8 On a CREW PRAM with y2 · N PUs,
y sorted arrays consisting of N elements each can
be merged to one sorted array of y ·N elements in
O(log logN + log y/ log log y) time.

Proof: The algorithm is analogous to the algorithm
for merging two arrays [18]. For two arrays A,B,
denote by (A,B) the array of ranks, giving for each
element a ∈ A its rank among the elements in
B. In our case we have arrays A1, . . . , Ay, and we
determine the (y − 1) · y arrays (Ai, Aj), for all
1 ≤ i ̸= j ≤ y. In [18] it is shown how N PUs are
sufficient to compute one particular array (Ai, Aj)
in log logN time, so (y−1) ·y ·N PUs are enough
to compute all of them in parallel within the same
time bounds.

Now we have to compute the ranks of all ele-
ments among the y ·N elements. This can be done
by adding its ranks in all y lists together. Trivially
applying a binary-tree algorithm for this would be
to slow for our purposes. We apply

Fact 1 [7] On a CREW PRAM with N PUs, N
numbers in the range 0, 1, . . . , N can be added to-
gether in O(logN/ log logN) time.

For computing each of the y · N sums of y num-
bers we have y PUs available, so these sums can
be computed in O(log y/ log log y) time. 2

3There are 2 · x calls to REDUCE, where x is the smallest
number satisfying (

∏x

i=0
22

i

)2 ≥ N/M .

9

Lemma 9 On a CREW PRAM with N PUs,

Tsel(N) = O(logN/ log logN).

Proof: For an easier analysis assume that we have
4 · N PUs. Generally, assume that in the i-th it-
eration, i = 0, 1, . . ., of the above loop there are
22

i+1 · M PUs for each array of M elements. For
i = 0 this condition is satisfied. In the i-th it-
eration, the number of lists is reduced by a factor
22

i+1
. So, in the (i+ 1)-st iteration there are 22

i+2

PUs for every array. Thus, according to Lemma 8,
an application of REDUCE in the i-th iteration can
be performed in O(log logM + 2i/i) time. Sum-
ming over all O(log logN/M) iterations gives a
time consumption bounded by

log2 logN +
log logN∑

i=0

2i/i

<∼ logN/ log logN

2

With a trivial modification to SELECT2 (starting
with log logN applications of REDUCE with y =
2), the number of PUs can be reduced by a fac-
tor logN/ log logN . The selection cannot be per-
formed faster having more PUs:

Lemma 10 If the number of available processors
is polynomial, then

Tsel(N) = Ω(logN/ log logN).

Proof: We must somehow mergeN/M sorted sub-
sets Si, 1 ≤ i ≤ N/M , of M elements each, and
select the right elements out of them. Suppose that
all elements in Si lie within a range that does not
overlap with the range in which the numbers of Sj

lie, for all i ̸= j. Then the final set of M elements
holds one element from every Si. These elements
are sorted. Clearly this merging and selection is not
easier than taking the smallest elements and sort-
ing them. But sorting N/M numbers takes at least
Ω(log(N/M)/ log log(N/M)) time for any num-
ber of PUs that is polynomial in M [1]. For M =
N ϵ, for some ϵ > 0, this gives the desired result. 2

Lemma 9 is the main ingredient in the proof of

Theorem 7 On a CREW PRAM with P ≤ N/
log log logN PUs, N numbers can be sorted in
N · logN/P time.

Proof: Instead of (7), the time for sorting N num-
bers Tsort(N), is given by

Tsort(N) = 2 ·Tsort((N · log logN)1/2)+Tsel(N).

Suppose that P = N/ log log logN . Then
Tsel(N) = O(logN/ log logN). Now the proof
that Tsort = O(log log logN · logN) is finished
similar to the proof of Theorem 6. The factor
log log logN originates from a sum

∑log logN
i=1 1/i.

2

For all practical purposes log log logN ≤ 3,
but theoretically it is unsatisfactory that we did
not obtain a O(logN)-sorting algorithm. Though
this has been established before [6], our algorithm
would constitute a conceptually simple alternative.

6.3 Hypercubes
On a hypercube the efficiency depends on the effi-
ciency of the implementation of REDUCE. Denot-
ing the time for routing the packets to their prelimi-
nary destinations by Troute(N), the recurrence is of
the form

T (N) ≥ 2 · T (M) + Troute(N) + Tsel(N).

For the case that every PU holds exactly one packet
we cannot hope to achieve better than O(logN ·
log logN) because Troute(N) ≥ logN . But even
an logN · log logN algorithm might be a great
achievement: it might constitute a more practi-
cal alternative for the algorithm of Cypher and
Plaxton [9]. A necessary condition is that some-
how we manage to perform the splitter selection in
O(logN) steps.

More promising, and practically more relevant,
are the possibilities for the case that every PU of the
hypercube holds a fairly large number k of pack-
ets. In that case the iterations of REDUCE become
geometrically cheaper. If k exceeds the number of
PUs, then many operations can be performed inter-
nally. See the next section for an analysis of these
phenomena in the case of meshes. It is not hard to
prove that

Theorem 8 On a one-port hypercube withP = 2n

PUs, and N = k · P packets, k ≥ logN ,

T (N) = O(k · logN · log logN).

10

7 Sorting on 2D Meshes
We consider in detail a k-k sorting algorithm of the
type of BASIC-SORT for two-dimensional n × n
meshes. N = k · n2. We apply REDUCE for the
splitter selection. We take y = 4, and use a merge
operations from [26].

7.1 Rank Estimation
We describe how the packets can efficiently obtain
an estimate of their ranks. For convenience we as-
sume that all occurring numbers divide each other
nicely, particularly we assume that M , the number
of selected splitters, is a power of four.

Algorithm ESTIMATE

1. m := max{1,
√
M/k}. Sort the packets in

allm×m submeshes. Ifm = 1, then only retain
the elements with ranks i·k/M , for 1 ≤ i ≤ M .

2. Repeat the following operation for i := 0 to
log(n/m)−1 as long asM/(4i·m2) ≥ 4: merge
four 2i ·m× 2i ·m submeshes, and retain only
the elements with ranks 4 · j, for 1 ≤ j ≤ M .
After iteration i every PU should hold exactly
M/(4i+1 ·m2) packets.

3. If M/(4i ·m2) = 1 then sort the remaining
packets in the whole mesh and retain the packets
with ranks j ·N/M , for 1 ≤ j ≤ M .

z := max{1, 5/8 · log(N/M)}, M ′ := M/z.
m′ = max{1,

√
M ′/k}. Only retain the pack-

ets with ranks j · z, for 1 ≤ j ≤ M ′.

4. Broadcast the splitters to all m′ × m′ sub-
meshes Bi, 1 ≤ i ≤ M ′/N .

5. In every Bi, 1 ≤ i ≤ M ′/N , for every
splitter pj , 1 ≤ j ≤ M ′, determine the num-
ber αi,j = #{packets q in Bi|pj−1 < q ≤ pj}.
Place this number in PU ⌊j/k⌋ of Bi. Discard
the splitters.

6. Add the numbers αi,j together such that af-
terwards the numbers ai,j =

∑
l<i αl,j and

Aj =
∑M ′/N

i=1 αi,j stand in PU ⌊j/k⌋ of Bi for
all i and j.

7. In every Bi, 1 ≤ i ≤ M ′/N , for every
packet q, with pj−1 < q ≤ pj and with rank r
among the packets counting for αi,j , determine
its preliminary rank as

∑
l<j Al + ai,j + r.

Notice that, contrary to BASIC-SORT, the splitters
are discarded at an early stage.

How many (routing) steps does ESTIMATE take?
We need to make an assumption about the sorting
in submeshes. We use a slightly simplified esti-
mate:

Lemma 11 [26] For all n, k ≥ 4, k-k sorting on
an n× n mesh can be performed in 2 · k · n steps.
1-1 sorting can be performed in 41/2 · n steps.

Step 1 is a k-k sorting in m×m meshes:

Lemma 12 Step 1 takes 2 ·
√
k ·M steps.

Step 2 is the hearth of the selection. It corre-
sponds to KKMERGE from [26]. The packets are
kept in semi-layered order at all times. This facil-
itates the merging. During a certain stage of the
merging and pruning, let n′/2 be the size of the
submeshes, and k′ the number of packets hold by
every PU. Then we perform

Algorithm KKMERGE

1. Pi,j , 0 ≤ i, j < n′, sends its packet with
rank r, 0 ≤ r < k′, to Pi,(j+n′/2)modn′ if
odd(k′ · i+ r + j).

2. In all columns, sort the packets.

3. In everyPi,j , 0 < i ≤ n′−1, 0 ≤ j ≤ n′−1,
copy the smallest packet toPi−1,j . In everyPi,j ,
0 ≤ i < n′−1, 0 ≤ j ≤ n′−1, copy the largest
packet to Pi+1,j .

4. Sort the rows from left to right or vice versa
depending on the position of this n′ × n′ sub-
mesh in the next merge.

5. In every row, throw away then′ packets with
the smallest and the n′ packets with the largest
indices. From the remaining packets only retain
those whose ranks is a multiple of four. Route
the packets such that they come to stand in semi-
layered order.

For the correctness of KKMERGE it is important
that, by the semi-layered indexing, our merging
corresponds to a 1-1 merge on a k′ · n′ × n′ mesh.
It is not hard to estimate that KKMERGE essentially
takes 9/8·k′ ·n′ steps. A reduction can be achieved
by combining the routing of Step 5 of iteration i and
Step 1 of iteration i + 1. Further details are given
in [26].

Lemma 13 Step 2 of ESTIMATE can be performed
in 41/2 ·

√
k ·M steps.

11

Proof: In every iteration, n′ becomes twice as
large, and k′ is divided by four. So, all iterations
together take twice as many steps as the first itera-
tion. For the first iteration, n′ = 2·m = 2·

√
M/k,

and k′ = k. 2

Step 3 is at worst a 1-1 sorting in the whole mesh:

Lemma 14 Step 3 takes at most 41/2 · n steps.

Broadcasting can be performed efficiently:

Lemma 15 Step 4 requires at most 3/4·
√
k ·M ′+

2 · n steps.

Proof: The splitters are first concentrated in each
quadrant, then in each subquadrant, and so on. In
the very last compression, we have fourm×m sub-
meshes. In each there are M/4 splitters, k/4 split-
ters per PU. The splitters from each submesh are
first copied to the two adjacent submeshes. This
takes k ·m/4 steps. Then each submesh copies half
of the packets it just received from an adjacent sub-
mesh to the other adjacent submesh (in such a way
that every submeshes receives everything). This
takes k ·m/8 steps. The complete operation takes
twice as long. If M < n2, then first some routing
has to be performed. 2

In Step 5 one should exploit that the packets in
the submeshes and the splitters were already sorted
before:

Lemma 16 Step 5 requires at most 21/2 ·
√
k ·M ′

steps.

Proof: Step 5 can be performed by first merging
the packets and the splitters in every submesh. This
can be achieved in 2 ·

√
k ·M steps. Then the split-

ters can easily detect their predecessors. Finally the
computed numbers αi,j have to be routed within
the submeshes. By their special arrangement this
only means spreading them out. 2

Step 6 is a multiple parallel prefix operation:

Lemma 17 Step 6 requires at most
√
k ·M ′+2 ·n

steps.

Proof: It can be organized by first adding along
rows and then along columns. A factor two is
gained if half of the packets work orthogonally at
all times. 2

Step 7 is similar to Step 5:

Lemma 18 Step 7 requires at most 21/2 ·
√
k ·M ′

steps.

We summarize the effects of ESTIMATE:

Lemma 19 ESTIMATE runs in 61/2·
√
k ·M+63/4·√

k ·M ′+O(n) steps. Afterwards the preliminary
ranks satisfy the following properties:

1. Every packet q has a unique preliminary rank
rq.

2. For any splitter p and packets q1, q2, q1 <
p ≤ q2 implies rq1 < rq2 .

Proof: Summing over all steps gives the time con-
sumption. The properties are established in Step 7.
2

The uniqueness of the preliminary ranks assures
that the subsequent routing of the packets to their
preliminary destinations is a perfect k-k routing.
The second property means that after this rout-
ing all packets which lie between any two splitters
stand in PUs with consecutive indices. From The-
orem 5, we know that the number of packets be-
tween two splitters is at most

inac(N,M) = log(N/M) ·N/M. (8)

One might think that the properties are more than
needed and mean a waste of routing steps. How-
ever, the global ranks of the splitters have to be
determined anyway, and at some time the packets
must find out their precise positions by one more
comparison with them. So, on the contrary: deter-
mining the precise positions of the packets as early
as possible helps reducing the overall routing time.

7.2 Completing the Sorting
ESTIMATE correspond to Step 1 and 2 of BASIC-
SORT. It remains to route the packets to their pre-
liminary ranks and to sort the subsets of packets
that fall between two splitters.

For the sorting we use a blocked-indexing
scheme. The blocks have size b× b, with

b = (log(N/M) ·N/(2 · k ·M))1/2.

By (8) this means that the packets stand either in
their destination block, or in the preceding or suc-
ceeding block. Thus, the sorting can be completed
as follows:

12

Algorithm COMPLETE

1. Sort the packets in all b× b blocks.

2. Merge the packets in all pairs of blocks
(Bi, Bi+1), with i even.

3. Merge the packets in all pairs of blocks
(Bi, Bi+1), with i odd.

Lemma 20 COMPLETE completes the sorting in
5/

√
2 · (k · log(N/M) ·N/M)1/2 steps.

Proof: Step 1 takes 2 · k · b steps. Step 2 and 3 can
be performed in 3/2 · k · b steps each. 2

There remains one point to settle: how do we
route the packets to their preliminary destinations?
A problem is that deterministically there is no rout-
ing algorithm which is substantially faster than a
sorting algorithm. Randomizedly we can apply the
algorithm from [15]. As we intend to develop in
this paper a new approach for sorting in practice,
we might even assume that the input is more or
less random. In that case we could apply an easy
greedy-routing strategy (see [21] for an analysis of
a special case). We leave this issue open. The opti-
mal choice should be made depending on the ap-
plication and the values of k and n. Denote the
time consumption for k-k routing by Troute(k, n).
Adding all together yields

Lemma 21 For k-k sorting on n×n meshes with
M ≃ N1/2,

TD2(k, n) < Troute(k, n) +O(n)

+ (6.5 + 17.1/ log1/2N) ·
√
k ·M

+ 2.5 · (k · logN ·N/M)1/2

For the values of N we consider, with logN ≃ 20,
a good choice for M is

M = (logN ·N)1/2/4 (9)

Theorem 9 The sorting algorithm based on ESTI-
MATE and COMPLETE, with M as in (9), yields

TD2(k, n) < Troute(k, n) +O(n)

+ 22 · k3/4 · n1/2

Proof: Substitute the value of M and N = k · n2,
and estimate logN < 24. 2

7.3 Evaluation
The result of Theorem 9 shows an additional term
of the same order of magnitude as we find in the
result of Theorem 3. However, the constant 22
looks rather disappointing. There are several re-
marks here:

• Possibly the constant can be more than halved
by applying the algorithm recursively for sort-
ing in the submeshes.

• If k > n2, then the submeshes are reduced to
single PUs, and the local sorting can be per-
formed internally.

• Most other algorithms have larger exponents
to the k and n.

Let us compare the obtained algorithm with the
other three algorithms in this paper. We have not
analyzed their constants, but making the same as-
sumptions (k-k sorting takes 2 · k · n steps and
logN = 24), they can be estimated fairly reli-
ably. TR1, TD1, TR2 and TD2 denote the sorting
times for the algorithms of Section 3.1, Section 3.2,
Section 4.2 and Section 7, respectively. Then we
have

TR1(k, n) ≃ Troute + 25 · k3/4 · n1/2,

TD1(k, n) ≃ Troute + 10 · k5/6 · n2/3,

TR2(k, n) ≃ Troute + 12 · k3/4 · n1/2,

TD2(k, n) ≃ Troute + 22 · k3/4 · n1/2.

The randomized algorithm with subsplitter choice
appears to outperform all others. For the determin-
istic algorithms we consider a small and a big in-
stance. For n = 8 and k = 1000, we have TD1 =
1.58 · k · n and TD2 = 1.31 · k · n. For n = 64
and k = 4000, we have TD1 = 0.63 · k · n and
TD2 = 0.35·k·n. This should be compared with the
routing time, about k ·n/4 for average-case inputs.
The relative difference in the total sorting time is
considerable, about 50% for large inputs.

How the algorithms perform exactly in practice
cannot be accurately estimated. Many factors play
a role. One of the most important is how many lo-
cal operations are actually operations that are per-
formed on the packets that stand within a single
PU. The new deterministic algorithm shares with
the randomized algorithms the property that this
happens for k > n2. For the simpler determinis-
tic algorithm k has to be at least n4.

13

8 Conclusion
We proposed a sorting algorithm based on an
improved deterministic splitter-selection method.
It clearly outperforms earlier deterministic algo-
rithms. Only for sorting small numbers of pack-
ets bitonic- or merge-sort algorithms perform bet-
ter, for example the algorithm presented in [26].

A similar two-fold situation is reported to oc-
cur in practice: Diekmann e.a. [10] considered im-
plementations of sorting algorithms on a Parsytec
GCel with up to 1024 PUs. They found that bitonic
sort is the best if there are less than 1000 packets
per PU, while sample sort is better for larger num-
bers of packets. Similar observations were made
for the CM-2 (a hypercubic network) in [2].

By its simple structure and its regular routing op-
erations our algorithm is suited for actual imple-
mentation. It would be interesting to compare a
well-tuned version with the sample-sort algorithm
applied by Diekmann e.a. We do not expect to be
faster, but the difference should be negligible for
sufficiently large k. In that case one might prefer
the added certainty of a deterministic algorithm.

Acknowledgement
Torsten Suel gave valuable pointers to previous
work in this field, and made some critical remarks.

References
[1] Beame, P., J. Hastad, ‘Optimal Bounds for

Decision Problems on the CRCW PRAM,’
Journal of the ACM, 36, pp. 643–670, 1989.

[2] Blelloch, G. E., C. E. Leiserson, B. M.
Maggs, C. G. Plaxton, S. J. Smith, M. Zagha,
‘A Comparison of Sorting Algorithms for the
Connection Machine CM-2,’ Proc. 3rd Symp.
on Parallel Algorithms and Architectures, pp.
3–16, ACM 1991.

[3] Berthomé, P., A. Ferreira, B.M. Maggs,
S. Perennes, C.G. Plaxton, ‘Sorting-Based
Selection Algorithms for Hypercubic Net-
works,’ 7th Proc. International Parallel
Processing Symposium, pp. 89–95, IEEE,
1993.

[4] Chaudhuri, S., T. Hagerup, R. Raman, ‘Ap-
proximate and Exact Deterministic Parallel

Selection,’ Proc. 18th Symp. on Mathemati-
cal Foundations of Computer Science, LNCS
711, pp. 352–361, 1993.

[5] Chernoff, H., ‘A Measure of Asymptotic Effi-
ciency for Tests of a Hypothesis Based on the
Sum of Observations,’ Annals of Mathemati-
cal Statistics, 23, pp. 493–507, 1952.

[6] Cole, C., ‘Parallel Merge Sort,’ SIAM Jour-
nal of Computing, 17(4), pp. 770–785, 1988.

[7] Cole, R., U. Vishkin, ‘Faster Optimal Parallel
Prefix Sums and List Ranking,’ Information
and Control, 81, pp. 334–352, 1989.

[8] Cole, C., C.K. Yap, ‘A Parallel Median Al-
gorithm,’ Information Processing Letters, 20,
pp. 137–139, 1985.

[9] Cypher, R., G. Plaxton, ‘Deterministic Sort-
ing in Nearly Logarithmic Time on the Hy-
percube and Related Computers,’ Proc. 22nd
Symp. on Theory of Computing, pp. 193–203,
ACM, 1990.

[10] Diekmann, R., J. Gehring, R. Lüling, B.
Monien M. Nübel, R. Wanka, ‘Sorting Large
Data Sets on a Massively Parallel System,’
Proc. 6th Symp. on Parallel and Distributed
Processing, pp. 2–9, IEEE, 1994.

[11] Hagerup, T., C. Rüb, ‘A Guided Tour of Cher-
noff Bounds,’ Inf. Proc. Lett. 33, 305–308,
1990.

[12] Hightower, W.L., J.F. Prins, J.H. Reif,
‘Implementations of Randomized Sorting
on Large Parallel Machines,’ Proc. 4th
Symposium on Parallel Algorithms and
Architectures, pp. 158–167, ACM, 1992.

[13] Kaklamanis, C., D. Krizanc, ‘Optimal Sort-
ing on Mesh-Connected Processor Arrays,’
Proc. 4th Symp. on Parallel Algorithms and
Architectures, pp. 50–59, ACM, 1992.

[14] Kaklamanis, C., D. Krizanc, L. Narayanan,
Th. Tsantilas, ‘Randomized Sorting and Se-
lection on Mesh Connected Processor Ar-
rays,’ Proc. 3rd Symposium on Parallel Algo-
rithms and Architectures, pp. 17–28, ACM,
1991.

14

[15] Kaufmann, M., S. Rajasekaran, J.F. Sibeyn,
‘Matching the Bisection Bound for Routing
and Sorting on the Mesh,’ Proc. 4th Symp.
on Parallel Algorithms and Architectures, pp.
31–40, ACM, 1992.

[16] Kaufmann, M., J.F. Sibeyn, ‘Random-
ized Multi-Packet Routing and Sorting on
Meshes,’ unpublished manuscript, 1992.
Submitted to Algorithmica.

[17] Kaufmann, M., J.F. Sibeyn, T. Suel, ‘Deran-
domizing Algorithms for Routing and Sorting
on Meshes,’ Proc. 5th Symp. on Discrete Al-
gorithms, pp. 669–679 ACM-SIAM, 1994.

[18] Kruskal, C., ‘Searching, Merging and Sort-
ing in Parallel Computation,’ IEEE Trans. on
Computers, C-32, pp. 942–946, 1983.

[19] Kunde, M., ‘Block Gossiping on Grids and
Tori: Deterministic Sorting and Routing
Match the Bisection Bound,’ Proc. 1st Euro-
pean Symp. on Algorithms, LNCS 726, pp.
272–283, Springer, 1993.

[20] Leighton, F.T., ‘Tight Bounds on the Com-
plexity of Parallel Sorting,’ IEEE Transac-
tions on Computers, C-34(4), pp. 344–354,
1985.

[21] Leighton, T., ‘Average Case Analysis of
Greedy Routing Algorithms on Arrays,’
Proc. 2nd Symposium on Parallel Algo-
rithms and Architectures, pp. 2–10, ACM,
1990.

[22] Leighton, F.T., Introduction to Parallel Algo-
rithms and Architectures: Arrays, Trees and
Hypercubes, Morgan Kaufmann, 1991.

[23] Reif, J.H., L.G. Valiant, ‘A logarithmic time
sort for linear size networks,’ Journal of the
ACM, 34(1), pp. 68–76, 1987.

[24] Reischuk, R., ‘Probabilistic Parallel Algo-
rithms for Sorting and Selection,’ SIAM Jour-
nal of Computing, 14, pp. 396–411, 1985.

[25] Schnorr, C.P., A. Shamir, ‘An Optimal Sort-
ing Algorithm for Mesh Connected Comput-
ers,’ Proc. 18th Symposium on Theory of
Computing, pp. 255–263, ACM, 1986.

[26] Sibeyn, J.F., ‘Desnakification of Mesh Sort-
ing Algorithms,’ Proc. 2nd European Symp.
on Algorithms, LNCS 855, pp. 377–390,
Springer, 1994. Full version in Techn. Rep.
MPI-I-94-102, Max-Planck-Institut für Infor-
matik, Saarbrücken, Germany, 1994.

[27] Valiant, L. G., ‘A Scheme for Fast Parallel
Communication,’ SIAM Journal on Comput-
ing, 11, pp. 350–361, 1982.

15

