
o

PD
INFORMATIK

(The LEDA User Manual (Version R 3.2) I

. Stefan Näher Christian Uhrig

MPI-I-95-1-002 June 1995

FORSCHUNGSBERICHT • RESEARCH REPORT

M AX - PLAN C K- IN S TIT UT
FÜR

INFORMATIK

Im Stadtwald • 66123 Saarbrücken. Gerrnany

The Max-Planck-Institut für Informatik in Saarbrücken is
an institute of the Max-Planck-Gesellschaft, Germany.

ISSN: 0946 - OUX

Forschungsberichte des

Max-Planck-Instituts für Informatik

Further copies of this report are available from:

Max-Planck-Institut für Informatik
Bibliothek & Dokumentation
Im Stadtwald
66123 Saarbrücken
Germany

The LEDA User Manual (Version R 3.2)

Stefan Näher Christian Uhrig

MPI-I-95-1-002 June 1995

The LEDA User Manual!

Version R 3.2

Stefan Näher and Christian Uhrig
Max-Planck-Institut für Informatik,

66123 Saarbrücken, Germany

lThis research was supported by the ESPRlT TI Basic Research Actions Program, under
contract No. 3075 (project ALCOM)

Contents

0 Introduction

1 Basics

1.1 A First Example

1.2 Specifications ..
1.3 Implementation Parameters

1.4 Arguments ..

1.5 Overloading .

1.6 Linear Orders

1.7 Hashed Types

1.8 Items

1.9 Iteration

1.10 Header Files .

1.11 Libraries ...

2 Simple Data Types

2.1 Strings (string)
2.2 Random Sources (random_source) .

2.3 Real-Valued Vectors (vector)

2.4 Real-Valued Matrices (matrix) .

3 Number Types

3.1 Integers of Arbitrary Length (integer)

3.2 Rational Numbers (rational) ..

3.3 A Floating Point Filter (floatf)

3.4 Real Numbers (real)

4 Basic Data Types

4.1 One Dimensional Arrays (array)

1

1

7

7

7

10

11

11

12

14

14

16

16

16

19

19

22

24

26

29

29

31

33

35

39

39

11 CONTENTS

4.2 Two Dimensional Arrays (array2) . 41

4.3 Stacks (stack) 42

4.4 Queues (queue) 43

4.5 Bounded Stacks (b-stack). 44

4.6 Bounded Queues (b_queue) 45

4.7 Linear Lists (list) 46

4.8 Singly Linked Lists (slist) 51

4.9 Sets (set) 53

4.10 Integer Sets (int-set) 54

4.11 Partitions (partition) 55

4.12 Dynamic Collections of Trees (tree_collection) 56

5 Dictionaries 57

5.1 Dictionaries (dictionary) 57

5.2 Dictionaries with Implementation Parameter (_dictionary) 59

5.3 Sorted Sequences (sortseq) 60

5.4 Sorted Sequences with Implementation Parameter (-sortseq) 63

5.5 Dictionary Arrays (d_array) 64

5.6 Dictionary Arrays with Implementation Parameter (_d_array)

5.7 Hashing Arrays (hÄrray)

5.8 Maps (map)

5.9 Persistent Dictionaries (p_dictionary)

6 Priority Queues

6.1 Priority Queues (p_queue)

6.2 Priority Queues with Implementation Parameter (_p_queue)

6.3 Old-Style Priority Queues (priority_queue) .

6.4 Bounded Priority Queues (b_prioritYAueue)

7 Graphs and Related Data Types

7.1 Graphs (graph)

7.2 Parameterized Graphs (GRAPH)

7.3 Undirected Graphs (ugraph) ...

7.4 Parameterized Ugraphs (UGRAPH)

7.5 Planar Maps (planar...map)

7.6 Parameterized Planar Maps (PLANAR...MAP) .

7.7 N ode Arrays (node_array)

66

67

68

69

71

71

73

74

76

77

77

83

86

86

87

89

91

CONTENTS

7.8 Edge Arrays (edge-Ml'ay)

7.9 N ode Maps (node...map) .

7.10 Edge Maps (edge...map) ..

7.11 Two Dimensional N ode Arrays (node...matrix)

7.12 Sets of Nodes (node-set) .

7.13 Sets of Edges (edge-set) .

7.14 Lists of Nodes (nodeJist)

7.15 N ode Partitions (node_partition)

7.16 Node Priority Queues (node_pq)

7.17 Bounded Node Priority Queues (b...node_pq)

7.18 Graph Generators 0
7.19 Miseellaneous Graph Functions (graph...mise) .

7.20 Graph Algorithms (graph_alg)

7.20.1 Basie Algorithms ...

7.20.2 Network Algorithms .

7.20.3 Algorithms for Planar Graphs .

8 Basic Data Types for Two-Dimensional Geometry

8.1 Points (point)

8.2 Rational Points (raLpoint)

8.3 Segments (segment)

8.4 Rational Segments (rat-segment)

8.5 Straight Lines (line)

8.6 Polygons (polygon) .

8.7 Circles (eircle). . . .

8.8 Plane Algorithms (plane_alg)

9 Advanced Data Types for Two-Dimensional Geometry

9.1 Two-Dimensional Dietionaries (d2_dietionary)

9.2 Sets of Two-Dimensional Points (poinLset)

9.3 Sets of Intervals (interval....set)

9.4 Sets of Parallel Segments (segment-set)

9.5 Planar Sub divisions (subdivision)

10 Graphics

10.1 Graphie Windows (window)

10.2 Panels (panel)

m

92

93

94

95

96

97

98

99

100

101

103

105

106

106

107

110

111

111

114

116

119

122

124

125

127

129

129

131

133

135

137

139

139

150

IV

11 Miscellaneous

11.1 File Input Streams (fileistream)

11.2 File Output Streams (file_ostream)

11.3 String Input Streams (string.istream) .

11.4 String Output Streams (string_ostream)

11.5 Command Input Streams (cmdistream)

11.6 Command Output Streams (cmd_ostream)

11. 7 Some U seful Functions (mise)

11.8 Memory Management

11.9 Error Handling

12 Programs

12.1 Graph and network algorithms

12.2 Geometry . .

13 Implementations

13.1 List of data structures

13.1.1 Dictionaries ..

13.1.2 Priority Queues

13.1.3 Geometry ...

13.2 User Implementations

13.2.1 Dietionaries ..

13.2.2 Priority Queues

13.2.3 Sorted Sequenees

14 Tables

14.1 Data Types

14.2 Algorithms.

Acknowledgement

CONTENTS

153

153

153

154

154

155

155

156

157

158

159

159

168

171

171

171

171

172

173

173

174

175

177

177

179

The authors want to thank Kurt Mehlhorn, Stefan Schirra, and Christoph Burnikel
for many helpful suggestions and valuable comments.

This produet includes software developed by the University of California, Berkeley
and its contributors.

GONTENTS v

S.LN'JI.LNOO

Chapter 0

Introduction

One of the major differences between combinatorial computing and other areas of
computing such as statistics, numerical analysis and linear programming is the use of
complex data types. Whilst the built-in types, such as integers, reals, vectors, and
matrices, usually suffice in the other areas, combinatorial computing relies heavily on
types like stacks, queues, dictionaries, sequences, sorted sequences, priority queues,
graphs, points, segments, ... In the fall of 1988, we started a project (called LEDA for
Library of Efficient Data types and Algorithms) to build a small, but growing library
of data types and algorithms in a form which allows them to be used by non-experts.
We hope that the system will narrow the gap between algorithms research, teaching,
and implementation. The main features of LEDA are:

1. LEDA provides a sizable collection of data types and algorithms in a form which
allows them to be used by non-experts. In the current version, this collection
ineludes most of the data types and algorithms described in the text books of
the area.

2. LEDA gives a precise and readable specification for each of the data types and
algorithms mentioned above. The specifications are short (typically, not more
than a page), general (so as to allow several implementations), and abstract
(so as to hide all details of the implementation).

3. For many efficient data structures access by position is important. In LEDA,
we use an item concept to cast positions into an abstract form. We mention
that most of the specifications given in the LEDA manual use this concept, i.e.,
the concept is adequate for the description of many data types.

4. LEDA contains efficient implementations for each of the data types, e.g.,
Fibonacci heaps for priority queues, skip lists and dynamic perfect hashing for
dictionaries, ...

5. LEDA contains a comfortable data type graph. It offers the standard iterations
such as "for all nodes v of a graph G don or "for all neighbors w of v dO", it
allows to add and delete vertices and edges and it offers arrays and matrices
indexed by nodes and edges, ... The data type graph allows to write programs
for graph problems in a form elose to the typical text book presentation.

1

2 CHAPTER O. INTRODUCTION

6. LEDA is implemented by a C++ dass library. It can be used with almost any
C++ compiler that supports templates.

7. LEDA is available by anonymous ftp from ftp.mpi-sb.mpg.de in directory
jpubjLEDA. The distribution contains all sour ces , installation instructions, a
technical report, and the user manual.

8. LEDA is not in the public domain, but can be used freely for research and
teaching. Information on a commerciallicense is available from the author or
leda@mpi-sb.mpg.de.

This manual contains the specifications of all data types and algorithms currently
available in LEDA. Users should be familiar with the C++ programming language
(see [45] or [32]). The manual is structured as follows: In chapter one, which is a
prerequisite for all other chapters, we discuss the basic concepts and notations used
in LEDA. The other chapters define the data types and algorithms available in LEDA
and give exam pIes of their use. These chapters can be consulted independently from
one another.

Version 3.0
The most important changes with respect to previous versions are

1. Parameterized data types are realized by C++ templates. In particular, declare

macros used in previous versions are now obsolete and the syntax for a
parameterized data type D with type parameters Tl,"" Tk is D<Tl ,· .. , Tk >
(cf. section 1.2).

2. Arbitrary data types (not only pointer and simple types) can be used as actual
type parameters (cf. section 1.2).

3. For many of the parameterized data types (in the current version: dictionary,
priority queue, d_array, and sortseq) there exist variants taking an additional
data structure parameter for choosing a particular implementation (cf. section
1.3).

4. The LEDA memory management system can be customized for user-defined
dasses (cf. section 11.8).

5. The efficiency of many data types and algorithms has been improved.

See also the "Changes" file in the LEDA root directory.

3

Version 3.1
Many changes were made to make LEDA work with new compilers (g++ -2.6.3, Lucid
C++ , Watcom C++ Sunpro C++ , ...) and on more platforms (Silicon Graphics, IBM,
HP, Solaris-2.3, Linux, ...). All reported bugs of version 3.0 we were able to find and
understand have been fixed (see LEDA/Fixes for a list). Several new data types and
algorithms (especially in the graph and window section) have been included.

Manual Pages

All manual pages have been incorporated into the corresponding header files. There
are tools (in the directory man) to extract and typeset the new user manual from
these files. A postscript version of the manual is available on the ftp server.

Parameterized Data Types

The LEDA_TYPEJ>ARAMETER macro that had to be called for type arguments
in parameterized data types when using the g++ compiler is not needed anymore for
g++ versions >= 2.6.3.

Linear Orders, 1/0, and Hashing

compare, H ash, Read and Print functions only have to be defined for type parameters
of a parameterized data type if they are actually used by operations of the data
type. If one of these function is called and has not been defined explicitely, adefault
version giving an error message is instantiated from a function template. Except
for the built-in types and some basic LEDA types (string and point) there are no
predefined versions of these functions any more. In particular, they are not predefined
for arbitrary pointer types. You will notice the effect of this change, for instance,
when calling the sort operation on a list of pointers list<T * > without adefinition
of a compare function for T*. Previous LEDA releases sorted the list by increasing
addresses of the pointers in this case. In version 3.1 the program. will exit with
the exception "no compare function defined for T*". Operations based on functions
H ash, Read, or Print show a similar behavior.

N ested ForallLoops

The limitation of previous verSIons that forall-loops (e.g. on lists) could not be
nested is no longer valid.

Graphs

The distinction in directed and undirected graphs is not as strict as in previous versions.
Data type graph represents both directed and undirected graphs. Directed and
undirected graphs only differ in the definition of adjacent edges or nodes. Now, two lists
of edges are associated with every node v: the list ouLedges(v) = { e E E Isource(e) =
v } of edges starting in v, and the list in_edges(v) = { e E E Itarget(e) = v } of
edges ending in v. A graph is either directed or undirected. In a directed graph an
edge is adjacent to its source and in an undirected graph it is adjacent to its source
and target. In a directed graph anode w is adjacent to anode v if there is an edge
(v, w) E E; in an undirected graph w is adjacent to v if there is an edge (v, w) or

4 CHAPTER O. INTRODUCTION

(w, v) in the graph. There are iteration macros allowing to iterate over the list of
starting, ending or adjacent edges (cf. 7.1 for details).

New Data Types

The old priority queue type priority_queue<K, I> caused a lot of confusion because
of the non-standard semantics of the type parameters K and I (the meaning of
key and information was exchanged compared to most text book presentations of
priority queues). To eliminate this confusion we introduced a new priority queue
type p_queue<P,I>. Now P is caJled the priority type of the queue.

The basic library has been extended by several numerical data types including an
arbitrary length integer type (integer), a type of rational numbers (rational), and
two filter types floatf and real . Together with the new types raLpoint (points with
rational coordinates) and rat...segments (segments with rational coordinates) they are
especiaJly useful in geometrie computations. Note, that the geometrie part of LEDA
will be extended by more basic objects and algorithms based on exact arithmetic in
the near future.

The temporarily (in LEDA-3.1c) introduced data types node_data, node_stack,
node_queue are no longer available. Please use node_map, edge_map, stack<node>
and queue<node> instead.

A list of the new data types:

• priority queues (p_queue<P, I» (cf. 6.1)

• singly linked lists (slist<T» (cf. 4.8)

• big integers (integer) (cf. 3.1)

• rational numbers (rational) (cf. 3.2)

• rational points (raLpoint) (cf. 8.2)

• rational segments (rat...segment) (cf. 8.4)

• floating point filter (floatf) (cf. 3.3)

• random sources (random_source) (cf. 2.2)

• real numbers (real) (cf. 3.4)

• maps (map<I,E» (cf. 5.8)

• node maps (node_map<T» (cf. 7.9)

• edge maps (edge_map<T» (cf. 7.10)

• node lists (node_list) (cf. 7.14)

• bounded node priority queues b_node_pq<n> (cf. 7.17).

5

Graph Generators and Algorithms

LEDA now offers more generators for different types of graphs (see 7.18 for a
complete list). The planarity test PLAN AR has been re-implemented and now has
a boolean Hag parameter embed. An embedding of the graph is computed only if
embed = true (the default value is false). A second variant of PLAN AR computes
a Kuratowsky-subgraph in the case of non-planarity. A new graph algorithm is
MIN_COST ..MAX..FLOW computing a maximal How with minimal cost.

Windows and Panels

The window and panel data types now are based on a plain X11 implementation.
N ew features include
- opening more than one window or panel
- positioning, displaying, and closing of panels and windows
- changing the label of windows and panels
- 16 predefined colors
- accessing colors from the X11 data base by name
- drawing arcs, arc edges, and arc arrows
- changing the default fonts,
- reading and handling X11 events
- a simple graph editor (cf. <LEDA/ graph_edit.h»

NOI,LOnaOH,LNI ·0 HiI,LdVHO 9

Chapter 1

Basics

1.1 A First Example

The following program can be compiled and linked with LEDA's basic library libL.a
(cf. section 1.11). When executed it reads a sequence of strings from the standard
input and then prints the number of occurrences of each string on the standard
output. More examples of LEDA programs can be found throughout this manual.
#include <LEDA/d_array.h>
mainO
{

d_array<string,int> N(O);
string Si

while (cin » s) N[s]++i
foralLdefined(s, N) cout « s « " " « N[s] « endl;

}

The program above uses the parameterized data type dictionary array (d_array<I, E>)
from the library. This is expressed by the include statement (cf. section 1.10 for
more details). The specification of the data type d_array can be found in section
5.5. We use it also as a running example to discuss the principles underlying LEDA
in sections 1.2 to 1.11.
Parameterized data types in LEDA are realized by templates, inheritance and dynamic
binding. For C++ compilers not supporting templates there is still available a non
template version of LEDA using declare macros as described in [42].

1.2 Specifications

In general the specification of a LEDA data type consists of four parts: adefinition of
the set of objects comprising the (parameterized) abstract data type, a description of
how to create an object of the data type, the definition of the operations available on the
objects of the data type, and finally, information about the implementation. The four
parts appear under the headers definition, creation, operations, and implementation
respectively. Sometimes there is also a fifth part showing an example.

7

8 CHAPTER 1. BASICS

• Definition

This part of the specification defines the objects (also called instances or elements)
comprising the data type using standard mathematical concepts and notation.

Example

The generic data type dictionary array:

An object a of type d_array<I, E> is an injective function from the data type I
to the set of variables of data type E . The types land E are called the index
and the element type respectively, a is called a dictionary array from I to E.

Note that the types I and E are parameters in the definition above. Any
built-in, pointer, item, or user-defined dass type T can be used as actual type
parameter of a parameterized data type. Class types however have to provide
the following operations:

a) a constructor taking no arguments
b) a copy constructor
c) an assignment operator

and if required by the parameterized data type
d) an input function
e) an output function
f) a compare function
g) a hash function

For details see sections 1.6 and 1.7 .

• Creation

T::TO
T::T(const T&)
T& T::operator=(const T&)

void Read(T&, istream&)
void Print(const T&, ostream&)
int compare(const T&, const T&)
int Hash(const T &)

A variable of a data type is introduced by a C++ variable dedaration. For
all LEDA data types variables are initialized at the time of dedaration. In
many cases the user has to provide arguments used for the initialization of the
variable. In general a dedaration

XYZ<t1 , ••• , tlt> y(Xl"'" Xl);

introduces a variable y of the data type "XY Z <tb ' .. ,tlt>" and uses the
arguments Xl, .. . ,Xl to initialize it. For example,

d_array<string, int> A(O)

introduces A as a dictionary array from strings to integers, and initializes A
as follows: an injective function a from string to the set of unused variables
of type int is constructed, and is assigned to A. Moreover, all variables in the
range of aare initialized to O. The reader may wonder how LEDA handles an
array of infinite size. The solution is, of course, that only that part of A is
explicitly stored which has been accessed already.

For all data types, the assignment operator (=) is available for variables of that
type. Note however that assignment is in general not a constant time operation,
e.g., if LI and L 2 are variables of type list<T> then the assignment LI = L 2

1.2. SPECIFICATIONS 9

takes time proportional to the length of the list L 2 times the time required for
copying an object of type T.

Remark: For most of the complex data types of LEDA, e.g., dictionaries,
lists, and priority queues, it is convenient to interpret a variable name as the
name for an object of the data type which evolves over time by means of the
operations applied to it. This is appropriate, whenever the operations on a data
type only "modify" the values of variables, e.g., it is more natural to say an
operation on a dictionary D modifies D than to say that it takes the old value
of D, constructs a new dictionary out of it, and assigns the new ruue to D.
Of course, both interpretations are equivalent. From this more object-oriented
point of view, a variable declaration, e.g., dictionary<string, int> D, is creating
a new dictionary object with name D rather than introducing a new variable
of type dictionary<string, int>; hence the name "creation" for this part of a
specification.

• Operations

In this section the operations of the data types are described. For each operation
the description consists of two parts

1. The interface of the operation is defined using the C++ function declaration
syntax. In this syntax the result type of the operation (void if there is no
result) is fol1owed by the operation name and an argument list specifying
the type of each argument. For example,

list..item L.insert (E x, lisLitem it, int dir = after)
defines the interface of the insert operation on a list L of elements of type
E (cf. section 4.7). Insert takes as arguments an element x of type E, a
list..item it and an optional relative position argument dir. It returns a
list..item as result.

E& A[l xl
defines the interface of the access operation on a dictionary array A. It
takes an element x of type l as an argument and returns a variable of
type E.

2. The effect of the operation is defined. Often the arguments have to ful:fill
certain preconditions. If such a condition is violated the effect of the
operation is undefined. Some, but not all , of these cases result in error
messages and abnormal termination of the program (see also section 11.9).
For the insert operation on lists this definition reads:
A new item with contents x is inserted after (if dir = after) or before (if
dir = before) item it into L. The new item is returned.

Precondition: item it must be in L.

For the access operation on dictionary arrays the definition reads:
returns the variable A(x) .

• Implementation

10 CHAPTER 1. BASICS

The implementation section lists the (default) data structures used to implement
the data type and gives the time bounds for the operations and the space
requirement. For example,

Dictionary arrays are implemented by randomized search trees ([1]) . Access
operations A[x] take time O(log dom(A)). The space requirement is O(dom(A)).

1.3 Implementation Parameters

For many of the parameterized data types (in the current version: dictionary, priority
queue, d_array, and sortseq) there exist variants taking an additional data structure
parameter for choosing a particular implement at ion (cf. chapter 5.2, 5.4, 5.6 and
6.2). Since C++ does not allow to overload templates we had to use different names:
the variants with an additional implementation parameters start with an underscore,
e.g., _d..a.rray<I,E,impl>. We can easily modify the example program from section 1.1
to use a dictionary array implemented by a particular data structure, e.g., skip lists
([43]), instead of the default data structure (cf. section 13.1).

#include <LEDAjdÄrray.h>
#include <LEDAjimpljskiplist.h>
mainO

{

}

_dÄrray<string,int,skiplist> N(0);
string s;

while (cin » s) N[s]++j

foraILdefined(s, N) cout « S « " " « N[s] « endl;

Any type -XYZ<T1 , •• • , Tk , xyz.impl> is derived from the corresponding "normal" pa
rameterized typeXYZ<Tl, ... , Tk >, i.e., an instanceoftype -XYZ<Tl, ... , Tk , xyz.impl>
can be passed as argument to functions with a formal parameter of type
XYZ<Tl, ... ,Tk>&. This provides a mechanism for choosing implementations of
data types in pre-compiled algorithms. See "progjgraphjdijkstra.c" for an example.

LEDA offers several implementations for each of the data types. For instance, skip
lists, randomized search trees, and red-black trees for dictionary arrays. Users can
also provide their own implementation. A data structure "xyzimpl" can be used as
actual implementation parameter for a data type XY Z if it provides a certain set
of operations and uses certain virtual functions for type dependent operations (e.g.
compare, initialize, copy, ...). Chapter 13 lists all data structures contained in the
current version and gives the exact requirements for implementations of dictionaries,
priority _queues, sorted sequences and dictionary arrays. A detailed description of
the mechanism for parameterized data types and implementation parameters used in
LEDA will be published soon.

1.4. ARGUMENTS 11

1.4 Arguments

• Optional Arguments

The trailing arguments in the argument list of an operation may be optional.
If these trailing arguments are missing in a call of an operation the default
argument values given in the specification are used. For example, if the relative
position argument in the list insert operation is missing it is assumed to have
the value alter, i.e., L.insert(it,y) will insert the item <y> after item it into L.

• Argument Passing

There are two kinds of argument passing in C++ , by value and by reference.
An argument z of type type specified by "type z" in the argument list of an
operation or user defined function will be passed by value, i.e., the operation or
function is provided with a copy of z. The syntax for specifying an argument
passed by reference is "type& z" . In this case the operation or function works
directly on z (the variable z is passed not its value).

Passing by reference must always be used if the operation is to change the
value of the argument. It should always be used for passing large objects such
as lists, arrays, graphs and other LEDA data types to functions. Otherwise a
complete copy of the actual argument is made, which takes time proportional
to its size, whereas passing by reference always takes constant time.

• Functions as Arguments

Some operations take functions as arguments. For instance the bucket sort
operation on lists requires a function which maps the elements of the list into
an interval of integers. We use the C++ syntax to define the type of a function
argument f:

declares I to be a function taking k arguments of the data types Tl, ... , T,.,
respectively, and returning a result of type T, i.e, I : Tl X ... X T,. ---+ T .

1.5 Overloading

Operation and function names may be overloaded, i.e., there can be different interfaces
for the same operation. An example is the translate operations for points (cf. section
8).

point p. translate(vector v)
point p.translate(double (t, double dist)

It can either be called with a vector as argument or with two arguments of type
double specifying the direction and the distance of the translation.

An important overloaded function is discussed in the next section: Function compare,
used to define linear orders for data types.

12 CHAPTER 1. BASICS

1.6 Linear Orders

Many data types, such as dictionaries, priority queues, and sorted sequences require
linearly ordered parameter types. Whenever a type T is used in such a situation,
e.g. in dictionary<T, ... > the function

int compare(const T&, const T&)

must be dedared and must define a linear order on the data type T.

A binary relation rel on a set T is called a linear order on T if for all x, y, z E T:

1) x rel x
2) x rel y and y rel z implies x rel z
3) x rel y or y rel x
4) x rel y and y rel x implies x = y

A function int compare(const T&, const T&) defines the linear order rel on T if

{

< 0, if x rel y and x # y
compare(x,y) =0, ifx=y

> 0, if y rel x and x # y

For each of the simple data types char, short, int, long, float, double, string, and
point a function compare is predefined and defines the so-called default ordering on
that type. The default ordering is the usual ~ - order for the built-in numerical
types, the lexicographic ordering for string, and for point the lexicographic ordering
of the cartesian coordinates. For all other types T there is no default ordering, and
the user has to provide a compare function whenever a linear order on T is required.

Example: Suppose pairs of real numbers shall be used as keys in a dictionary with
the lexicographic order of their components. First we deelare dass pair as the type
of pairs of real numbers, then we define the 1/0 operations Read and Print and the
lexicographic order on pair by writing an appropriate compare function.

dass pair {

double Xj

double Yj

public:

}j

pairO { x = y = Oj }

pair(const pair& p) { x = p.Xj Y = p.Yj }

friend void Read(pair& p, istream& is) { is » p.X » p.Yj }

friend void Print(const pair& p, ostream& os) { os « p.x « " " « p.Yj }

friend int compare(const pair&, const pair&)j

int compare(const pair& p, const pair& q)

1.6. LINEAR ORDERS

{

}

if (p.x < q.x) return -1;

if (p.x > q.x) return 1;

if (p.y < q.y) return -1;

if (p.y > q.y) return 1;

return 0;

Now we can use dictionaries with key type pair, e.g.,

dictionary<pair ,int> D;

13

Sometimes, a user may need additional linear orders on a data type T which are
different from the order defined by compare, e.g., he might want to order points in
the plane by the lexicographic ordering of their cartesian coordinates and by their
polar coordinates. In this example, the former ordering is the default ordering for
points. The user can introduce an alternative ordering on the data type point (cf.
section 8) by defining an appropriate companng function int cmp(const point&, const
point &) and then calling the macro

DEFINE..LINEAR_ORDER(point, cmp, pointJ).

After this call point I is a new data type which is equivalent to the data type
point, with the only exception that if pointl is used as an actual parameter e.g. in
dictionary<pointl , ... >, the resulting data type is based on the linear order defined
by cmp.

In general the macro call

DEFINE..LINEAR_ORDER(T, cmp, Tl)

introduces a new type Tl equivalent to type T with the linear order defined by the
compare function cmp.

In the example, we first declare a function poLcmp and derive a new type poLpoint
using the DEFINE..LINEAR_ORDER macro.
int poLcmp(const point& x, const point& y)

{ / / lexicographic ordering on polar coordinates}

DEFINE..LINEAR_ORDER(point,pol_cmp,pol_point)

Now, dictionaries based on either ordering can be used.

dictionary<poLpoint, int> DI ; / / polar ordering
dictionary<point, int> Do; / / default ordering

Remark: We have chosen to associate a fixed linear order with most of the simple
types (by predefining the function compare). This order is used whenever operations

14 CHAPTER 1. BASICS

require a linear order on the type, e.g., the operations on a dictionary. Alternatively,
we could have required the user to specify a linear order each time he uses a simple
type in a situation where an ordering is needed, e.g., a user could define

dictionary<point, lexicographic_ordering, . .. >

This alternative would handle the cases where two or more different orderings are
needed more elegantly. However, we have chosen the first alternative because of the
smaller implementation effort.

1.7 Hashed Types

LEDA also contains parameterized data types requiring a hash function for the actual
type parameters. Examples are dictionaries implemented by hashing with chaining
(_dictionary<K, I, chJl,ashing» or hashing arrays (h_array<I, E». Whenever a type
T is used in such a context, e.g., in h_array<T, ... > a function

int Hash(const T&)

has to be defined that maps the elements of type T to integers. It is not required
that H ash is a perfect hash function, i.e., it has not to be injective. However, the
performance of the underlying implementations very strongly depends on the ability
of the function to keep different elements of T apart by assigning them different
integers. Typically, a search operation in ahashing implementation takes time linear
in the maximal size of any subset whose elements are assigned the same hash value.
For each of the simple numerical data types char, short, int, long there is a predefined
H ash function: the identity function.

We demonstrate the use of H ash and a data type based on hashing by extending
the example from the previous section. Suppose we want to associate information
with values of the pair dass by using ahashing array Larray<pair, int> A. We
first define a hash function that assigns each pair (x, y) the integral part of the first
component x

int Hash(const pair& p) { return int(p.x); }

and then can use ahashing array with index type pair

h_array<pair, int> A;

1.8 Items

Many of the advanced data types in LEDA (dictionaries, priority queues, graphs,
...), are defined in terms of so-called items. An item is a container which can hold an
object relevant for the data type. For example, in the case of dictionaries a dic_item
contains a pair consisting of a key and an information. A general definition of items
will be given at the end of this section.

1.8. ITEMS 15

We now discuss the role of items for the dictionary example in some detail. A popular
specification of dictionaries defines a dictionary as a partial function from some type
K to some other type I, or alternatively, as a set of pairs from K x I, i.e., as the
graph of the function . In an implementation each pair (k, i) in the dictionary is stored
in some location of the memory. Efficiency dictates that the pair (k, i) cannot only
be accessed through the key k but sometimes also through the location where it is
stored, e.g., we might want to lookup the information i associated with key k (this
involves a search in the data structure), then compute with the value i a new value
i', and finally associate the new value with k. This either involves another search
in the data structure or, if the lookup returned the location where the pair (k, i) is
stored, can be done by direct access. Of course, the second solution is more efficient
and we therefore wanted to provide it in LEDA.

In LEDA items play the role of positions or locations in data structures. Thus an
object of type dictionary<K, I>, where K and I are types, is defined as a collection
of items (type dic_item) where each item contains a pair in K xl. We use <k, i> to
denote an item with key k and information i and require that for each k E K there
is at most one i E I such that <k, i> is in the dictionary. In mathematical terms this
definition may be rephrased as follows: A dictionary dis a partial function from the
set dic.i.tem to the set K xl. Moreover, for each k E K there is at most one i E I
such that the pair (k, i) is in d.

The functionality of the operations

dic_item D.lookup(K k)

I D .inf(dic_it em it)

void D .changeinf(dic-.item it, I i')

is now as follows: D.lookup(k) returns an item it with contents (k, i), D.inf(it)
extracts i from it, and a new value i' can be associated with k by D .changeinf(it, i').

Let us have a look at the insert operation for dictionaries next:

dic_item D.insert(K k, I i)

There are two cases to consider. If D contains an item it with contents (k, i') then
i' is replaced by i and it is returned. If D contains no such item, then a new item,
i.e., an item which is not contained in any dictionary, is added to D, this item is
made to contain (k, i) and is returned. In this manual (cf. section 5.1) all of this is
abbreviated to

dic_item D.insert(K k, I i) associates the information i with the key k. If
there is an item <k, j> in D then j is replaced by
i, else a new item <k, i> is added to D. In both
cases the item is returned.

We now turn to a general discussion. With some LEDA types XY Z there is an
associated type XYZ_item of items. Nothing is known about the objects of type
XY Z .i.tem except that there are infinitely many of them. The only operations
available on XY Z _items besides the one defined in the specification of type XY Z

16 GHAPTER 1. BASIGS

is the equality predicate "==" and the assignment operator "=" . The objects of
type XY Z are defined as sets or sequences of XY Z _items containing ob jects of some
other type Z. In this situation an XYZ-item containing an object z E Z is denoted
by <z>. A new or unused XY Z _item is any XY Z _item which is not part of any
object of type XYZ.

Remark: For some readers it may be useful to interpret a dic_item as apointer to
a variable of type K xl. The differences are that the assignment to the variable
contained in a dic_item is restricted, e.g., the K-component cannot be changed, and
that in return for this restrietion the access to dic_items is more flexible than for
ordinary variables, e.g., access through the value of the K-component is possible.

1.9 Iteration

For many data types LEDA provides iteration macros. These macros can be used
to iterate over the elements of lists, sets and dictionaries or the nodes and edges
of a graph. Iteration macros can be usedsimilarly to the C++ for statement with
the restrietion that inside the body of a loop the corresponding object must not be
altered. For instance, it is not allowed to delete no des from a graph G inside the
body of a foralLnodes loop. Examples are

for all item based data types:

foralLitems(it, D) { the items of D are successively assigned to variable it }

for lists and sets:

forall(z, L) { the elements of L are successively assigned to z }

for graphs:

foralLnodes(v, G) { the nodes of Gare successively assigned to v }

foralLedges(e, G) { the edges of G are successively assigned to e }

foralLadj_edges(e, v) { all edges adjacent to v are successively assigned to e }

1.10 Header Files

LEDA data types and algorithms can be used in any C++ program as described in
this manual. The specifications (class declarations) are contained in he ader files. To
use a specific data type its he ader file has to be included into the program. In general
the header file for data type xyz is <LEDA/xyz.h>. Exceptions to this rule can be
found in Tables 14.1 and 14.2.

1.11 Libraries

The implementions of all LEDA data types and algorithms are precompiled and
contained in 4 libraries (libL.a, libG.a, libP.a, libWx.a) which can be linked with

1.11.LIBRARIES 17

C++ application programs. In the following description it is assumed that these
libraries are installed in one of the systems default library directories (e.g. / usr /lib),
which allows to use the "-1. .. " compiler option.

a) libL.a
is the main LEDA library, it contains the implementations of all simple data types
(chapter 2), basic data types (chapter 4), dictionaries and priority queues (chapter
5 and 6). A program prog.c using any of these data types has to be linked with the
libL.a library like this:

CC prog.c -IL -Im

b) libG.a
is the LEDA graph library. It contains the implementations of all graph data types
and algorithms (chapter 7). To compile a program using any graph data type or
algorithm the libG.a and libL.a library have to be used:

CC prog.c -IG -IL -Im

c) libP.a
is the LEDA library for geometry in the plane. It contains the implementations of
all data types and algorithms for two-dimensional geometry (chapter 8 and 9). To
compile a program using geometrie data types or algorithms the libP.a, libG.a, libL.a
and maths libraries have to be used:

CC prog.c -IP -IG -11 -Im

d) libWx.a
is the LEDA library for graphie windows under the Xll window system. Application
programs using data type window (cf. section 10.2) have to be linked with this
library:

CC prog.c -IP -IG -IL -lWx -lXll -Im

Note that the libraries must be given in the order -IP -IG -IL and that the window
library (-lWx) has to appear after the plane library (-lP).

SOISVfI "r H:l.LdVHO 81

Chapter 2

Simple Data Types

2.1 Strings (string)

1. Definition

An instance s of the data type string is a sequence of characters (type char). The
number of characters in the sequence is called the length of s. Astring of length
zero is called the empty string. Strings can be used wherever a C++ char* string
can be used.

Strings differ !rom the C++ type char* in several aspects: parameter passing by
value and assignment works properly (i.e., the value is passed or assigned and not a
pointer to the value) and strings offer many additional operations.

2. Creation

string s;

intro duces a variable s of type string. s is initialized with the empty
string.

string s(char * p);

introduces a variable s of type string. s is initialized with a copy
of the C++ string p.

string s(char * format, ...);

introduces a variable s of type string. s is initialized with the string
produced by printf(format, ...).

string s(char c);

introduces a variable S of type string. s IS initialized with the
one-character string "c".

19

20 CHAPTER 2. SIMPLE DATA TYPES

3. Operations

int

char&

string

string

string

int

int

string

string

string

string

string

string

string

string

s.lengthO returns the length of string s.

s [int i] returns the character at position i.
Precondition: 0:::; i :::; s.lengthO-l.

s (int i, int j) returns the substring of s starting at po
sition max(O, i) and ending at position
min(j, s.lengthO-l).
If min(j,s.lengthO-l) < max(O,i) then the
empty string is returned.

s.head(int i) returns the first i characters of s.

s.tail(int i) returns the last i characters of s.

s.pos(string sI, int i) returns the minimum j such that j ~ i and
SI is a substring of s starting at position j
(returns -1 if no such j exists).

s.pos(string sI) returns pos(sl,O).

s.insert(int i, string sI) returns s(O, i-I) + SI + s(i, s.lengthO-l).

s.replace(string sI, string s2, int i = 1)

returns the string created from s by replacing
the i-th occurrence of SI in s by S2.

s.replace(int i, int j , string sI)

s.replace(int i, string sI)

returns the string created from s by replacing
s(i,j) by SI.

Precondition: i:::; j.

returns the string created from s by replacing
s[i] by SI.

s .replace-all(string sI, string s2)

s.del(string sI , int i = 1)

s.del(int i , int j)

s.del(int i)

returns the string created from s by replacing
all occurrences of SI in s by S2.

Precondition: The occurrences of SI in s do
not overlap (it's hard to say what the function
returns if the precondition is violated.).

t 1 ("".) re urns s.rep ace SI, ,t.

returns s.replace(i,j, "").

returns s.replace(i, "").

2.1. STRINGS (STRING) 21

string s.deLall(string s1) returns s .replace.-a.ll(SI, "").

void s .read(istream& I, char delim = ")

reads characters from input stream I into s
until the first occurrence of character delim.

void s.read(char delim = ") read(ein,delim).

void s .readJine(istream& 1) read(I,'\n').

void s.readJineO readJine(ein).

string z+y

returns the concatenation of z and y.

string& s + = z appends z to s and returns a reference to s.

bool z == y

true iff z and y are equal.

bool z ! = y

true iff z and y are not equal.

bool z < y

true iff z is lexicographically smaller than y.

bool z > y

true iff z is lexicographically greater than y.

bool z <= y

returns (z < y) 11 (z == y).

bool z >= y

returns (z > y) 11 (z == y).

istream& istream& I > > & s

read(I,' ').

ostream& ostream& 0 < < s

writes string s to the output stream O.

4. Implementation

Strings are implemented by C++ character vectors. All operations involving the search
for a pattern s1 in astring s take time O(s.lenghtO * s1.lengthO), [1 takes constant
time and all other operations on astring s take time O(s.lengthO).

22 CHAPTER 2. SIMPLE DATA TYPES

2.2 Random Sources (random.....source)

1. Definition

An instance of type random_source is a random source. It allows to generate uniformly
distributed random bits, characters, integers, and doubles. It can be in either of
two modes: In bit mode it generates a random bit string of some given length P
(1 :$ P :$ 31) and in integer mode it generates a random integer in some given range
[low .. high] (low :$ high< low + 231

). The mode can be changed any time, either
globally or for a single operation. The output of the random source can be converted
to a number of formats (using standard conversions).

2. Creation

random_source Sj

creates an instance S of type random_source, puts it into bit mode,
and sets the precision to 31.

random_source S(int p)j

creates an instance S of type random_source, puts it into bit mode,
and sets the precision to P (1 :$ P :$ 31).

random_source S(int low, int high);

3. Operations

void

void

void

creates an instance S of type random_source, puts it into integer
mode, and sets the range to [low .. high].

S .set..seed(int s) resets the seed of the random number
generator to s.

S.set.Iange(int low, int high)

S .seLprecision(int p)

sets the mode to integer mode and
changes the range to [low .. high].

sets the mode to bit mode and changes
the precision to p bits.

random_source& S > > char& x extracts a character x of default pre
cision or range and returns S, i.e.,
it first generates an unsigned integer
of the desired precision or in the de
sired range and then converts it to a
character (by standard conversion).

random_source& S > > unsigned char& x extracts an unsigned character x of
default precision or range and returns
S.

2.2. RANDOM SOURCES (RANDOM...BOURCE) 23

random_sO'Uree& S > > int& x extracts an integer x of default pre
cision or range and returns S.

random_sO'Uree& S > > unsigned int& x extracts an unsigned integer x of de
fault precision or range and returns
S.

random_sO'Uree& S » dO'Uble& x extracts areal number x in [0,1],
i.e, U/(231 - 1) where u is a random
integer in [0 .. 231 - 1], and returns S.

random_sO'Uree& S » bool& b extracts a random boolean value (true
or false).

unsigned S.getO

int so
int S (int pree)

int S (int low, int high)

returns an unsigned integer of maxi
mal precision (31 bits).

returns an integer x.

returns an integer x of supplied pre
ClSIon pree.

returns an integer x from the supplied
range [low .. high].

24 CHAPTER 2. SIMPLE DATA TYPES

2.3 Real-Valued Vectors (vector)

1. Definition
An instance of the data type vector is a vector of real variables.

2. Creation
vector v;

creates an instance v of type vector; v is initialized to the zero
dimensional vector.

vector v(int d);
creates an instance v of type vector; v is initialized to the zero vector
of dimension d.

vector v(double a, double b);

creates an instance v of type vector; v is initialized to the two
dimensional vector (a, b).

vector v(double a, double b, double c);

creates an instance v of type vector; v is initialized to the three
dimensional vector (a, b, c).

3. Operations

int v.dimO

double v.lengthO

double v.angle(vector w)

double& v [i nt i]

vector v + vl

vector v - vl

double v * vl

vector v * double r

bool v w

bool v != w

ostream& ostream& 0 < < v

istream& istream& I > > & v

returns the dimension of v.

returns the Euclidean length of v.

returns the angle between v and w.

returns i-th component of v.
Precondition: O::S i ::s v.dimO-l.

Addition.
Precondition: v.dimO = vl.dimO.

Subtraction.
Precondition: v.dimO = vl.dimO.

Scalar multiplication.
Precondition: v.dimO = vl.dimO.

Componentwise multiplication with double r.

Test for equality.

Test for inequality.

writes v componentwise to the output stream
O.

readsv componentwise from the input stream
I.

2.3. REAL-VALUED VECTORS (VECTOR) 25

4. Implementation

Vectors are implemented by arrays of real numbers. All operations on a vector v
take time O(v.dimO), except for dim and [] which take constant time. The space
requirement is O(v.dimO).

26 CHAPTER 2. SIMPLE DATA TYPES

2.4 Real-Valued Matrices (matrix)

1. Definition

An instance of the data type matrix is a matrix of double variables.

2. Creation

matrix M(int n = 0, int m = 0);

creates an instance M of type matrix, M is i:ö.itialized to the n x m
- zero matrix.

3. Operations

int

int

vector&

vector

matrix

matrix

double

vector

double&

matrix

matrix

matrix

vector

M.diml0

M.dim20

M.row(int i)

M.col(int i)

M.transO

M.invO

M.det()

M.solve(vector b)

M (int i, int j)

M + MI

M - MI

M * MI

M * vector vec

returns n, the number of rows of M.

returns m, the number of columns of M.

returns the i-th row of M (an m-vector). Pre
condition: O::S i ::S n - 1.

returns the i-th column of M (an n-vector). Pre
condition: o::S i ::S m - l.

returns MT (m x n - matrix).

returns the inverse matrix of M.
Precondition: M.detO =J o.

returns the determinant of M.
Precondition: M is quadratic.

returns vector x with M . x = b.
Precondition: M.diml0 = M.dim20 = b.dimO
and M.detO =J o.

returns Mi,j.

Precondition: O::S i ::S n - 1 and 0 ::S j ::S m - 1.

Addition.
Precondition: M.diml0
M.dim20 = Ml.dim20·

Ml.diml0 and

Subtraction.
Precondition: M.diml0
M.dim20 = Ml.dim20·

Ml.diml0 and

Multi plication.
Precondition: M.dim20 = Ml.diml0·

Multi plication with vector.
Precondition: M.dim20 = vec.dim().

2.4. REAL-VALUED MATRICES (MATRIX) 27

matriz M * double z

ostream& ostream& 0 < < M

istream& istream& I > > & M

4. Implementation

Multiplication with double x.

writes matrix M row by row to the output stream
o.

reads matrix M row by row from the input stream
I.

Data type matriz is implemented by two-dimensional arrays of double numbers.
Operations det, solve, and inv take time O(n3

), diml, dim2, row, and col take
constant time, all other operations take time O(nm). The space requirement is
O(nm).

SiIcIA.L V.LVa iI7cIWIS '& HiI.LcIVHO

Chapter3

N umber Types

3.1 Integers of Arbitrary Length (integer)

1. Definition

An instance a of the data type integer is an integer number of arbitrary length.

2. Creation

integer a;

creates an instance a of type integer and initializes it with zero.

integer a(int n);

creates an instance a of type integer and initializes it with the value
of n.

integer a(unsigned int i);

creates an instance a of type integer and initializes it with the value
of i.

integer a(double z);

3. Operations

creates an instance a of type integer and initializes it with the integral
part of z.

The arithmetic operations +, -, *, j, + =, - =, * =, j =, -(unary), ++, --,
the modulus operation (%, % =), bitwise AND (&, & =), bitwise OR (I, I =),
the complement (-), the shift operations «<, »), the comparison operations
<, <=, >, >=, ==, ! = and the stream operations all are available.

int a.lengthO returns the number of bits of the representation
of a.

29

30

bool a.islong()

bool a.iszeroO

long a.tolongO

double a. todoubleO

integer a.sqrtO

N on-member functions

integer abs(integer a)

CHAPTER 3. NUMBER TYPES

returns whether a fits in the data type long.

returns whether a is equal to zero.

returns a long number which is initialized with
the value of a.
Precondition: a.islongO is true.

returns a double number which is initialized
with the value of a.
Precondition: a fits in the range of a double .

returns the largest integer which is not larger
than the squareroot of a.

returns the absolute value of a.

integer gcd(integer a, integer b) returns the greatest common divisor of a and
b.

int sign(integer a) returns the sign of a.

int log(integer a) returns the logarithm of a to the basis 2.

4. Implementation

An integer is essentially implemented by a vector vec of unsigned long numbers.
The sign and the size are stored in extra variables. Some time critical functions are
also implemented in sparc assembler code.

3.2. RATIONAL NUMBERS (RATIONAL) 31

3.2 Rational Numbers (rational)

1. Definition

An instance q of type rational is a rational number where the numerator and the
denominator are both of type integer.

2. Creation

rational qj

creates an instance q of type rational.

rational q(double z)j

creates an instance q of type rational and initializes it with the value
of z.

rational q(int n)j

creates an instance q of type rational and initializes it with the value
of n.

rational q(int m, int n)j

creates an instance q of type rational and initializes its numerator
with m and its denominator with n.

rational q(integer a)j

creates an instance q of type rational and initializes it with the value
of a.

rational q(integer a, integer b)j

creates an instance q of type rational and initializes its numerator
with a and its denominator with b.

3. Operations

The arithmetic operations +, -, *, j, + =, - =, * =, j =, -(unary), ++, --,
the comparison operations <, <=, >, >=, ==, ! = and the stream operations are
all available.

integer q .numerator()

integer q .denominatorO

rational& q .simplify(integer a)

rational& q.normalize()

returns the numerator of q.

returns the denominator of q.

simplifies q by a.
Precondition: a divides the numerator and
the denominator of q.

normalizes q.

32

void

void

rational

q.negateO

q.invertO

q.inverseO

N on-member functions

int sign(rational q)

rational abs(rational q)

rational sqr(rational q)

rational pow(rational q, int n)

rational pow(rational q, integer a)

integer trunc(rational q)

integer floor(rational q)

integer ceil(rational q)

integer round(rational q)

4. Implementation

CHAPTER 3. NUMBER TYPES

negates q.

inverts q.

returns the inverse of q.

returns the sign of q.

returns the absolute value of q.

returns the square of q.

returns the n-th power of q.

returns the a-th power of q.

returns the integer with the next smaller
absolute value.

returns the next smaller integer.

returns the next bigger integer.

rounds q to the nearest integer.

A rational is implernented by two integer numbers which represent the numerator
and the denominator. The sign is represented by the sign of the numerator.

3.3. A FLOATING POINT FILTER (FLOATF) 33

3.3 A Floating Point Filter (ftoatf)

1. Definition

The type floatf provides a clean and efficient way to approximately compute with large
integers. Consider an expression E with integer operands and operators +, -, and *,
and suppose that we want to determine the sign of E. In general, the integer arithmetic
provided by our machines does not suffice to evaluate E since intermediate results
might overflow. Resorting to arbitrary precision integer arithmetic is a costly process.
An alternative is to evaluate the expression using floating point arithmetic, i.e., to
convert the operands to doubles and to use floating-point addition, subtraction, and
multiplication. Of course, only an approximation jE of the true value E is computed.
However, jE might still be able to tell us something ab out the sign of E. If jE is far
away from zero (the forward error analysis carried out in the next section gives a
precise meaning to "far away") then the signs of jE and E agree and if jE is zero
then we may be able to conclude under certain circumstances that E is zero. Again,
forward error analysis can be used to say what 'certain circumstances' are. The
type floatf encapsulates this kind of approximate integer arithmetic. Any integer
(= object of type integer) can be converted to a floatf; floatfs can be added,
subtracted, multiplied, and their sign can be computed: for any floatf x the function
Sign(x) returns either the sign of x (-1 if x < 0, 0 if x = 0, and +1 if x > 0)
or the special value NO_IDEA. If x approximates X, i.e., X is the integer value
obtained by an exact computation, then Sign(x)! = NOJDEA implies that Sign(x)
is actually the sign of X if Sign(x) = NO_IDEA then no claim is made about the
sign of X.

2. Creation

floatf x;

introduces a variable x of type floatf and initializes it with zero.

floatf x(integer i);

introduces a variable x of type floatf and initializes it with integer
~.

3. Operations

floatf a +b

Addition.

floatf a - b

Subtraction.

floatf

Multiplication.

int Sign(floatf f) as described above.

34 CHAPTER 3. NUMBER TYPES

4. Implementation

A floatf is represented by a double (its value) and an error bound. An operation on
floatfs performs the corresponding operation on the values and also computes the
error bound for the result. For this reason the cost of a floatf operation is about
four times the cost of the corresponding operation on doubles. The rules used to
compute the error bounds are described in ([40]) .

5. Example

see [40] for an application in a sweep line algorithm.

3.4. REAL NUMBERS (REAL) 35

3.4 Real Numbers (real)

1. Definition

An instance x of the data type real is an algebraic real number. There are many
ways to construct areal: either by conversion from double, integer or rational or by
applying one of the arithmetic operators +, -, *, j or V to real numbers. One may
test the sign of areal number or compare two real numbers by any of the comparison
relations =, #, <,~, > and ~. The outcome of such a test is exact. There is also a
non-standard version of the sign function: the call x.sign(integer q) computes the
sign of x under the precondition that lxi ~ 2-q implies x = O. This version of the
sign function allows the user to assist the data type in the computation of the sign
of x, cf. the example below.

One can ask for double approximations of areal number x. The calls x.todoubleO
and x.geLdouble_errorO return doubles xnum and xerr such that Ixnum - xl ~
Ixnuml * xerr. Note that xerr = 00 is possible. There are also several functions to
compute more accurate approximations of reals. The call x.get..:precisionO returns an
integer xerr such that the internal approximation x_num satisfies Ixnum- xl ~ 2-Z

e1'1'.

The user may set abound on xerr. More precisely, after the call x.improve(integer q)
the data type guarantees xerr ~ 2-q

•

2. Creation

real x;

intro duces a variable x of type real and initializes it to zero.

real x(double y);

real x(int n);

introduces a variable x of type real and initializes it to the value of
y.

introduces a variable x of type real and initializes it to the value of
n.

real x(integer a);

introduces a variable x of type real and initializes it to the value of
a.

real x(rational q)j

3. Operations

intro duces a variable x of type real and initializes it to the value of
q

The arithmetic operations +, *, j, + =, - =, * =, j =, -(unary), the
comparison operations <, <=, >, >=, ==, ! = and the stream operations all are
available.

36

real x.sqrt(real)

int x .sign()

int x .sign(integer a)

void x.improve(integer a)

void x.computein(long k)

void x.compute_up_to(long k)

double x.todouble()

double x.geLdouble_error()

integer x.geLprecision()

Non-member functions

real

real

real

real

fabs(real& x)

sq(real x)

hypot(real x, real y)

powi(real x, int n)

4. Implementation

CHAPTER 3. NUMBER TYPES

squareroot operation.

returns -1 if (the exact value of) x < 0, 1 if
x > 0, and ° if x = 0.

as above. Precondition: if lxi:::; 2-a then x =
0.

(re-)computes the approximation of x such
that its final quality is bounded by a,
i.e., x.get..precision() > a after the call
x.improve(a).

(re-)computes the approximation of Xi each
numerical operation is carried out with k binary
places.

(re-)computes an approximation of x such that
the error of the approximation lies in the k-th
binary place.

returns the current double approximation of x.

returns the quality of the current double ap
proximation of x, i.e., Ix - x.todouble() I <
x .geLdouble_error() * Ix.todoubleOI.

returns the quality of the current internal ap
proximation x.num of x, i.e., Ix - x.numl :::;
2-:t' ·geLpreciaionO .

absolute value of x.

square of x.

euclidean distance of vector (x,y) to the origin.

n-th power of x.

Areal is represented by the expression which defines it and a double approximation
x together with a relative error bound €:t'. The arithmetic operators +, -, *, j, J
take constant time. When the sign of areal number needs to be determined, the
data type first computes a number q, if not already given as an argument to sign,
such that lxi:::; q implies x = 0. The bound q is computed as described in [37]. The
data type then computes an internal approximation xnum for x with error bound
xerr :::; q. The sign of xnum is then returned as the sign of x .

Two shortcuts are used to speed up the computation of the sign. Firstly, if the double
approximation already suffices to determine the sign, then no further approximation

3.4. REAL NUMBERS (REAL) 37

is computed at all. Secondly, the internal approximation is first computed only with
small precision. The precision is then doubled until either the sign can be decided
(i.e., if xerr < Ixnuml) or the full precision q is reached.

5. Example

Examples can be found in [9].

S~cIA.L H~fIWnN '8 H~.LcIVHO

Chapter4

Basic Data Types

4.1 One Dimensional Arrays (array)

1. Definition

An instance A of the parameterized data type array<E> is a mapping from an interval
1= [a .. b] of integers, the index set of A, to the set of variables of data type E, the
element type of A. A(i) is called the element at position i.

2. Creation

array<E> A(int a, int b);
creates an instance A of type array<E> with index set [a .. b].

array<E> A(int n);

array<E> A;

3. Operations

E&

int

int

A [int ~]

A.lowO

A.highO

creates an instance A of type array<E> with index set [O .. n - 1].

creates an instance A of type array<E> with empty index set.

returns A(~).
Precondition: a:S; ~ :s; b.

returns the minimal index a.

returns the maximal index b.

void A.sort(int (*cmp)(const E&, const E&))

sorts the elements of A, using function cmp to
compare twoelements, i.e., if (ina , ... , inb) and
(outa , ... ,outb) denote the values of the variables
(A(a), ... , A(b)) before and after the call of sort,
then cmp(outi, outj) :s; 0 for i :s; j and there is
apermutation 7r of [a .. b] such that outi = in?l'(i)
for a :::; i :::; b.

39

40

void A.sortO

CHAPTER 4. BASIC DATA TYPES

sorts the elements of A according to the linear
order of the element type E.
Precondition: A linear order on E must have
been defined by compare(constE&, constE&).

void A.sort(int (*cmp)(const E&, const E&), int I, int h)

void A.sort(int I, int h)

void A.permuteO

void A.permute(int I, int h)

sorts sub-array A[l .. h] using compare function
cmp.

sorts sub-array A[l .. h] using the linear order on
E.

the elemens of Aare randomly permuted.

the elements of A[l .. h] are randomly permuted.

int A.binary...search(int (*cmp)(const E&,const E&), Ex)

performs a binary search for x. Returns i with
A[i] = x if x in A, A.lowO -1 otherwise. Function
cmp is used to compare two elements.
Precondition: A must be sorted according to
cmp.

int A. binary ...search(Ex) performs a binary search for x using the default
linear order on E.
Precondition: A must be sorted.

void A.read(istream& 1) reads b""': a + 1 objects of type E from the input
stream 1 into the array A using the overloaded
Read function (cf. section 1.5).

void A.readO calls A.read(ein) to read A from the standard
input stream ein.

void A.read(string s) As above, uses string s as prompt.

void A . print(ostream& 0) char space = ")

prints the contents of array A to the output stream
o using the overloaded Print function (cf. section
1.5) to print each element. The elements are
separated by the character space.

void A.print(char space = ") calls A.print(cout, space) to print A on the
standard output stream cout.

void A.print(string s, char space = ")
As above, uses string s as header.

4. Implementation

Arrays are implemented by C++ vectors. The access operation takes time 0(1), the
sorting is realized by quicksort (time O(n log n)) and the binary...search operation takes
time O(log n), where n = b - a + 1. The space requirement is 0(111 * sizeoJ(E)).

4.2. TWO DIMENSIONAL ARRAYS (ARRAY2) 41

4.2 Two Dimensional Arrays (array2)

1. Definition

An instance A of the parameterized data type array2<E> is a mapping from a set
of pairs 1 = [a .. b] x [c .. d] , caJled the index set of A, to the set of variables of data
type E, caJled the element type of A, for two fixed intervals of integers [a .. b] and
[c .. d]. A(i,j) is caJled the element at position (i,j).

2. Creation

array2<E> A(int a, int b, int c, int d)j

creates an instance A of type array2<E> with index set [a .. b] x [c .. d].

array2<E> A(int n, int m)j

creates an instance A of type array2<E> with index set [O .. n - 1] x
[O .. m -1].

3. Operations

E& A (int i, int j) returns A(i,j).
Precondition: a::; i ::; band c ::; j ::; d.

int A.low10 returns a.

int A.high10 returns b.

int A.low2O returns c.

int A.high2O returns d.

4. Implementation

Two dimensional arrays are implemented by C++ vectors. All operations take time
0(1), the space requirement is 0(111 * sizeof(E)).

42 CHAPTER 4. BASIC DATA TYPES

4.3 Stacks (stack)

1. Definition

An instance S of the parameterized data type .stack<E> is a sequence of elements of
data type E, called the element type of S. Insertions or deletions of elements take
place only at one end of the sequence, called the top of S. The size of S is the length
of the sequence, a stack of size zero is called the empty stack.

2. Creation

.stack<E> S;

creates an instance S of type .stack<E>. S is initialized with the
empty stack.

3. Operations

E S.topO

void S.push(E x)

E S.popO

int S.sizeO

bool S.emptyO

void S.clearO

4. Implementation

returns the top element of S.
Precondition: S is not empty.

adds x as new top element to S.

deletes and returns the top element of S.
Precondition: S is not empty.

returns the size of S.

returns true if S is empty, false otherwise.

makes S the empty stack.

Stacks are implemented by singly linked linear lists. All operations take time 0(1),
except clear which takes time O(n), where n is the size of the stack.

4.4. QUEUES (QUEUE) 43

4.4 Queues (queue)

1. Definition

An instance Q of the parameterized data type queue<E> is a sequence of elements
of data type E, called the element type of Q. Elements are inserted at one end (the
rear) and deleted at the other end (the front) of Q. The size of Q is the length of
the sequencej a queue of size zero is called the empty queue.

2. Creation

queue<E> Qj

creates an instance Q of type queue<E>. Q is initialized with the
empty queue.

3. Operations

E Q.topO

E Q.popO

void Q.append(E :z:)

int Q.sizeO

bool Q.emptyO

void Q.dearO

4. Implementation

returns the front element of Q.
Precondition: Q is not empty.

deletes and returns the front element of Q.
Precondition: Q is not empty.

appends :z: to the rear end of Q.

returns the size of Q.

returns true if Q is empty, false otherwise.

makes Q the empty queue.

Queues are implemented by singly linked linear lists. All operations take time 0(1),
except dear which takes time O(n), where n is the size of the queue.

44 CHAPTER 4. BASIC DATA TYPES

4.5 Bounded Stacks (b--.Stack)

1. Definition

An instance S of the parameterized data type b--stack<E> is a stack (see section 4.3)
of bounded size.

2. Creation

Lstack<E> S(int n)j

creates an instance S of type b--stack<E> that can hold up to n
elements. S is initialized with the empty stack.

3. Operations

E S.topO

E S.popO

void S.push(E z)

void S.clearO

int S.sizeO

bool S.emptyO

4. Implementation

returns the top element of S.
Precondition: S is not empty.

deletes and returns the top element of S.
Precondition: S is not empty.

adds z as new top element to S.
Precondition: S.sizeO < n.

makes S the empty stack.

returns the size of S.

returns true if S is empty, false otherwise.

Bounded stacks are implemented by C++ vectors. All operations take time 0(1).
The space requirement is O(n).

4.6. BOUNDED QUEUES (B_QUEUE) 45

4.6 Bounded Queues (b_queue)

1. Definition

An instance Q of the parameterized data type b.JIueue<E> is a queue (see section
4.4) of bounded size.

2. Creation

b_queue<E> Q(int n)j

creates an instance Q of type b_queue<E> that can hold up to n
elements. Q is initialized with the empty queue.

3. Operations

E Q.topO

E Q.popO

void Q.append(E& :z:)

void Q.clearO

int Q.sizeO

bool Q.empty()

4. Implementation

returns the front element of Q.
Precondition: Q is not empty.

deletes and returns the front element of Q.
Precondition: Q is not empty.

appends :z: to the rear end of Q.
Precondition: Q.sizeO< n.

makes Q the empty queue.

returns the size of Q.

returns true if Q is empty, false otherwise.

Bounded queues are implemented by circular arrays. All operations take time 0(1).
The space requirement is O(n).

46 CHAPTER 4. BASIC DATA TYPES

4.7 Linear Lists (list)

1. Definition

An instance L of the parameterized data type list<E> is a sequence of items (listitem) .
Each item in L contains an element of data type E, called the element type of L.
The number of items in L is called the length of L. If L has length zero it is called
the empty list. In the sequel <x> is used to denote a list item containing the element
x and L[i] is used to denote the contents of list item i in L.

2. Creation

list<E> L;

creates an instance L of type list<E> and initializes it to the empty
list.

3. Operations

3.1 Access Operations

int L.lengthO

int L.sizeO

bool L.emptyO

lisLitem L.firstO

lisLitem L.lastO

lisLitem L.succ(listitem it)

listitem L.pred(listitem it)

returns the length of L .

returns L.lengthO.

returns true if L is empty, false otherwise.

returns the first item of L.

returns the last item of L.

returns the successor item of item it, ni1 if
it = L.lastO.
Precondition: it is an item in L.

returns the predecessor item of item it, ni1
if it = L.firstO.
Precondition: it is an item in L.

lisLitem L.cyclic...succ(listitem it) returns the cyclic successor of item it, i.e.,
L.firstO if it = L.lastO, L.succ(it) otherwise.

lisLitem L.cycliepred(listitem it) returns the cyclic predecessor of item it, i.e,
L.lastO ifit = L.firstO, L.pred(it) otherwise.

lisLitem L.search(E x) returns the first item of L that contains x,
ni1 if x is not an element of L.
Precondition: compare has to be defined for
type E.

E L.contents(listitem it) returns the contents L[it] of item it.
Precondition: it is an item in L.

4.7. LINEAR LISTS (LIST)

E

E

E

int

L.inf(list..item it)

L.headO

L.tailO

L.rank(E x)

3.2 Update Operations

47

returns L.contents(it).

returns the first element of L, i.e. the con
tents of L.firstO.
Precondition: L is not empty.

returns the last element of L, i.e. the con
tents of L.lastO.
Precondition: L is not empty.

returns the rank of x in L, i.e. its first
position in L as an integer !rom [1. . . ILI] (0
if x is not in L).

list..item L .push(E x) adds a new item <x> at the front of L and
returns it (L.insert(x, L.firstO, before)).

lisLitem L.append(E x) appends a new item <x> to L and returns
it (L.insert(x, L.lastO, after)).

list..item L.insert(E a, list..item 1, int dir = 0)
inserts a new item <x> after (if dir = after)
or before (if dir = before) item it into L
and returns it (here after and before are
predefined int constants) .
Precondition: it is an item in L.

E L.popO deletes the first item from L and returns its
contents.
Precondition: L is not empty.

E L.PopO deletes the last item !rom L and returns its
contents.
Precondition: L is not empty.

E L.delitem(list..item it) deletes the item it from Land returns its
contents L[it].
Precondition: it is an item in L.

void L.assign(lisLitem it, Ex) makes x the contents of item it.
Precondition: it is an item in L.

void L.conc(list<E>& LI) appends list LI to list L and makes LI the
empty list.
Precondition: L #- LI

void L.split(lisLitem it, list<E>& LI, list<E>& L2)
splits L at item it into lists LI and
L2. More precisely, if it #- nil and
L = Xl, ... , Xle-l, it , Xle+l, ... , Xn then LI =
Xl, . • . , Xle-l and L2 = it, XIe+l, .. . , Xn. If
it = nil then LI is made empty and L2
a copy of L. Finally L is made empty if it
is not identical to LI or L2. Precondition:
it is an item of L or nil.

48 CHAPTER 4. BASIC DATA TYPES

void L.split(lisLitem it, list<E>& Ll, list<E>& L2, int dir)

splits L at item it into lists Ll and L2. Item
it becomes the last item of Ll if dir == ° and
the first item of L2 otherwise. Precondition:
it is an item of L.

void L.sort(int (*cmp)(const E&, const E&))

void L.sortO

sorts the items of L using the ordering defined
by the compare function cmp : E x E ~
int, with

{

< 0, if a < b
cmp(a,b) =0, ifa=b

> 0, if a > b

More precisely, if (inl' ... , inn) and
(out}, . . . , outn) denote the values of L
before and after the call of sort, then
cmp(L[outj] , L[outj+1D ~ ° for 1 ~ j < n
and there is apermutation 7r of [Ln] such
that outi = in1ri for 1 ~ i ~ n .

sorts the items of L using the default ordering
of type E, i.e., the linear order defined by
function int compare(const E&, const E&).

lisLitem L.minO returns the item with the minimal contents
with respect to the default linear order of
type E.

lisLitem L.min(int (*cmp)(const E&, const E&))

returns the item with the minimal contents
with respect to the linear order defined by
compare function cmp.

list.item L.maxO returns the item with the maximal contents
with respect to the default linear order of
type E.

list.item L .max(int (*cmp)(const E&, const E&))

returns the item with the maximal contents
with respect to the linear order defined by
compare function cmp.

void L.apply(void (*f)(E& z)) for all items <z> in L function f is called
with argument z (passed by reference).

void L .bucket...sort(int i, int j, int (*f)(const E&))

sorts the items of L using bucket sort, where
f : E ~ int with fez) E [i .. j] for all
elements z of L. The sort is stable, i.e., if
f(z) = f(y) and <z> is before <y> in L then
<z> is before <y> after the sort.

4.7. LINEAR LISTS (LIST)

void L.permuteO

void L.clearO

3.3 Input and Output

the items of L are randomly permuted.

makes L the empty list.

49

void L.read(istream& I, char delim = '\n')

reads a sequence of objects of type E termi
nated by the delimiter delim from the input
stream I using the overloaded Read function
(section 1.5). L is made a list of appropriate
length and the sequence is stored in L.

void L.read(char delim = '\n') calls L.read(ein, delim) to read L from the
standard input stream ein.

void L.read(string s, char delim = '\n')

As above, but uses string s as a prompt.

void L.print(ostream& 0, char space = ")
prints the contents of list L to the output
stream 0 using the overload Print func
tion (cf. section 1.5) to print each element.
The elements are separated by the character
space.

void L.print(char space = ") calls L.print(cout, space) to print L on the
standard output stream cout.

void L.print(string s, char space = ")

As above, but uses string s as a header.

3.4 Iterators

Each list L has a special item called the iterator of L. There are operations to read
the current value or the contents of this iterator, to move it (setting it to its successor
or predecessor) and to test whether the end (head or tail) of the list is reached. If
the iterator contains a list..item #- nil we call this item the position of the iterator.
Iterators are used to implement iteration statements on lists.

void L.setiterator(lisLitem it) assigns item it to the iterator.
Precondition: it is in L or it = nil.

void L.iniLiteratorO assigns nil to the iterator.

lisLitem L.getiteratorO returns the current value of the iterator.

list..item L.moveiterator(int dir)

moves the iterator to its successor (predeces
sor) if dir = forward (backward) and to the
first (last) item if the iterator is undefined
(= nil), returns the value of the iterator.

50

bool L.currenLelement(E& z)

bool L.nexLelement(E& z)

bool L.prev_element(E& x)

3.5 Operators

list<E>& L = LI

E& L [list..item it]

3.6 Iterations Macros

CHAPTER 4. BASIC DATA TYPES

if the iterator is defined (i nil) its contents
is assigned to z and true is returned else
false is returned.

calls L.moveiterator(forward) and then re
turns L.currenLelement(z) .

calls L.moveiterator(backward) and then
returns L.currenLelement(x).

The assignment operator makes L a copy of
list LI. More precisely if LI is the sequence of
items ZI, Z2, ... , zn then L is made a sequence
of items YI, Y2, ... , Yn with L[Yi] = LI [Zi] for
1 ~ i ~ n.

returns a reference to the contents of it.

foralLitems(it, L) { "the items of L are successively assigned to it" }

forall(x, L) { "the elements of L are successively assigned to x" }

4. Implementation

The data type list is realized by doubly linked linear lists. All operations take constant
time except for the following operations: search and rank take linear time O(n),
buckeLsort takes time O(n + j - i) and sort takes time O(n -c -log n) where c is the
time complexity of the compare function. n is always the current length of the list.

4.8. SINGLY LINKED LISTS (SLIST) 51

4.8 Singly Linked Lists (slist)

1. Definition

An instance L of the parameterized data type slist<E> is a sequence of items
(slisLitem). Each item in L contains an element of data type E, called the element
type of L. The number of items in L is called the length of L. If L has length zero
it is called the empty list. In the sequel <x> is used to denote a list item containing
the element x and L[i] is used to denote the contents of list item i in L.

2. Creation

slist<E> Lj

creates an instance L of type slist<E> and initializes it to the empty
list.

slist<E> L(E x);

creates an instance L of type slist<E> and initializes it to the
one-element list <x>.

3. Operations

int

int

L.length()

L.sizeO

returns the length of L.

returns L.lengthO.

bool L.emptyO returns true if L is empty, false otherwise.

slist.item L.firstO returns the first item of L.

slisLitem L.lastO returns the last item of L.

slist.item L.succ(slist.item it) returns the successor item of item it, nil if
it = L.lastO.
Precondition: it is an item in L.

slisLitem L.cyclic....succ(slist.item it) returns the cyclic successor of item it, i.e.,
L.firstO if it = L.lastO, L.succ(it) otherwise.

E L.contents(slist.item it)

E L.inf(slist.item it)

E L.headO

E L.tail·O

returns the contents L[it] of item it.
Precondition: it is an item in L.

returns L.contents(it).
Precondition: it is an item in L.

returns the first element of L, i.e. the con
tents of L.firstO.
Precondition: L is not empty.

returns the last element of L, i.e. the con
tents of L.lastO.
Precondition: L is not empty.

52

slisLitem L.push(E x)

slisLitem L.append(E x)

slisLitem L.insert(E x , slist..item it)

E L.popO

void L.conc(slist<E>& LI)

E& L [slist..item it]

slisLitem L + = E x

CHAPTER 4. BASIC DATA TYPES

adds a new item <x> at the front of L and
returns it.

appends a new item <x> to L and returns
it .

inserts a new item <x> after item it into L
and returns it .
Precondition: it is an item in L.

deletes the first item from Land returns its
contents.
Precondition: L is not empty.

appends list LI to list Land makes LI the
empty list.
Precondition: L ! = LI.

returns a reference to the contents of it.

appends a new item <x> to L and returns
it.

4.9. SETS (SET) 53

4.9 Sets (set)

1. Definition

An instance S of the parameterized data type set<E> is a collection of elements
of the linearly ordered type E, called the element type of S. The size of S is the
number of elements in S, a set of size zero is called the empty set.

2. Creation

set<E> S;

creates an instance S of type set<E> and initializes it to the empty
set.

3. Operations

void S .insert (E x)

void S.del(E x)

bool S .member(Ex)

E S.chooseO

bool S.emptyO

int S.sizeO

void S.dearO

Iteration

adds x to S.

deletes x from S.

returns true if x in S, false otherwise.

ret urns an element of S.
Precondition: S is not empty.

returns true if S is empty, false otherwise.

returns the size of S.

makes S the empty set.

forall(x, S) { "the elements of S are successively assigned to x" }

4. Implementation

Sets are implemented by randomized search trees [1]. Operations insert, deI, member
take time O(1og n), empty, size take time 0(1), and dear takes time O(n), where n
is the current size of the set.

54 CHAPTER 4. BASIC DATA TYPES

4.10 Integer Sets (int_set)

1. Definition

An instance S of the data type inLset is a subset of a fixed interval [a .. b] of the
integers.

2. Creation

int...set S(int a, int b)j

creates an instance S of type int...set for elements from [a .. b] and
initializes it to the empty set.

int...set S(int n);

creates an instance S of type int...set for elements from [CI •. n -1J and
initializes it to the empty set.

3. Operations

void S .insert (int x)

void S .del(int x)

int S .member(int x)

void S.clear()

int...set& S S1

int...set S I S1

int...set S & S1

int...set -S

4. Implementation

adds x to S.
Precondition: a:S; x :s; b.

deletes x from S.
Precondition: a:S; x :s; b.

returns true if x in S, false otherwise.
Precondition: a:S; x :s; b.

makes S the empty set.

assignment.

returns the union of Sand S1

returns the intersection of Sand S1

returns the complement of S.

Integer sets are implemented by bit vectors. Operations insert, delete, member, empty,
and size take constant time. dear, intersection, union and complement take time
O(b - a + 1).

4.11. PARTITIONS (PARTITION) 55

4.11 Partitions (partition)

1. Definition

An instance P of the data type partition consists of a finite set of items (partition_item)
and a partition of this set into blocks.

2. Creation

partition P;

3. Operations

creates an instance P of type partition and initializes it to the empty
partition.

partition_item P . make_block()

returns a new partition..item it and adds
the block {it} to partition P.

partition_item P .find(partition..item p)

bool

void

returns a canonical item of the block that
contains item p, i.e., if P.same_block(p, q)
then P.find(p) = P.find(q).
Precondition: p is an item in P.

P.same_block(partition..item p, partition..item q)

returns true if p and q belong to the same
block of partition P.
Precondition: p and q are items in P.

P.union_blocks(partition_item p, partition_item q)

unites the blocks of partition P containing
items p and q.
Precondition: p and q are items in P.

4. Implementation

Partitions are implemented by the union find algorithm with weighted union and path
compression (cf. [48]). Any sequence of n make_block and m ~ nother operations
takes time O(ma(m, n)).

5. Example

Spanning Tree Algorithms (cf. section 7.20).

56 CHAPTER 4. BASIC DATA TYPES

4.12 Dynamic Collections ofTrees (tree_collection)

1. Definition

An instance D of the parameterized data type tree_collection<I> is a collection of
vertex disjoint rooted trees, each of whose vertices has a double-valued cost and
contains an information of type I, called the information type of D.

2. Creation

tree_collection<I> D;

creates an instance D of type tree_collection<I>, initialized with the
empty collection.

3. Operations

d_vertex D .maketree(I x)

I D.inf(d_vertex v)

d_vertex D .findroot(d_vertex v)

adds a new tree to D containing a single
vertex v with cost zero and information x,
and returns v.

returns the information of vertex v.

returns the root of the tree containing v.

d_vertex D.findcost(d_vertex v, double& x)

sets x to the minimum cost of a vertex on the
tree path from v to findroot(v) and returns
the last vertex (dosest to the root) on this
path of cost x.

void D.addcost(d_vertex v, double x)

adds double number x to the cost of every
vertex on the tree path from v to findroot(v).

void D.link(d_vertex v, d_vertex x)

void D.cut(d_vertex v)

4. Implementation

combines the trees containing vertices v and
w by adding the edge (v,w). (We regard
tree edges as directed from child to parent.)
Precondition: v and ware in different trees
and v is a root.

divides the tree containing vertex v into two
trees by deleting the edge out of v.
Precondition: v is not a tree root.

Dynamic collections of trees are implemented by partitioning the trees into vertex
disjoint paths and representing each path by a self-adjusting binary tree (see [48]).
All operations take amortized time O(log n) where n is the number of maketree
operations.

Chapter 5

Dictionaries

5.1 Dictionaries (dictionary)

1. Definition

An instance D of the parameterized data type dictionary<K, I> is a collection of
items (dic_item). Every item in D contains a key from the linearly ordered data
type K, called the key type of D, and an information from the data type I, called
the information type of D. The number of items in D is called the size of D. A
dictionary of size zero is called the empty dictionary. We use <k, i> to denote an
item with key k and information i (i is said to be the information associated with
key k). For each k E K there is at most one i E I with <k, i> E D.

2. Creation

dictionary<K, I> D;

creates an instance D of type dictionary<K, I> and initializes it with
the empty dictionary.

3. Operations

K D.key(dic_item it)

I D.inf(dic_item it)

dic_item D.insert(K k, I i)

dic_item D .lookup(K k)

I D.access(K k)

returns the key of item it.
Precondition: it is an item in D.

returns the information of item it.
Precondition: it is an item in D.

associates the information i with the key k. If
there is an item <k, j> in D then j is replaced
by i, else a new item <k, i> is added to D. In
both cases the item is returned.

returns the item with key k (nil if no such item
exists in D).

returns the information associated with key k.
Precondition: there is an item with key k in D.

57

58

void D.deI(K k)

CHAPTER 5. DICTIONARlES

deletes theitem withkey kfrom D (nulloperation,
if no such item exists).

void D.deUtem(dic_item it) removes item it from D.
Precondition: it is an item in D.

void D .changejnf(dic_item it, I i)

void

int

bool

D.dearO

D.sizeO

D.emptyO

4. Implementation

makes i the information of item it.
Precondition: it is an item in D.

makes D the empty dictionary.

returns the size of D.

returns true if D is empty, false otherwise.

Dictionaries are impiemented by randomized search trees [1]. Operations insert,
lookup, deUtem, deI take time O(Iog n), key, inf, empty, size, changejnf take time
O(1), and dear takes time O(n). Here n is the current size of the dictionary. The
space requirement is O(n).

5. Example

We count the number of occurrences of each string in a sequence of strings.

#include <LEDA/dictionary.h>

mainO

{ dictionary<string,int> D;

string s;

dic_i tem i t;

vhile (cin » s)

{ it = D.lookup(s);

if (it==nil) D.insert(s,l);

else D.change_inf(it,D.inf(it)+l);

}

foraILitems(it,D) cout « D.key(it) «" ,,« D.inf(it) « endl;

}

5.2. DICTIONARlES WITH IMPLEMENTATION PARAMETER (...DICTIONARY)59

5.2 Dictionaries with Implementation Parameter
(_dictionary)

1. Definition

An instance of type ...dictionary<K, I, impl> is a dictionary implemented by data type
impl. impl must be one of the dictionary implementations listed in section 13.1.1 or
a user defined data structure fulfilling the specification given in section 13.2.1. Note
that depending on the actual implementation impl the key type K must either be
linearly ordered or hashed.

Example
Using a dictionary implemented by skiplists to count the number of occurrences of
the elements in a sequence of strings.

#include <LEDA/_dictionary.h>

#include <LEDA/impl/skiplist.h>

main()

{

}

_dictionary<string,int,skiplist> D;

string s;

dic_item it;

vhile (ein» s)

{ it = D.lookup(s);

if (it==nil) D.insert(s,l);

else D.change_inf(it,D.inf(it)+l);

}

forall_items(it,D) cout « D.key(it) «" ,,« D.inf(it)« endl;

60 CHAPTER 5. DICTIONARIES

5.3 Sorted Sequences (sortseq)

1. Definition

An instance S of the parameterized data type sortseq<K, I> is a sequence of items
(seqitem). Every item contains a key from the linearly ordered data type K, called
the key type of S, and an information from data type I, called the information type
of S. The number of items in S is called the size of S. A sorted sequence of size
zero is called empty. We use <k, i> to denote a seqitem with key k and information
i (called the information associated with key k). For each k E K there is at most
one item <k, i> E S.

The linear order on K may be time-dependent, e.g., in an algorithm that sweeps
an arrangement of lines by a vertical sweep line we may want to order the lines by
the y-coordinates of their intersections with the sweep line. However, whenever an
operation (except for reverseitems) is applied to a sorted sequence S, the keys of S
must form an increasing sequence according to the currently valid linear order on K.
For operation reverseitems this must hold after the execution of the operation.

2. Creation

sortseq<K,I> S;

3. Operations

K

I

seq_item

seqitem

seq_item

seq_item

creates an instance S of type sortseq<K, I> and initializes it to the
empty sorted sequence.

S.key(seqitem it) returns the key of item it.
Precondition: it is an item in S.

S.inf(seqitem it) returns the information of item it.
Precondition: it is an item in S.

S.lookup(K k) returns the item with key k (nil if no such item
exists in S).

S.insert(K k, I i) associates information i with key k: If there is
an item <k, j> in S then j is replaced by i, else
a new item <k, i> is added to S. In both cases
the item is returned.

S.insert-.a.t(seqitem it, K k, I i)

Like insert(k, i), the item it gives the position
of the item <k, i> in the sequence.
Precondition: it is an item in S with either
key(it) is maximal with key(it) ~ k or key(it)
is minimal with key(it) 2: k.

S .locate-succ(K k) returns the item <k', i> in S such that k' is
minimal with k' 2: k (nil if no such item exists).

5.3. SORTED SEQUENCES (SORTSEQ) 61

seq3.tem

seq3.tem

seq3.tem

seq3.tem

void

void

void

void

void

S .locate_pred(K k) returns the item <k', i> in S such that k' is
maximal with k' ::::; k (nil if no such item exists).

S .locate(K k) returns S .locate-succ(K k).

S.succ(seq3.tem it) returns the successor item of it, i.e., the item
<k, i> in 5 such that k is minimal with k > key(it)
(nil if no such item exists).
Precondition: it is an item in 5.

5.pred(seq3.tem it) returns the predecessor item of it, i.e., the item
<k, i> in 5 such that k is maximal with k <
key(it) (nil if no such item exists).
Precondition: it is an item in 5.

5.minO returns the item with minimal key (nil if 5 is
empty).

5.maxO returns the item with maximal key (nil if 5 is
empty).

5.del(K k) removes the item with key k from 5(null oper
ation if no such item exists).

5.delitem(seq3.tem it)

removes the item it from 5.
Precondition: it is an item in 5.

5.changeinf(seq3.tem it, I i)
makes i the information of item it.
Precondition: it is an item in 5.

5.reverseitems(seq3.tem a, seq3.tem b)
the subsequence of 5 from a to b is reversed.
Precondition: a appears before b in 5.

5.split(seq_item it, sortseq<K, 1>& 51, sortseq<K,I>& 52)

splits 5 at item it into sequences 51 and
52 and makes 5 empty. More precisely, if
5 = Xl, ... , Xk-l, it, Xk+l, .. . ,Xn then 51 =
xl, ... , Xk-1, it and 52 = Xk+1, ... , Xn.

Precondition: it is an item in 5.

sortseq<K, 1>& 5.conc(sortseq<K, 1>& 51)

void

int

bool

5.clearO

5.sizeO

5.emptyO

appends 51 to 5, makes 51 empty
and returns 5.Precondition: 5.key(5.maxO) <
51.key(51.minO).

makes 5 the empty sorted sequence.

returns the size of 5.

returns true if 5 is empty, false otherwise.

62 CHAPTER 5. DICTIONARIES

4. Implementation

Sorted sequences are implemented by (2,4)-trees. Operations lookup, locate, insert,
deI, split, conc take time O(log n), operations succ, pred, max, min, key, inf, inserLat
and delitem take time 0(1). Clear takes time O(n) and reverseitems 0(1), where
1 is the length of the reversed subsequence. The space requirement is O(n). Here n
is the current size of the sequence.

5. Example

We use a sorted sequence to list all elements in a sequence of strings lying lexi
cographically between two given search strings. We first read a sequence of strings
terminated by "stop" and then a pair of search strings. We output all strings that
lie lexicographically between the two search strings (inclusive).

#include <LEDA/sortseq.h>

mainO

{

sortseq<string,int> S;

string s1,s2;

Yhile (cin » s1 cU: s1 != "stop") S.insert(s1,O);

Yhile (cin » s1 » s2)

{ seq_item start = S.locate_succ(s1);

seq_i tem stop = S .locate_pred (s2) ;

if (S.key(start) <= S.key(stop))

{ for (seq_item it = start; it != stop; it = S.succ(it))

cout « S.key(it) « endl;

}

}

}

5.4. SORTED SEQUENCES WITH IMPLEMENTATION PARAMETER (....sORTSEQ)63

5.4 Sorted Sequences with Implementation Param
eter (--Bortseq)

1. Definition

An instance of type ...sortseq<K, I, impl> is a sorted sequence implemented by data
type impl. impl must be one of the sorted sequence implementations listed in section
13.1.1 or a user defined data structure fulfilling the specification given in section
13.2.3. Note that the key type K must be linearly ordered.

Example
Using a sorted sequence implemented by skiplists to list all elements in a sequence
of strings lying lexicographically between two given search strings.

#include <LEDA/_sortseq.h>

#include <LEDA/impl/skiplist.h>

main()

{

_sortseq<string,int,skiplist> S;

string s1, s2;

while (ein» 5181:81: 51 != "stop") S.insert(s1,O);

while (ein » 51 » s2)

}

{ seq_item start = S. locate(s1);

seq_i tem stop = S .locate (s2) ;

for (seq_item it = start; it != stop; it = S.succ(it»

cout « S.key(it) « endl;

}

64 CHAPTER 5. DICTIONARlES

5.5 Dictionary Arrays (d_array)

1. Definition

An instance A of the parameterized data type Larray<I, E> (dictionary array) is
an injective mapping from the linearly ordered data type 1, called the index type of
A, to the set of variables of data type E, called the element type of A. We use A(i)
to denote the variable with index i.

2. Creation

d_array<I, E> A(E x);

creates an injective function a from 1 to the set of unused variables
of type E, assigns x to all variables in the range of a and initializes
A with a.

3. Operations

E& A [1 i]

bool A.defined(I i)

void A. undefine(I i)

Iteration

returns the variable A(i).

returns true if i E dom(A), false otherwise; here
dom(A) is the set of all i E 1 for which A[i] has
already been executed.

removes i from dom (A).

foraILdefined(i, A) { "the elements from dom(A) are successively assigned to i" }

4. Implementation

Dictionary arrays are implemented by randomized search trees [1]. Access operations
A[i] take time O(log dom(A)). The space requirement is O(dom(A)).

5. Example

Program 1: We use a dictionary array to count the number of occurrences of the
elements in a sequence of strings.

#inelude <LEDA/d_array.h>

main()

{

d_array<string,int> N(O);

string s;

while (ein » s) N[s]++;

forall_defined(s,N) eout « s «" ,,« N[s] « endl;

5.5. DICTIONARY ARRAYS (D-.ARRAY) 65

}

Program 2: We use a d_array<string, string> to realize an english/german dictio
nary.

#inelude <LEDA/d_array.h>

main()

{

}

d_array<string,string> die;

die["hello"] = "hallo";

die["world"] = "Welt";

die ["book"] = "Buch";

die ["key"] = "Sehluessel";

string s;

forall_defined(s ,die) eout « s «" ,,« die [s] « endl;

66 CHAPTER 5. DICTIONARlES

5.6 Dictionary Arrays with Implementation Pa
ranneter(_d_array)

1. Definition

An instance of type _d_array<I, E, impl> is a dictionary array implemented by data
type impl. impl must be one of the dictionary implementations listed in section
13.1.1 or a user defined data structure fulfilling the specification given in section
13.2.1. Note that depending on the actual implementation impl the index type I
must either be linearly ordered or hashed.

Example
Using a dictionary array implemented by hashing with chaining (chJtash) to count
the number of occurences of the elements in a sequence of strings.

#inelude <LEDA/_d_array.h>

#inelude <LEDA/impl/eh_hash.h>

Ilwe first have to define a hash funetion for strings

int Hash(eonst string& x) { return (x.length() > 0) ? x[O] O;}

mainO

{

_d_array<string,int,eh_hash> N(O);

string s;

while (ein » s) N[s]++;

forall_defined(s,N) eout « s «" "« N[s] « endl;

}

5.7. HASHING ARRAYS (H..ARRAY) 67

5.7 Hashing Arrays (h_array)

1. Definition

An instance A of the parameterized data type h_array<I, E> (hashing array) is an
injective mapping from a hashed data type I (cf. section 1. 7), called the index type
of A, to the set of variables of arbitrary type E, called the element type of A. We
use A(i) to denote the variable indexed by i.

2. Creation

h_array<I, E> A(E :z:);

creates an injective function a from I to the set of unused variables
of type E, assigns z to all variables in the range of a and initializes
A with a.

3. Operations

E&

bool

A [I i]

A.defined(I i)

returns the variable A(i)

returns true if i E dom(A), false otherwise;
here dom(f1) is the set of all i E I for which
A[i] has already been executed.

foralLdefined(i, A) { "the elements from dom(A) are successively assigned to i" }

4. Implementation

Hashing arrays are implemented by hashing with chaining. Access operations take
expected time O(1). In many cases, hashing arrays are more efficient than dictionary
arrays (cf. 5.5).

68 CHAPTER 5. DICTIONARIES

5.8 Maps (map)

1. Definition

An instance M of the parameterized data type map<1, E> is an injective mapping
from the data type 1, called the index type of M, to the set of variables of data type
E, called the element type of M. 1 must be apointer, item, or handle type or the
type int. We use M(i) to denote the variable indexed by i.

2. Creation

map<1,E> M;

creates an injective function a from 1 to the set of unused variables
of type E, initializes all variables in the range of a using the default
constructor of type E and assigns a to M.

map<1,E> M(E x)j

creates an injective function a from 1 to the set of unused variables
of type E, assigns x to all variables in the range of a and initializes
M with a.

3. Operations

E& M [1 i]

bool M.defined(I i)

4. Implementation

returns the variable M(i).

returns true if i E dom (M), false otherwise;
here dom(M) is the set of all i E 1 for which
M[i] has already been executed.

Maps are implemented by hashing with chaining and table doubling. Access operations
M[i] take expected time 0(1).

5.9. PERSISTENT DICTIONARIES (P ...DICTIONARY) 69

5.9 Persistent Dictionaries (p_dictionary)

1. Definition

An instance D of the parameterized data type p_dictionary<K, I> is a set of items
(type p_dic_item). Every item in D contains a key !rom the linearly ordered data
type K, called the key type of D, and an information !rom data type I, called
the information type of D. The number of items in D is called the size of D. A
dictionary of size zero is called empty. We use <k, i> to denote an item with key k
and information i (i is said to be the information associated with key k). For each
k E K there is at most one item <k, i> E D.

The difference between dictionaries (cf. section 5.1) and persistent dictionaries lies
in the fact that update operations performed on a persistent dictionary D do not
change D but create and return a new dictionary D'. For example, D .del(k) returns
the dictionary D' containing all items it of D with key(it) =1= k. Also, an assignment
Dl = D2 does not assign a copy of D2 (with new items) to D1 but the value of D2
itself.

2. Creation

p_dictionary<K, I> D;

creates an instance D of type p_dictionary<K, I> and initializes D
to an empty persistent dictionary.

3. Operations

K D.key(p_dic_item it) returns the key of item it.
Precondition: it E D.

I D.inf(p_dic-item it) returns the information of item it.
Precondition: it E D.

p_dic_item D.lookup(K k) returns the item with key k (nil if no
such item exists in D).

p_dictionary<K,I> D.del(K k) returns {z ED I key(z) =1= k}.

p...dictionary<K, I> D.delitem(p_dic-item it)

returns {z ED I z =1= it}.

p_dictionary<K, I> D.insert(K k, I i) returns D.del(k) U {<k,i>}.

p_dictionary<K, I> D.changeinf(p_dic_item it, I i)

int

bool

D.sizeO

D.emptyO

returns D.deUtem(it) U {<k, i>}, where
k = key(it).
Precondition: it E D.

returns the size of D.

returns true if D is empty, false other
Wlse.

70 GHAPTER 5. DIGTIONARIES

4. Implementation

Persistent dictionaries are impiemented by Ieaf oriented persistent red black trees.
Operations insert, Iookup, delitem, deI take time 0(log2 n), key, inf, empty, size,
changeinf and dear take time 0(1). The space requirement is 0(1) for each update
operation.

Chapter6

Priority Queues

6.1 Priority Queues (p_queue)

1. Definition

An instance Q of the parameterized data type p_queue<P, I> is a collection of items
(type pq_item). Every item contains a priority from a linearly ordered type P and
an information from an arbitrary type I. P is called the priority type of Q and I is
called the information type of Q. The number of items in Q is called the size of Q.
If Q has size zero it is called the empty priority queue. We use <p, i> to denote a
pq_item with priority p and information i.

2. Creation

p_queue<P, I> Qj
creates an instance Q of type p_queue<P, I> and initializes it with
the empty priority queue.

3. Operations

P

I

pq_item

pq_item

P

void

Q.prio(pq_item it)

Q.inf(pq_item it)

Q.insert(P z, I i)

Q .fin d..min 0

Q.deLminO

Q.delitem(pqJtem it)

returns the priority of item it.
Precondition: it is an item in Q.

returns the information of item it.
Precondition: it is an item in Q.

adds a new item <z, i> to Q and returns it.

returns an item with minimal information
(nil if Q is empty).

removes the item it = Q .find....minO from Q
and returns the priority of it.
Precondition: Q is not empty.

removes the item it from Q.
Precondition: it is an item in Q.

71

72 CHAPTER 6. PRIORITY QUEUES

void Q.changeinf(pq_itemit, I i) makes i the new information of item it.
Precondition: it is an item in Q.

void Q .decrease_p(pq_item it, P x)

int

bool

void

Q.sizeO

Q.emptyO

Q.dearO

4. Implementation

makes x the new priority of item it.
Precondition: it is an item in Q and x is
not larger then prio(it).

returns the size of Q.

returns true, if Q is empty, false otherwise.

makes Q the empty priority queue.

Priority queues are implemented by Fibonacci heaps [22]. Operations insert, delitem,
delJD.in take time O(log n), find-Inin, decrease_p, prio, inf, empty take time 0(1) and
dear takes time O(n), where n is the size of Q. The space requirement is O(n).

5. Example

Dijkstra's Algorithm (cf. section 12.1)

6.2. PRIORlTYQUEUESWITHIMPLEMENTATIONPARAMETER(P_QUEUE)73

6.2 Priority Queues with Implementation Param
eter (_p_queue)

1. Definition

An instance of type _p_queue<P, I, impl> is a priority queue implemented by data
type impl. impl must be one of the priority queue implementations listed in section
13.1.2 or a user defined data structure fulfilling the specification given in section
13.2.2. Note that the priority type P must linearly ordered.

74 OHAPTER 6. PRIORITY QUEUES

6.3 Old-Style Priority Queues (priority _queue)

1. Definition

An instance Q of the parameterized data type priO'1'ity_queue<K, I> is a collection
of items (type pq.item). Every item contains a key from type K and an information
from the linearly ordered type I. K is called the key type of Q and I is called the
information type of Q. The number of items in Q is called the size of Q. If Q has
size zero it is called the empty priority queue. We use <k, i> to denote a pq_item
with key k and information i.

The type priO'1'ity_queue<K,I> is identical to the type p_queue except that the
meanings of K and I are interchanged. We now believe that the semantics of p_queue
is the more natural one and keep priority_queue<K, I> only for historical reasons.
We recommend to use p_queue instead.

2. Creation

priO'1'ity_queue<K, I> Q;
creates an instance Q of type priority_queue<K, I> and initializes it
with the empty priority queue.

3. Operations

K Q.key(pq.item it)

I Q .inf(pq _item it)

pq_item Q.insert(K k, I i)

pq_item Q .:find...minO

K Q.del...minO

returns the key of item it.
Precondition: it is an item in Q.

returns the information of item it.
Precondition: it is an item in Q.

adds a new item <k, i> to Q and returns
it.

returns an item with minimal information
(nil if Q is empty).

removes the item it = Q .:find...minO from
Qand returns the key of it.
Precondition: Q is not empty.

void Q.delitem(pq_item it) removes the item it from Q.
Precondition: it is an item in Q.

void Q .change...key(pq.item it, K k) makes k the new key of item it.
Precondition: it is an item in Q.

void Q .decreaseinf(pq_item it, I i) makes i the new information of item it.

int

bool

void

Q.sizeO

Q.emptyO

Q.clearO

Precondition: it is an item in Q and i is
not larger then in f (it).
returns the size of Q.

returns true, if Q is empty, false otherwise

makes Q the empty priority queue.

6.3. OLD-STYLE PRIORITY QUEUES (PRIORITY_QUEUE) 75

4. Implementation

Priority queues are implemented by Fibonacci heaps [22]. Operations insert, delitem,
deLmin take time O(log n), find..min, decreasejnf, key, inf, empty take time 0(1)
and dear takes time O(n), where n is the size of Q. The space requirement is O(n).

5. Example

Dijkstra's Algorithm (cf. section 12.1)

76 CHAPTER 6. PRlORlTY QUEUES

6.4 Bounded Priority Queues (b_priority _queue)

1. Definition

An instance Q of the parameterized data type b_priority_queue<K> is a priority _queue
(cf. section 6.1) whose information type is a fixed interval [a .. bJ of integers.

2. Creation

b_priority_queue<K> Q(int a, int b);

3. Operations

See section 6.1.

creates an instance Q of type b_priority _queue<K> with information
type [a .. bJ and initializes it with the empty priority queue.

4. Implementation

Bounded priority queues are implemented by arrays of linear lists. Operations insert,
find....min, deUtem, decreasejnf, key, inf, and empty take time O(1), deLmin (=
deUtem for the minimal element) takes time O(d), where d is the distance of the
minimal element to the next bigger element in the queue (= O(b - a) in the worst
case). dear takes time O(b - a + n) and the space requirement is O(b - a + n), where
n is the current size of the queue.

Chapter 7

Graphs and Related Data Types

7.1 Graphs (graph)

1. Definition

An instance G of the data type graph consists of a list V of nodes and a list E of edges
(node and edge are item types). A pair of nodes (v, w) E V x V is associated with every
edge e E Ei v is called the source of e and w is called the target of e. Two lists of edges
are associated with every node v: the list ouLedges(v) = {e E E I source(e) = v}
of edges starting in v, and the list in_edges(v) = {e E E I target(e) = v} of edges
ending in v. Distinct graphs have disjoint node and edge sets. A graph with empty
node list is called empty.

A graph is either directed or undirectedi the main difference between directed and
undirected edges is the definition of adjacent. Undirected graphs are the subject of
section 7.3. In a directed graph an edge is adjacent to its source and in an undirected
graph it is adjacent to its source and target. In a directed graph anode w is adjacent
to anode v if there is an edge (v,w) E Ei in an undirected graph w is adjacent to
v if there is an edge (v, w) or (w, v) in the graph. The adjacency list of anode v
is the list of edges adjacent to Vi more precisely, for directed graphs the adjacency
list of v is equal to ouLedges(v) and for undirected graphs it is the concatenation of
ouLedges(v) and in_edges(v).

The value of a variable of type node is either the node of some graph, or the special
value nil (which is distinct from all nodes), or is undefined (before the first assignment
to the variable). A corresponding statement is true for the variables of type edge.

2. Creation

graph Gi

3. Operations

creates an object G of type graph and initializes it to the empty
directed graph.

a) Access operations

77

78 CHAPTER 7. GRAPHS AND RELATED DATA TYPES

int G.outdeg(node v) returns theoutdegreeofnodev, i.e., thenumber
of edges starting at v (louLedges(v)I).

int G .indeg(node v) returns the indegree of node v, i.e., the number
of edges ending at v (lin_edges(v)I).

int G.degree(node v) returns the degree of node v, i.e., the number
of edges starting or ending at v.

node G.source(edge e) returns the source node of edge e.

node G.target(edge e) returns the target node of edge e.

node G .opposite(node v, edge e) returns anode of edge e different from v
(returns v if e has source and target equal to
v) .

int G.number_oLnodesO returns the number of nodes in G.

int G.number_oLedgesO returns the number of edges in G.

list<edge> G.alLedgesO

list<node> G.alLnodesO

list<edge> G.adj_edges(node v)

list<edge> G .in_edges(node v)

list<node> G .adj-D.odes(node v)

node G .first-D.odeO

node G.last-D.odeO

node G. choose-D.ode()

node G .succ-D.ode(node v)

node G. pred-D.ode(node v)

edge G .firsLedgeO

edge G .lasLedgeO

edge G .choose_edgeO

edge G .succedge(edge e)

edge G. pred_edge(edge e)

returns the list E of all edges of G.

returns the list V of all nodes of G.

returns the list of all edges adjacent to v.

returns the list of all edges ending at v.

returns the list of all nodes adjacent to v.

returns the first node in V.

returns the last node in V.

returns anode of G (nil if G is empty).

returns the successor of node v in V (nil if it
does not exist).

returns the predecessor of node v in V (nil if
it does not exist).

ret urns the first edge in E.

returns the last edge in E.

returns an edge of G (nil if G has no edges).

returns the successor of edge e in E (nil if it
does not exist).

returns the predecessor of edge e in E (nil if
it does not exist).

7.1. GRAPHS (GRAPH) 79

edge G.firsLadj_edge(node v) returns the first edge in the adjacency list of
v.

edge G .last _adj ~dge(node v) returns the last edge in the adjacency list of
v.

edge G .adj-succ(edge e) returns the successor of edge ein the adjacency
list of node source(e) (nil if it does not exist).

edge G.adj_pred(edge e) returns the predecessor of edge e in the adja
cency list of node source(e) (nil if it does not
exist).

edge G.cyclic_adj-succ(edge e) returns the cyclic succeSS0r of edge e in the
adjacency list of node source(e).

edge G.cyclic_adj_pred(edge e) returns the cyclic predecessor of edge e in the
adjacency list of node source(e).

edge G.firstin_edge(node v) returns the first edge of in~dges(v).

edge G.lastin_edge(node v) returns the last edge of in_edges(v).

edge G .in_succ(edge e) returns the successor of edge e m
in~dges(target(e)) (nil if it does not exist).

edge G .in_pred(edge e) returns the predecessor of edge e m
in_edges(target(e)) (nil if it does not exist).

edge G.cyclicin-succ(edge e) returns the cyclic successor of edge e m
in~dges(target(e)) (nil if it does not exist).

edge G.cyclicin_pred(edge e) returns the cyclic predecessor of edge e in
in_edges(target(e)) (nil if it does not exist).

b) Update operations

node G.new -D.odeO adds a new node to G and returns it.

edge G.new_edge(nodev, nodew)adds a new edge (v, w) to G by appending it to
ouLedges(v) and to in_edges(w), and returns
it.

edge G.new_edge(edge e, node w, int dir = after)

adds a new edge (source(e), w) to G by insert
ing it before (dir = befare) or after (dir =
after) edge e into ouLedges(source(e)) and
appending it to in_edges(w), and returns it.
Here befare and after are predefined integer
constants.

edge G.new_edge(edge e1, edge e2, int dl = after, int d2 = after)

80

void

void

void

void

void

void

edge

graph&

CHAPTER 7. GRAPHS AND RELATED DATA TYPES

G .hide_edge(edge e)

G .restore_edge(edge e)

G.deLnode(node v)

G.deLedge(edge e)

G. deLaILnodes()

G. deLaILedges()

G .rev _edge(edge e)

G.revO

adds a new edge (source(e1), target(e2)) to G
by inserting it before (if d1 = before) or after (if
d1 = after) edge e1 into ouLedges(source(e1))
and before (if d2 = before) or after (if d2 =
after) edge e2 into in_edges(target(e2)), and
returns it.

removes edge e from ouLedges(source(e)) and
from in-ßdges(target(e)), but leaves it in the
list of all edges E.

re-inserts e into ouLedges(source(e)) and into
in_edges(target(e)).
Precondition: e must have been removed by
a call of hide_edge before.

deletes node v and all edges starting or ending
at v from G.

deletes the edge e from G.

deletes all nodes from G.

deletes all edges from G.

revers es the edge e = (v, w) by removing it
from G and inserting the edge (w, v) into G;
returns the reversed edge.

all edges in G are reversed.

void G.sort...nodes(int (*emp)(const node&, const node&))

the nodes of G are sorted according to the
ordering den.ned by the comparing function
cmp. Subsequent executions of forall...nodes
step through the nodes in this order. (cf. TOP
SORT1 in section 12.1).

void G.sort_edges(int (*cmp)(const edge&, const edge&))

the edges of G and all ouLedges lists (but not
the in_edges lists) are sorted according to the
ordering den.ned by the comparing function
cmp. Subsequent executions of forall_edges
step through the edges in this order. (cf. TOP
SORT1 in section 12.1).

void G.sort...nodes(node_array<T> A)

the nodes of G are sorted according to the
entries of node_array A (cf. section 7.7) Pre
condition: T must be linearly ordered.

7.1. GRAPHS (GRAPH) 81

void G.sorLedges(edge_array<T> A)

I ist< edge > G .insert ...reverse_edges()

void G .make_undirectedO

void G.make_directedO

bool G.is_directedO

bool G .is_undirectedO

void G.clearO

c) Iterators

the edges of Gare sorted according to the entries
of edge.-array A (cf. section 7.8) Precondition:
T must be linearly ordered.

for every edge (v, w) in G the reverse edge
(w, v) is inserted into G. Returns the list of
all inserted edges.

make G undirected.

make G directed.

returns true if G directed.

returns true if G undirected.

makes G the empty graph.

With the adjacency list of every node v a list iterator, called the adjacency iterator of
v, is associated (cf. section 4.7). There are operations to initialize, move, and read
these iterators.

void G.iniLadjiterator(node v) sets the adjacency iterator of v to undefined.

bool G.next...adj-edge(edge& e, node v)

moves the adjacency iterator of v forward
by one edge (to the first item of the adja
cency list of v if it was undefined) and returns
G.current...adj_edge(e, v).

bool G.current...adj_edge(edge& e, node v)

if the adjacency iterator of v is defined then
the corresponding edge is assigned to e and
true is returned, otherwise, false is returned.

bool G .next ...adj -node(node& w, node v)

if G.next...adj_edge(e, v) = true then target(e)
is assigned to wand true is returned else false
is returned.

bool G.currenLadj-node(node& w, node v)

void G.resetO

d) 1/0 Operations

if G.current...adj_edge(e, v) = true then
target(e) is assigned to w and true is returned,
else false is returned.

sets all iterators in G to undefined.

82 CHAPTER 7. GRAPHS AND RELATED DATA TYPES

void G.write(ostream& 0 cout)

void

int

int

G.write(string s)

G.read(istream& I

G .read(string s)

writes G to the output stream o.

writes G to the file with name s.

ein)

reads a graph from the input stream I and
assigns it to G.

reads a graph from the file with name s and
assigns it to G.

void G.prinLnode(node v, ostream& 0 = cout)

prints node v on the output stream o.

void G.prinLedge(edge e, ostream& 0 = cout)

prints edge e on the output stream o. If G is
directed e is represented by an arrow pointing
from sour ce to target. If G is undirected e is
printed as an undirected line segment.

void G.print(string s, ostream& 0 = cout)

void G.print(ostream& 0)

void G.printO

e) Iteration

foralLnodes(v, G)

pretty-prints G with header line s on the output
stream o.
pretty-prints G on the output stream o.

pretty-prints G on the standard ouput stream
cout.

{ "the nodes of Gare successively assigned to v" }

foralLedges(e, G)
{ "the edges of G are successively assigned to e" }

ForalLnodes(v, G)
{ "the nodes of Gare successively assigned to v in reverse order" }

ForalLedges(e, G)
{ "the edges of Gare successively assigned to e in reverse order" }

foralLouLedges(e, w)
{ "the edges of ouLedges(w) are successively assigned to e" }

foralLin_edges(e, w)
{ "the edges of in...edges(w) are successively assigned to e" }

7.2. PARAMETERIZED GRAPHS (GRAPH) 83

foralLinouLedges(e, w)
{ "the edges of ouLedges(w) and in_edges(w) are successively assigned to e" }

foralLadj_edges(e, w)
{ "the edges adjacent to node ware successively assigned to e" }

foralLadj_nodes(v, w)
{ "the nodes adjacent to node ware successively assigned to v" }

4. Implementation

Graphs are implemented by doubly linked adjacency lists. Most operations take
constant time, except for all-D.odes, all_edges, deLall-D.odes, deLall_edges, dear, write,
and read which take time O(n + m), where n is the current number of nodes and m
is the current number of edges. The space requirement is O(n + m).

7.2 Parameterized Graphs (GRAPH)

1. Definition

A parameterized graph G is a graph whose nodes and edges contain additional (user
den.ned) data. Every node contains an element of a data type vtype, called the node
type of G and every edge contains an element of a data type etype called the edge
type of G. We use <v,w,y> to denote an edge (v,w) with information y and <~> to
denote anode with information ~.

All operations den.ned on instances of the data type graph are also den.ned on instances
of any parameterized graph type G RAP H <vtype, etype>. For parameterized graphs
there are additional operations to access or update the information associated with its
nodes and edges. Instances of a parameterized graph type can be used wherever an
instance of the data type graph can be used, e.g., in assignments and as arguments
to functions with formal parameters of type graph&. If a function f(graph& G) is
called with an argument Q of type GRAPH<vtype, etype> then inside f only the
basic graph structure of Q (the adjacency lists) can be accessed. The node and edge
entries are hidden. This allows the design of generic graph algorithms, i.e., algorithms
accepting instances of any parametrized graph type as argument.

2. Creation

GRAPH <vtype, etype> G;

3. Operations

creates an instance G of type G RAP H <vtype, etype> and initializes
it to the empty graph.

vtype G .inf(node v) returns the information of node v .

84 CHAPTER 7. GRAPHS AND RELATED DATA TYPES

etype G .inf(edge e) returns the information of edge e.

void G .assign(node v, vtype x) makes x the information of node v.

void G.assign(edge e, etype x) makes x the information of edge e.

node

node

G .new -.node(vtype x)

G.new -IlodeO

adds a new node <x> to G and returns it.

adds a new node <vdef> to G and returns it.
Here, vdef is the default value of type vtype.

edge G.new_edge(node v, node w, etype a)

adds a new edge <v, w, a> to G by appending it
to the adjacency list of v and the in_edges list of
wand returns it.

edge G.new..edge(node v, node w)

adds a new edge <v, w, edef> to G by appending
it to the adjacency list of v and the in_edges list
of wand returns it. Here, edef is the default
value of type etype.

edge G.new_edge(edge e, node w, etype a)

adds a new edge <source(e), w, a> to G by ap
pending it to the adjacency list of source(e) and
the in-list of w and returns it.

edge G.new_edge(edge e, node w)

adds a new edge <source(e), w, edef> to G by
appending it to the adjacency list of source(e)
and the in_edges list of w and returns it. Here,
edef is the default value of type etype.

edge G.new_edge(edge e, node w, etype a, int dir)

void G.sort-.nodesO

void G.sorLedgesO

adds a new edge <source(e), w, a> to G by inserting
it after (dir = after) or before (dir = before)
edge e into the adjacency list of source(e) and
appending it to the in_edges list of w. Returns
the new edge.

the nodes of G are sorted according to their
contents.
Precondition: vtype is linearly ordered.

the edges of G are sorted according to their
contents.
Precondition: etype is linearly ordered.

void G.write(string fname) writes G to the file with name fname.
The output functions Print(vtype,ostream) and
Print(etype, ostream) (cf. section 1.6) must be
defined.

7.2. PARAMETERlZED GRAPHS (GRAPH) 85

int G.read.(string fname)

Operators

vtype& G [node v]

etype& G [edge e]

4. Implementation

reads G from the file with name fname .
The input functions Read(vtype, istream) and
Read(etype, istream) (cf. section 1.6) must be
defined. Returns error code
1 if file fname does not exist
2 if graph is not of type G RAP H <vtype, etype>
3 if file fname does not contain a graph
o otherwise.

returns a reference to G.inf(v).

returns a reference to G.inf(e).

Parameterized graphs are derived from directed graphs. All additional operations for
manipulating the node and edge entries take constant time.

86 CHAPTER 7. GRAPHS AND RELATED DATA TYPES

7.3 Undirected Graphs (ugraph)

1. Definition

An instance G of the data type ugraph is an undirected graph as defined in section
7.1.

2. Creation

ugraph Uj

3. Operations

see section 7.1.

creates an instance U of type ugraph and initializes it to the empty
undirected graph.

4. Implementation

see section 7.1.

7.4 Parameterized Ugraphs (UGRAPH)

1. Definition

A parameterized undirected graph G is an undirected graph whose nodes and contain
additional (user defined) data (cf. 7.2). Every node contains an element of a data
type vtype, called the node type of G and every edge contains an element of a data
type etype called the edge type of G.

UGRAP H<vtype, etype> U;

3. Operations

see section 7.2.

creates an instance U of type UGRAP H <vtype, etype> and initializes
it to the empty undirected graph.

4. Implementation

see section 7.2. .

7.5. PLANAR MAPS (PLANAR...MAP) 87

7.5 Planar Maps (planar_map)

1. Definition

An instance M of the data type plan ar ..map is the combinatorial embedding of a
planar graph, i.e., M is bidirected (for every edge (v,w) of M the reverse edge (w,v)
is also in M) and there is a planar embedding of M such that for every node v the
ordering of the edges in the adjacency list of v corresponds to the counter-clockwise
ordering of these edges around v in the embedding.

Planar maps make use of the item type face in addition to nodes and edges.

2. Creation

plan ar _map M(graph G)j

creates an instance M of type planar _map and initializes it to the
plan ar map represented by the directed graph G.
Precondition: G represents a bidirected planar map, i.e. for every
edge (v, w) in G the reverse edge (w, v) is also in G and there is a
planar embedding of G such that for every node v the ordering of the
edges in the adjacency list of v corresponds to the counter-clockwise
ordering of these edges around v in the embedding.

3. Operations

list<face> M.alLfacesO

list<face> M.adjJaces(node v)

face M.adjJace(edge e)

list<node> M.adj...nodes(face f)

list<edge> M.adj_edges(face)

edge M.reverse(edge e)

returns the list of all faces of M.

returns the list of all faces of M adjacent to
node v in counter-clockwise order.

returns the face of M to the right of e.

returns the list of all nodes of M adjacent to
face f in clockwise order.

returns the list of all edges of M bounding
face f in clockwise order.

returns the revers al of edge e in M.

edge M.firstJace_edge(face f) returns the first edge of face f in M.

edge M.succJace~dge(edge e) returns the successor edge of e in face
M.adjJace(e) i.e., the next edge in clockwise
order.

edge M.predJace_edge(edge e) returns the predecessor edge of e in face f,
i.e., the next edge in counter-clockwise order.

edge M .new _edge(edge el, edge e2)

88 CHAPTER 7. GRAPHS AND RELATED DATA TYPES

void M.deLedge(edge e)

edge M .spliLedge(edge e)

inserts the edge e = (source(el), source(e2))
and its reversal into M and returns e.
Precondition: el and e2 are bounding the same
face F. The operation splits F into two new
faces.

deletes the edge e from M. The two faces
adjacent to e are united to one face.

splits edge e = (v, w) and its reversal r = (w, v)
into edges (v,u), (u,w), (w,u), and (u,v).
Returns the edge (u, w).

node M .newnode(list<edge> el) splits the face bounded by the edges in el by

node M.new....node(face f)

list<edge> M. triangulateO

inserting a new node u and connecting it to
all source nodes of edges in el.
Precondition: all edges in el bound the same
face.

splits face f into triangles by inserting a new
node u and connecting it to all nodes of f.
Returns u.

triangulates all faces of M by inserting new
edges. The list of inserted edges is returned.

int M.straightJine_embedding(node_array<int>& z, node_array<int>& y)

Iteration

computes a straight line embedding for M
with integer coordinates (z[v], y[v]) in the
range 0 ... 2(n - 1) for every node v of M, and
returns the maximal used coordinate.

foralLfaces(f, M) { "the faces of Mare successively assigned to f" }
foralLadj_edges(e, f)

{ "the edges adjacent to face f are successively assigned to e" }

foralLadj_faces(f, v)
{ "the faces adjacent to node v are successively assigned to f" }

4. Implementation

Plan ar maps are implemented by parameterized directed graphs. All operations take
constant time, except for new_edge and deLedge which take time O(f) where f is
the number of edges in the created faces and triangulate and straightJine_embedding
which take time O(n) where n is the current size (number of edges) of the planar
map.

7.6. PARAMETERIZED PLANAR MAPS (PLANAR-MAP) 89

7.6 Parameterized Planar Maps (PLAN AR-.MAP)

1. Definition

A parameterized planar map M is a planar map whose no des and faces contain
additional (user defined) data. Every node contains an element of a data type vtype,
called the node type of M and every face contains an element of a data type jtype
called the face type of M. All operations of the data type plan ar _map are also defined
for instances of any parameterized planar-ID.ap type. For parameterized plan ar maps
there are additional operations to access or update the node and face entries.

2. Creation

PLANAR-MAP<vtype,jtype> M(GRAPH<vtype,jtype> G);

3. Operations

creates an instance M of type PLAN AR_M AP<vtype, jtype> and
initializes it to the planar map represented by the parameterized
directed graph G. The node entries of G are copied into the corre
sponding nodes of M and every face j of M is assigned the information
of one of its bounding edges in G.
Precondition: G represents a planar map.

vtype M .inf(node v) returns the information of node v.

jtype M .inf(f ace f)

vtype& M [node v]

jtype& M [jace j]

returns the information of face j.

returns a reference to the information of node v.

returns a reference to the information of face j.

void M.assign(nodev, v type x) makes x the information of node v.

void M.assign(facej, jtypex) makes x the information of face j.

edge M.new_edge(edge el, edge e2, jtype y)

inserts the edge e = (source(el),source(e2)) and
its reversal edge e' into M.
Precondition: el and e2 are bounding the same
face F. The operation splits F into two new faces
j, adjacent to edge e and j', adjacent to edge e'
with inf(f) = inf (F) and inf(f') = y.

edge M.spliLedge(edge e, vtype x)

splits edge e = (v, w) and its revers al r = (w, v)
into edges (v, u), (u, w), (w, u), and (u, v). Assigns
information x to the created node u and returns
the edge (u,w).

90 CHAPTER 7. GRAPHS AND RELATED DATA TYPES

node M .new Jlode(list<edge>& el, vtype x)

splits the face bounded by the edges in el by
inserting a new node u and connecting it to all
source nodes of edges in el. Assigns information
x to u and returns u.
Precondition: all edges in el bound the same face.

node M.newJlode(face J, vtype x)

4. Implementation

splits face J into triangles by inserting a new
node u with information x and connecting it to
all nodes of J. Returns u.

Parameterized planar maps are derived from planar maps. All additional operations
for manipulating the node and edge contents take constant time.

7.7. NODE ARRAYS (NODE...ARRAY) 91

7.7 Node Arrays (node_array)

1. Definition
An instance A of the parameterized data type node_array<E> is a partial mapping
from the node set of a graph G to the set of variables of type E, called the element
type of the array. The domain I of A is called the index set of A and A(v) is called
the element at position v. A is said to be valid for all nodes in I.

2. Creation
node_array<E> Aj

creates an instance A of type node_array<E> with empty index set.

node_array<E> A(graph G)j
creates an instance A of type node_array<E> and initializes the index
set of A to the current node set of graph G.

node_array<E> A(graph G, E :C)j

creates an instance A of type node_array<E> , sets the index set of
A to the current node set of graph G and initializes A(v) with :c for
all nodes v of G.

node_array<E> A(graph G, int n, E :C)j

creates an instance A of type node_array<E> valid for up to n nodes
of graph G and initializes A(v) with :c for all nodes v of G.
Precondition: n ~ lVI. A is also valid for the next n - lVI nodes
added to G.

3. Operations

E& A [node v]

void A.init(graph G)

void A.init(graph G, E:c)

returns the variable A(v).
Precondition: A must be valid for v.

sets the index set I of A to the node set of G,
i.e., makes A valid for all nodes of G.

makes A valid for all nodes of G and sets A(v) = :c
for all nodes v of G.

void A.init(graph G, int n, E:c) makes A valid for at most n nodes of G and

4. Implementation

sets A(v) = :c for all nodes v of G. Precondition:
n ~ lVI. Ais also valid for the next n-IVI nodes
added to G.

Node arrays for a graph Gare implemented by C++ vectors and an internal numbering
of the nodes and edges of G. The access operation takes constant time, init takes
time O(n), where n is the number of nodes in G. The space requirement is O(n).

Remark: Anode array is only valid for a bounded number of nodes of G. This
number is either the number of nodes of G at the moment of creation of the array or
it is explicitely set by the user. Dynamic node arrays can be realized by node maps
(cf. sectioil 7.9) .

92 CHAPTER 7. GRAPHS AND RELATED DATA TYPES

7.8 Edge Arrays (edge_array)

1. Definition
An instance A of the parameterized data type edge_array<E> is a partial mapping
from the edge set of a graph G to the set of variables of type E, called the element
type of the array. The domain I of A is called the index set of A and A(e) is called
the element at position e. A is said to be valid for all edges in I.

2. Creation
edge_array<E> A;

creates an instance A of type edge_array<E> with empty index set.

edge_array<E> A(graph G);
creates an instance A of type edge_array<E> and initializes the index
set of A to be the current edge set of graph G.

edge_array<E> A(graph G, E z);
creates an instance A of type edge_array<E>, sets the index set of
A to the current edge set of graph G and initializes A(v) with z for
all edges v of G.

edge_array<E> A(graph G, int n, E z)j

creates an instance A of type edge_array<E> valid for up to n edges
of graph G and initializes A(e) with z for all edges e of G.
Precondition: n ~ lEI.
A is also valid for the next n -lEI edges added to G.

3. Operations

E& A [edge e]

void A.init(graph G)

void A.init(graph G, E z)

returns the variable A(e).
Precondition: A must be valid for e.
sets the index set I of A to the edge set of G,
i.e., makes A valid for all edges of G.

makes A valid for all edges of G and sets A(e) = z
for all edges e of G.

void A.init(graph G, int n, E z) makes A valid for at most n edges of G and sets

4. Implementation

A(e) = z for all edges e of G.
Precondition: n ~ I E I·
A is also valid for the next n - lEI edges added
to G.

Edge arrays for a graph Gare implemented by C++ vectors and an internal numbering
of the edges and edges of G. The access operation takes constant time, init takes
time O(n), where n is the number of edges in G. The space requirement is O(n).
Remark: An edge array is only valid for a bounded number of edges of G. This
number is either the number of edges of G at the moment of creation of the array or
it is explicitely set by the user. Dynamic edge arrays can be realized by edge maps
(cf. section 7.10).

7.9. NODE MAPS (NODE-MAP) 93

7.9 Node Maps (node_map)

1. Definition

An instance of the data type node_map<E> is a map for the nodes of a graph G,
i.e., equivalent to map<node, E> (cf. 5.8). It can be used as adynamie variant of
the data type node_array (cf. 7.7).

2. Creation

node_map<E> M' ,
introduces a variable M of type node_map<E> and initializes it to
the map with empty domain.

node_map<E> M(graph G)j

introduces a variable M of type node_map<E> and initializes it with
a mapping m hom the set of all no des of G into the set of variables
of type E. The variables in the range of m . are initialized by a call
of the default constructor of type E.

node_map<E> M(graph G, E Z)j

3. Operations

introduces a variable M of type node_map<E> and initializes it with
a mapping m hom the set of all nodes of G into the set of variables
of type E. The variables in the range of mare initialized with a
copy of z.

void M.initO makes Manode map with empty domain.

void M.init(graph G) makes M to a mapping m hom the set of all nodes of
G into the set of variables of type E. The variables
in the range of mare initialized by a call of the
default constructor of type E.

void M.init(graph G, E z) makes M to a mapping m hom the set of all nodes of
G into the set of variables of type E. The variables
in the range of mare initialized with a copy of z.

E& M [node v] returns the variable M(v).

4. Implementation

Node maps are implemented by an efficient hashing method based on the internal
numbering of the nodes. An access operation takes expected time 0(1).

94 CHAPTER 7. GRAPHS AND RELATED DATA TYPES

7.10 Edge Maps (edge_map)

1. Definition

An instance of the data type edge_map<E> is a map for the edges of a graph G, i.e.,
equivalent to map<edge, E> (cf. 5.8). It can be used as adynamie variant of the
data type edge_array (cf. 7.8) .

2. Creation

edge_map<E> M;

introduces a variable M of type edge-map<E> and initializes it to
the map with empty domain.

edge_map<E> M(graph G);

introduces a variable M of type edge-map<E> and initializes it with
a mapping m from the set of all edges of G into the set of variables
of type E. The variables in the range of mare initialized by a call
of the default constructor of type E.

edge_map<E> M(graph G, Ex);

3. Operations

introduces a variable M of type edge_map<E> and initializes it with
a mapping m from the set of all edges of G into the set of variables
of type E. The variables in the range of mare initialized with a
copy of x.

void M.initO makes M an edge map with empty domain.

void M.init(graph G) makes M to a mapping m from the set of all edges of
G into the set of variables of type E. The variables
in the range of mare initialized by a call of the
default constructor of type E.

void M.init(graph G, Ex) makes M to a mapping m from the set of all edges of
G into the set of variables of type E. The variables
in the range of mare initialized with a copy of x .

E& M [edge e] returns the variable M(e).

4. Implementation

Edge maps are implemented by an efficient hashing method based on the internal
numbering of the edges. An access operation takes expected time 0(1).

7.11. TWO DIMENSIONAL NODE ARRAYS (NODE...MATRIX) 95

7.11 Two Dimensional N ode Arrays (node-.nlatrix)

1. Definition

An instance M of the parameterized data type node_matriz<E> is a partial mapping
from the set of node pairs V X V of a graph to the set of variables of data type E,
called the element type of M. The domain I of M is called the index set of M. M
is said to be valid for all node pairs in I. Anode matrix can also be viewed as a
node array with element type node_array<E> (node_array<node_array<E»).

2. Creation

node_matriz<E> Mj

creates an instance M of type node_matriz<E> and initializes the
index set of M to the empty set.

node_matriz<E> M(graph G)j

creates an instance M of type node_matriz<E> and initializes the
index set to be the set of all node pairs of graph G, i.e., M is made
valid for all pairs in V x V where V is the set of nodes currently
contained in G.

node_matriz<E> M(graph G, E z)j

3. Operations

void

void

creates an instance M of type node_matriz<E> and initializes the
index set of M to be the set of all node pairs of graph G, i.e., M
is made valid for all pairs in V x V where V is the set of nodes
currently contained in G. In addition, M(v,w) is initialized with z
for all nodes v, w E V.

M.init(graph G) sets the index set of M to V x V, where V
is the set of all nodes of G.

M.init(graph G, E z) sets the index set of M to V X V, where V
is the set of all nodes of G and initializes
M(v,w) to z for all V,w E V.

node_array<E>& M [node v 1 returns the node_array M (v).

E& M (node v, node w) returns the variable M (v, w).
Precondition: M must be valid for v and w.

4. Implementation

Node matrices for a graph Gare implemented by vectors of node arrays and an
internal numbering of the nodes of G. The access operation takes constant time, the
init operation takes time O(n2

), where n is the nu mb er of nodes currently contained
in G. The space requirement is O(n2

). Note that anode matrix is only valid for
the nodes contained in G at the moment of the matrix declaration or initialization
(init). Access operations for later added nodes are not allowed.

96 CHAPTER 7. GRAPHS AND RELATED DATA TYPES

7.12 Sets ofNodes (node_set)

1. Definition

An instance S of the data type node_set is a subset of the no des of a graph G. S is
said to be valid for the nodes of G.

2. Creation

node_set S(graph G);

creates an instance S of type node-set valid for all nodes currently
contained in graph G andinitializes it to the empty set.

3. Operations

void S .insert (node :z:) adds node :z: to S.

void S .del(node :z:) removes node :z: from S.

bool S .member(node :z:) returns true if :z: in S, false otherwise.

node S.choose() returns anode of S.

int S.sizeO returns the size of S.

bool S.emptyO returns true iff S is the empty set.

void S.clearO makes S the empty set.

4. Implementation

Anode set S for a graph G is implemented by a combination of a list L of nodes and
anode array of listitems associating with each node its position in L. All operations
take constant time, except for clear which takes time O(ISI). The space requirement
is O(n), where n is the number of nodes of G.

7.13. SETS OF EDGES (EDGE-.SET) 97

7.13 Sets of Edges (edge_set)

1. Definition

An instance 5 of the data type edge_set is a subset of the edges of a graph G. 5 is
said to be valid for the edges of G.

2. Creation

edge_set 5(graph G);

creates an instance 5 of type edge...set valid for all edges currently
in graph G and initializes it to the empty set.

3. Operations

void 5 .insert (edge x) adds edge x to 5.

void 5 .del(edge x) removes edge x from 5.

bool 5 .member(edge x) returns true if x in 5, false otherwise.

edge 5.chooseO returns an edge of 5.

int 5.sizeO returns the size of 5.

bool 5.emptyO returns true iff 5 is the empty set.

void 5.dearO makes 5 the empty set.

4. Implementation

An edge set 5 for a graph G is implemented by a combination of a list L of edges
and an edge array of listjtems associating with each edge its position in L. All
operations take constant time, except for dear which takes time 0(151). The space
requirement is O(n), where n is the number of edges of G.

98 CHAPTER 7. GRAPHS AND RELATED DATA TYPES

7.14 Lists of N odes (node-.list)

1. Definition

An instance of the data type node_list is a doubly linked list of nodes. It is implemented
more efficiently than the general list type list<node> (4.7). However, it can only be
used with the restriction that every node is contained in at most one node.1ist.

2. Creation

node_list L;

introduces a variable L of type node_list and initializes it with the
empty list.

3. Operations

void L.append(node v) appends v to list L.

void L. pushe node v) adds v at the front of L.

void L.insert(node v, node w) inserts v after w into L.
Precondition: w E L.

node L.popO deletes the first node from L and returns it.
Precondition: L is not empty.

void L.del(node v) deletes v from L.
Precondition: v E L.

bool L.member(node v) returns true if v E Land false otherwise.

bool L (node v) returns true if v E Land false otherwise.

node L.firstO returns the first node in L (nil if L is empty).

node L.lastO returns the last node in L (nil if L is empty).

node L. succ(node v) returns the successor of v in L.
Precondition: v E L.

node L.pred(node v) returns the predecessor of v in L.
Precondition: v E L.

node L. cyclic...succ(node v) returns the cyclic successor of v in L.
Precondition: v E L.

node L.cyclic_pred(node v) returns the cyclic predecessor of v in L.
Precondition: v E L.

forall(x, L) { "the elements of L are successively assigned to x" }

7.15. NODE PARTITIONS (NODE..PARTITION) 99

7.15 Node Partitions (node_partition)

1. Definition

An instance P of the data type node_partition is a partition of the nodes of a graph
G.

2. Creation

node_partition P(graph G);

creates anode_partition P containing for every node v in Gablock
{v}.

3. Operations

int P.same_block(node v, node w)

returns true if v and w belong to the same block
of P, false otherwise.

void P. union_blocks (node v, node w)

node P .find(node v)

4. Implementation

unites the blocks of P containing nodes v and w.

returns a canonical representative node of the block
that contains node v.

Anode partition for a graph G is implemented by a combination of a partition P
and anode array of partitionjtem associating with each node in G a partition item
in P. Initialization takes linear time, union_blocks takes time 0(1) (worst-case), and
same_block and find take time O(a(n)) (amortized). The space requirement is O(n),
where n is the number of nodes of G.

100 CHAPTER 7. GRAPHS AND RELATED DATA TYPES

7.16 Node Priority Queues (node_pq)

1. Definition

An instance Q of the parameterized data type node_pq<P> is a partial function from
the nodes of a graph G to a linearly ordered type P of priorities. The priority of a
node is sometimes called the information of the node.

2. Creation

node_pq<P> Q(graph G);

creates an instance Q ot type node_pq<P> for the nodes of graph G
with dom(Q) = 0.

3. Operations

void Q.insert(node v, P x)

P Q . prio(node v)

bool Q .member(node v)

adds the node v with priority x to Q.
Precondition: v f/. dom(Q).

returns the priority of node v.

returns true if v in Q, false otherwise.

void Q .decrease_p(node v, P x) makes x the new priority of node v.

node Q.findJrrinO

void Q .del(node v)

node Q.delJrrinO

void Q.dearO

int Q.sizeO

int Q.emptyO

P Q .inf(node v)

4. Implementation

Precondition: x::; Q. prio(v).

returns anode with minimal priority (nil if Q is
empty).

removes the node v from Q.

removes anode with minimal priority from Q and
returns it (nil if Q is empty).

makes Q the empty node priority queue.

returns Idom(Q)I.

returns true if Q is the empty node priority queue,
false otherwise.

returns the priority of node v.

Node priority queues are implemented by fibonacci heaps and node arrays. Operations
insert, deLnode, delJrrin take time O(log n), findJrrin, decreaseinf, empty take time
0(1) and dear takes time O(m), where m is the size of Q. The space requirement
is O(n), where n is the number of nodes of G.

7.17. BOUNDED NODE PRIORITY QUEUES (BJiODE...PQ) 101

7.17 Bounded Node Priority Queues (b-Ilode_pq)

1. Definition

An instance of the data type b_node_pq<N> is a priority queue of nodes with integer
priorities with the restriction that the size of the minimal interval containing all
priorities in the queue is bounded by N, the minimum priority is never decreasing,
and every node is contained in at most one queue. When applied to the empty
queue the del...min - operation returns a special default minimum node defined in the
constructor of the queue.

2. Creation

b_node_pq<N> PQj

intro duces a variable PQ of type b.:node_pq<N> and initializes it with
the empty queue with default minimum node nil.

b_node_pq<N> PQ(node v)j

introduces a variable PQ of type b_node_pq<N> and initializes it with
the empty queue with default minimum node v.

3. Operations

node PQ .del...minO removes the node with minimal priority from PQ
and returns it (the default minimum node if PQ
is empty).

void PQ .insert (node w, int p) adds node w with priority p to PQ.

void PQ .del(node w) deletes node w from PQ.

4. Implementation

Bounded node priority queues are implemented by cyclic arrays of doubly linked node
lists.

5. Example

Using a b.:node_pq in Dijktra's shortest paths algorithm.

int dijkstra(const GRAPH<int,int>& g, node s, node t)

{node_array<int> dist(g,MAXINT);

b_node_pq<100> PQ(t); / / on empty queue del_min returns t

dist Es] = 0;

for (node v = s; v!= t; v = PQ.deLminO)

{int dv = dist[v];

edge e;

102 CHAPTER 7. GRAPHS AND RELATED DATA TYPES

}

forall_adj_edges(e,v)

{node w = g.opposite(v,e);

int d = dv + g.inf(e);

}

if (d < dist [w])

{ if (dist[w] != MAXINT) PQ.del(w);

dist [w] = d;

PQ . insert(w,d);

}

}

return dist [t] ;

7.18. GRAPH GENERATORS () 103

7.18 Graph Generators ()

void complete_graph(graph& G, int n)

creates a complete graph G with n nodes.

void random_graph(graph& G, int n, int m)

void tesLgraph(graph& G)

creates a random graph G with n nodes and m

edges.

creates interactively a user defined graph G.

void complete_bigraph(graph& G, int a, int b, list<node>& A, list<node>& B)

creates a complete bipartite graph G with a no des
on side A and b nodes on side B. All edges are
directed from A to B.

void random_bigraph(graph& G, int a, int b, int m, list<node>& A, list<node>& B)

creates a random bipartite graph G with a no des
on side A, b nodes on side B, and m edges. All
edges are directed from A to B.

void tesLbigraph(graph& G, list<node>& A, list<node>& B)

creates interactively a user defined bipartite graph
G with sides A and B. All edges are directed from
A to B.

void random_planar_graph(graph& G, int n)

creates a random planar graph G with n nodes.

void random_planar_graph(graph& G, node_array<double>& xcoord, ycoord, int n)

creates a random planar graph G with n no des
embedded into the unit sqare. The embedding is
given by xcoord[v] and ycoord[v] for every node v
of G.

void triangulated_planar_graph(graph& G, int n)

creates a triangulated planar graph G with n nodes.

void triangulated_planar_graph(graph& G, node_array<double>& xcoord, ycoord, int n)

creates a triangulated plan ar graph G with n no des
embedded into the unit sqare. The embedding is
given by xcoord[v] and ycoord[v] for every node v
of G.

void grid_graph(graph& G, int n)

creates a grid graph G of size n x n nodes.

104 CHAPTER 7. GRAPHS AND RELATED DATA TYPES

void grid_graph(graph&, node_array<double>& xeoord, node_array<double>& ycoord, int n)

creates a grid graph G of size n X n nodes embedded
into the unit sqare. The embedding is given by
xeoord[v] and yeoord[v] for every node v of G.

void cmdline..graph(graph& G, int arge, ehar * * argv)

builds graph G as specified by the command line
arguments:
prog
prog n
prog n m
prog file

--+ tesLgraphO
--+ complete_graph(n)
--+ test..graph(n, m)
--+ G.read_graph(file).

7.19. MISCELLANEOUS GRAPH FUNCTIONS (GRAPH-MISC) 105

7.19 Miscellaneous Graph Functions (graph-IIlisc)

bool IsJ3idirected(graph G, edge_array<edge>& rev)

bool Is_Simple(graph& G)

computes for every edge e = (v, w) in G its reversal
rev[e] = (w,v) in G (nil if not present) . Returns
true if every edge has areversal and false otherwise.

returns true if G is simple, i.e., has no parallel
edges, false otherwise.

void Make~imple(graph& G) makes G simple by removing one of each pair of
parallel edges from G.

106 CHAPTER 7. GRAPHS AND RELATED DATA TYPES

7.20 Graph Algorithms (graph_alg)

This section gives a summary of the graph algorithms contained in LEDA. All algorithms
are generic, i.e., they accept instances of any user defined parameterized graph type
GRAP H <vtype, etype> as arguments. The he ader file <LEDA/graph_alg.h> has to
be included.

7.20.1 Basic Algorithms

• Topological Sorting

bool TOPSORT(graph& G, node_array<int>& ord)

TOPSORT takes as argument a directed graph G(V, E). It sorts G topologically
(if G is acyclic) by computing for every node v E V an integer ord[v] such that
1 :::; ord[v] :::; lVI and ord[v] < ord[w] for all edges (v,w) E E. TOPSORT returns
true if G is acyclic and false otherwise.

The algorithm ([30]) has running time O(IVI + lEI).

• Depth First Search

list<node> DFS(graph& G, node s, node_array<bool>& reached)

DFS takes as argument a directed graph G(V, E), anode s of G and a node_array
reached of boolean values. It performs a depth first search starting at s visiting all
reachable nodes v with reached[v] = false. For every visited node v reached[v] is
changed to true. DFS returns the list of all reached nodes.

The algorithm ([47]) has running time O(IVI + lEI).

list<edge> D FS-NUM(graph& G, node_array<int>& df snum, node_array<int>&
compnum)

DFS-NUM takes as argument a directed graph G(V, E). It performs a depth first
search of G numbering the nodes of G in two different ways. df snum is a numbering
with respect to the calling time and compnum a numbering with respect to the
completion time of the recursive calls. DFS-.NUM returns a depth first search forest
of G (list of tree edges).

The algorithm ([47]) has running time O(IVI + lEI).

• Breadth First Search

list<node> BFS(graph& G, node s, node_array<int>& dist)

BFS takes as argument a directed graph G(V, E) and anode s of G. It performs
a breadth first search starting at s computing for every visited node v the distance
dist[v] from s to v. BFS returns the list of all reached nodes.

7.20. GRAPH ALGORITHMS (GRAPH-ALG) 107

The algorithm ([34]) has running time O(IVI + lEI).

• Connected Components

int COMPONENTS(graph& G, node_array<int>& compnum)

COMPONENTS takes a graph G(V, E) as argument and computes the connected
components of the underlying undirected graph, i.e., for every node v E V an integer
compnum[v] from [0 ... c - 1] where c is the number of connected components of G
and v belongs to the i-th connected component iff compnum[v] = i. COMPONENTS
returns c.

The algorithm ([34]) has running time O(IVI + lEI).

• Strong Connected Components

int STRONG_COMPONENTS(graph& G, node_array<int>& compnum)

STRONG_COMPONENTS takes a directed graph G(V, E) as argument and computes
for every node v E V an integer compnum[v] from [0 ... c -1] where cis the number
of strongly connected components of G and v belongs to the i-th strongly connected
component iff compnum[v] = i. STRONG_COMPONENTS returns c.

The algorithm ([34]) has running time O(IVI + lEI).

• Transitive Closure

graph TRANSITIVE_CLOSURE(graph& G)

TRANSITIVE_CLOSURE takes a directed graph G(V, E) as argument and computes
the transitive closure of G(V, E). It returns a directed graph G/(V' , E') with V' = V
and (v,w) E E' ~ there is a path form v to w in G.

The algorithm ([23]) has running time O(IVI . lEI).

7.20.2 N etwork Algorithms

Most of the following network algorithms are overloaded. They work for both integer
and real valued edge costs.

• Single Source Shortest Paths

void DIJKSTRA(graph& G, node s, edge_array<int> cost, node_array<int> dist,
node_array<edge> pred)

void DIJKSTRA(graph& G, node s, edge_array<double> cost, node_array<double>
dist, node_array<edge> pred)

DIJKSTRA takes as arguments a directed graph G(V, E), a source node sand an
edge_array cost giving for each edge in G a non-negative cost. It computes for each
node v in G the distance dist[v] from s (cost of the least cost path from s to v) and
the predecessor edge pred[v] in the shortest path tree.

108 CHAPTER 7. GRAPHS AND RELATED DATA TYPES

The algorithm ([13], [22]) has running time O(IEI + /VI log /VI).

bool BELLMAN-FORD(graph& G, node s, edge_array<int> cost,
node_array<int> dist, node_array<int> pred)

bool BELLMAN ..FORD(graph& G, node s, edge_array<double> cost,
node_array<double> dist, node_array<edge> pred)

BELLMAN ..FORD takes as arguments a graph G(V, E), a source node sand an
edge_array cost giving for each edge in G a real (integer) cost. It computes for each
node v in G the distance dist[v] from s (cost of the least cost path from s to v) and
the predecessor edge pred[v] in the shortest path tree. BELLMAN-FORD returns
false if there is a negative cyde in G and true otherwise

The algorithm ([5]) has running time O(IVI . lEI).

• All Pairs Shortest Paths

bool ALLYAIRS.-SHORTESTYATHS(graph& G, edge_array<int>&
cost, node_matrix<int>& dist)

bool ALLYAIRS.-SHORTESTYATHS(graph& G,
edge.-array<double>& cost, node_matrix<double>& dist)

ALL_PAIRS.-SHORTEST YATHS takes as arguments a graph G(V, E) and an
edge_array cost giving for each edge in G a real (integer) valued cost. It com
putes for each node pair (v, w) of G the distance dist(v, w) from v to w (cost of the
least cost path from v to w). ALLYAIRS.-SHORTESTYATHS returns false if there
is a negative cyde in G and true otherwise.

The algorithm ([5], [20]) has running time O(IVI·IEI + IVI2 log lVI) .

• Maximum Flow

int MAX-FLOW(graph& G, node s, node t,
edge_array<int>& cap, edge_array<int>& flow)

int MAX..FLOW(graph& G, node s, node t,
edge_array<double>& cap, edge_array<double>& flow)

MAX..FLOW takes as arguments a directed graph G(V, E), a source node s, a sink
node t and an edge_array cap giving for each edge in G a capacity. It computes for
every edge e in G a flow flow[e] such that the total flow from s to t is maximal and
flow[e] ~ cap[e] for all edges e. MAX..FLOW returns the total flow from s to t.

The algorithm ([26]) has running time O(IVI 3).

int MIN _COST ..MAX..FLOW(graph& G, node s, node t,
edge_array<int>& cap, edge_array<int>& cost,
edge_array<int>& flow)

MIN_COST..MAX..FLOW takes as arguments a directed graph G(V, E), a source node
s, a sink node t, an edge_array cap giving for each edge in G a capacity, and an
edge_array cast specifying for each edge an integer cost. It computes for every edge e

7.20. GRAPH ALGORITHMS (GRAPH-.ALG) 109

in G a flow flow[e] such that the total flow !rom s to t is maximal, the total cost of
the flow is minimal, and flow[e]:::; cap[e] for all edges e. MIN_CONST~AX..FLOW
returns the total flow !rom s to t.

• Minimum Cut

list<node> MIN _CUT(graph& G, edge_array<int>& weight)

MIN_CUT(G, weight) takes as arguments a graph G and an edge.-a.rray giving for
each edge an integer weight. The algorithm ([44]) computes the cut of minimum
weight and returns it as a list of nodes. It has running time O(IVI·IEI + IVI 2 10g lVI).

• Maximum Cardinality Matching

list<edge> MAX_CARD~ATCHING(graph& G)

MAX_CARD~ATCHING(G) computes a maximum cardinality matching of G, i.e.,
a maximal set of edges M such that no two edges in M share an end point. It returns
M as a list of edges.

The algorithm ([16], [48]) has running time O(IVI·IEI· a(IEI)).

• Maximum Cardinality Bipartite Matching

list<edge> MAX_CARDJnPARTITE~ATCHING(graph& G, list<node>& A,
list<node>& B)

MAX_CARD-.BIPARTITE~ATCHING takes as arguments a directed graph G(V, E)
and two lists A and B of nodes. All edges in G must be directed from no des in A
to no des in B. It returns a maximum cardinality matching of G.

The algorithm ([27]) has running time O(IEIM).

• Maximum Weight Bipartite Matching

list<edge> MAX_WEIGHT-.BIPARTITE~ATCHING(graph& G,
list<node>& A, list<node>& B, edge_array<int>& weight)

list<edge> MAX_WEIGHT-.BIPARTITE~ATCHING(graph& G,
list<node>& A, list<node>& B, edge..array<double>& weight)

MAX_WEIGHT-.BIPARTITE~ATCHING takes as arguments a directed graph G,
two lists A and B of nodes and an edge...array giving for each edge an integer (real)
weight. All edges in G must be directed !rom nodes in A to nodes in B. It computes
a maximum weight bipartite matching of G, i.e., a set of edges M such that the sum
of weights of all edges in M is maximal and no two edges in M share an end point.
MAX_WEIGHT-.BIPARTITE~ATCHING returns M as a list of edges.

The algorithm ([22]) has running time O(IVI . lEI).

• Spanning Tree

list<edge> SPANNING_TREE(graph& G)

110 CHAPTER 7. GRAPHS AND RELATED DATA TYPES

SPANNING_TREE takes as argument a graph G(V, E). It computes a spanning tree
T of of the underlying undirected graph, SPANNING_TREE returns the list of edges
of T.
The algorithm ([34]) has running time O(IVI + lEI).

• Minimum Spanning Tree

list<edge> MIN.-SPANNING_TREE(graph&G, edge_array<int>& cost)

list<edge> MIN.-SPANNING_TREE1(graph&G, edge_array<double>& cost)

MIN .-SPANNIN G _TREE takes as argument an undirected graph G(V, E) and an
edge_array cost giving for each edge an integer cost. It computes a minimum
spanning tree T of G, i.e., a spanning tree such that the sum of all edge costs is
minimal. MIN.-SPANNING_TREE returns the list of edges of T.
The algorithm ([31]) has running time O(IEllog lVI).

7.20.3 Algorithms for Planar Graphs

• Planarity Test
bool PLANAR(graph& G, bool embed = false)

PLANAR takes as input a directed graph G(V, E) and performs a planarity test
for G. If the second argument embed has value true and G is a planar graph it is
transformed into a planar map (a combinatorial embedding such that the edges in
all adjacency lists are in clockwise ordering). PLANAR returns true if G is plan ar
and false otherwise.

The algorithm ([28]) has running time O(IVI + lEI).
bool PLANAR(graph&G, list<edge>& el)

PLANAR takes as input a directed graph G(V, E) and performs a planarity test for
G. PLAN AR returns true if G is plan ar and false otherwise. If G is not planar a
Kuratowsky-Subgraph is computed and returned in el.

• Triangulation
list<edge> TRIANGULATE..PLANARMAP(graph& G)

TRIANGULATE..PLANARMAP takes a directed graph G representing a planar
map. It triangulates the faces of G by inserting additional edges. The list of inserted
edges is returned. Precondition: G must be connected.

The algorithm ([29]) has running time O(IVI + lEI).

• Straight Line Embedding
int STRAIGHT ..LINK.EMBEDDING(graph& G,

node_array<int>& xcoord, node_array<int>& ycoord)

STRAIGHT..LINE.-EMBEDDING takes as argument a directed graph G representing
a plan ar map. It computes a straight line embedding of G by assigning non-negative
integer coordinates (xcoord and ycoord) in the range 0 .. 2(n - 1) to the nodes.
STRAIGHT..LINE.-EMBEDDING returns the maximal coordinate.

The algorithm ([19]) has running time O(IVI 2
).

Chapter 8

Basic Data Types for
Two-Dimensional Geometry

LEDA provides a collection of simple data types for two-dimensional geometry, such
as points, segments, lines, cirdes, and polygons. Furthermore, some basic algorithms
(section 8.8) are induded.

8.1 Points (point)

1. Definition

An instance of the data type point is a point in the two-dimensional plane IR 2 • We use
(a, b) to denote a point with first (or x-) coordinate a and second (or y-) coordinate
b.

2. Creation

point pj

introduces a variable p of type point initialized to the point (0,0) .

point p(double:z:, doubl'e Y)j

introduces a variable p of type point initialized to the point (:z:, Y).

point p(vector v)j

intro duces a variable p of type point initialized to the point defined
by vector v.

3. Operations

double

double

p.xcoordO

p.ycoord()

returns the first coordinate of p.

returns the second coordinate of p.

111

112CHAPTER 8. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

double

double

p.distance(point q)

p.distanceO

returns the Euc1idean distance between p and q.

returns the Euclidean distance between p and
(0,0).

point p.translate(double a, double d)

returns the point created by translating p in
direction a by distance d. The direction is given
by its angle with a right oriented horizontal ray.

point p. translate(vector v) returns p+v, i.e., p translated by vector v.
Precondition: v.dimO = 2.

point p.rotate(point q, double a)

point p.rotate90(point q)

point p.rotate(double a)

point p.rotate900

int p q

int p != q

point p + vector v

ostream& ostream& 0 < < p

istream& istream& I > > & p

Non-Member Functions

returns the point created by a rotation of p about
point q by angle a.

returns the point created by a rotation of p about
point q by an angle of 90 degree.

returns p.rotate(point(O, 0), a).

returns p.rotate90(point(0, 0».

Test for equality.

Test for inequality.

Translation by vector v.

writes p to output stream o.

reads the coordinates of p (two double numbers)
from input stream I.

bool identical(point p, point q)

Test for identity.

int orientation(point a, point b, point c)

computes the orientation of points a, b, c, l.e.,
the sign of the determinant

a:z; ay 1
b:z; by 1
C:z; Cy 1

8.1. POINTS (POINT) 113

bool collinear(point a, point b, point c)

returns true if points a, b, c are collinear, l.e.,
orientation(a, b, c) = 0, and false otherwise.

bool righLturn(point a, point b, point c)

returns true if points a, b, c form a righ turn, i.e.,
orientation(a, b, c) > 0, and false otherwise.

bool lefLturn(point a, point b, point c)

returns true if points a, b, c form a left turn, i.e.,
orientation(a, b, c) < 0, and false otherwise.

bool incircle(point a, point b, point c, point d)

returns true if point d lies in the interior of the circle
through points a, b, and c, and false otherwise.

114CHAPTER 8. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

8.2 Rational Points (rat_point)

1. Definition

An instance of the data type raLpoint is a point with rational coordinates in the
two-dimensional plane. A point (a, b) is represented by homogeneous coordinates
(x,y,w) of arbitrary length integers (see 3.1) such that a = x/wand b = y/w.

2. Creation

raLpoint p;

introduces a variable p of type raLpoint initialized to the point (0,0).

raLpoint p(integer a, integer b);

intro duces a variable p of type raLpoint initialized to the point (a, b).

raLpoint p(integer x, integer y, integer w);

introduces a variable p of type raLpoint initialized to the point with
homogeneous coordinates(x, y, w).

3. Operations

double p.xcoord()

double p.ycoordO

integer p.X()

integer p.YO

integer p.WO

double p.XDO

double p.YDO

double p.WDO

returns a double precision floating point approxima
tion of the x-coordinate of p.

returns a double precision floating point approxima
tion of the y-coordinate of p.

returns the first homogeneous coordinate of p.

returns the second homogeneous coordinate of p.

returns the third homogeneous coordinate of p.

returns a floating point approximation of the fust
homogeneous coordinate of p.

returns a floating point approximation of the second
homogeneous coordinate of p.

returns a floating point approximation of the third
homogeneous coordinate of p.

raLpoint p.rotate90(raLpoint p)eturns p rotate by 90 degrees about p.

raLpoint p.rotate900 returns p rotate by 90 degrees about the origin.

raLpoint p. translate(raLpoint p~twtri~ p translated by ...

bool identical

8.2. RATIONAL POINTS (RATJlOINT) 115

(raLpoint p, raLpoint q)

Test for identity ...

bool raLpoint p == raLpoint q

Test for equality.

bool raLpoint p ! = raLpoint q

Test for inequality.

ostream& ostream& 0 < < raLpoint p

writes the homogeneous coordinates (x, y, w) of p to
output stream O.

istream& istream& I > > raLpoint& p

reads the homogeneous coordinates (x, y, w) of p
from input stream I.

int orientation(raLpoint a, raLpoint b, raLpoint c)

computes the orientation of points a, b, c, i.e., the
sign of the determinant

a:r ay aw

b:r by bw

C:r Cy Cu,

bool collinear(raLpoint a, rat.:point b, raLpoint c)

returns true if points a, b, c are collinear, l.e.,
orientation(a, b, c) = 0, and false otherwise.

bool righLturn(raLpoint a, raLpoint b, raLpoint c)

returns true if points a, b, c form a righ turn, i.e.,
orientation(a, b, c) > 0, and false otherwise.

bool lefLturn(raLpoint a, raLpoint b, raLpoint c)

returns true if points a, b, c form a left turn, i.e.,
orientation(a, b, c) < 0, and false otherwise.

116CHAPTER 8. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

8.3 Segments (segment)

1. Definition

An instance s of the data type segment is a directed straight line segment in
the two-dimensional plane, i.e., a straight line segment [p, q] connecting two points
p, q E IR 2 . P is called the start point and q is called the end point of s. The length
of s is the Euclidean distance between p and q. The angle between a right oriented
horizontal ray and s is called the direction of s. The segment [(0,0), (0,0)] is said
to be empty.

2. Creation

segment s(point p, point q);

introduces a variable s of type segment. s is initialized to the segment
(p, q)

segment s(point p, vector v);

introduces a variable s of type segment. s is initialized to the segment
(p,p + v). Precondition: v.dimO = 2.

segment s(double xl, double yl, double x2, double y2);

introduces a variable s of type segment. s is initialized to the segment
[(Xl, Y1), (X2' Y2)].

segment s(point p, double dir, double length);

segment s;

introduces a variable s of type segment. s is initialized to the segment
with start point p, direction dir, and length length.

introduces a variable s of type segment. s is initialized to the empty
segment.

3. Operations

point s.sourceO returns the source point of segment s.

point s.targetO returns the target point of segment s.

double s.xcoordlO returns the x-coordinate of s .startO.

double s.xcoord2() returns the x-coordinate of s.endO.

double s.ycoordlO returns the y-coordinate of s.startO.

double s.ycoord2() returns the y-coordinate of s.endO.

double s.dxO returns the xcoord2 - xcoordl.

8.3. SEGMENTS (SEGMENT)

double

double

double

double

s.dyO

s.lengthO

s.directionO

s.angle()

117

returns the ycoord2 - ycoordl.

returns the length of s.

returns the direction of s as an angle in the intervall
(-71",71"].

returns s.directionO.

double s.angle(segment t) returns the angle between sand t, i.e., t.directionO
- s.directionO·

bool

bool

double

s.verticalO

s.horizontalO

s.slopeO

returns true iff s is vertical.

returns true iff s is horizontal.

returns the slope of s.
Precondition: s is not vertical.

bool s.intersection(segment t, point& p)

if sand t are not collinear and intersect the intersection
point is assigned to p and true is returned, otherwise
false is returned.

bool s.intersection_ofJines(segment t, point& p)

if s and t are not collinear and the underlying lines
intersect the point of intersection is assigned to p
and true is returned, otherwise false is returned.

segment s.translate(double a, double d)

returns the segment created by a translation of s in
direction a by distance d.

segment s. translate(vector v) returns s + v, i.e., the segment created by translating
s by vector v.
Precondition: v.dimO = 2.

segment s.rotate(point q, double a)

returns the segment created by a rotation of s about
point q by angle a.

segment s.rotate(double a) returns s.rotate(s.startO, a).

segment s.rotate90(point q)

segment s.rotate900

int s t

int s ! = t

returns the segment created by a rotation of s about
point q by an angle of 90 degrees.

returns s.rotate90(s.startO, a).

Test for equaJity.

Test for inequaJity.

118CHAPTER 8. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

segment s + vect01' v Translation by vector v.

ostream& ostream& 0 < < s

writes s to output stream o.

istream& istream& I > > & s

N on-Member Functions

reads the coordinates of s (four double numbers)
from input stream I.

bool identica1(segment sI , segment s2)

Test for identity.

int orientation(segment s, point p)

computes orientation(a, b, p), where a =I- b and a
and b appear in this order on segment s.

int cmp....slopes(segment sI, segment s2)

returns compare(slope(st), slope(S2».

bool parallel(segment sI, segment s2)

returns (cmp....slopes(SI, S2) == 0).

8.4. RATIONAL SEGMENTS (RAT ~EGMENT) 119

8.4 Rational Segments (rat_segment)

1. Definition

An instance s of the data type rat.-:>egment is a directed straight line segment with
rational coordinates in the two-dimensional plane, i.e., a line segment [p, q] connecting
two rational points p and q (cf. 8.2). p is called the start point and q is called the
end point of s. The segment [(0,0), (0,0)] is said to be empty.

2. Creation

raLsegment s;

introduces a variable s of type rat.-:>egment. s is initialized to the
empty segment.

raLsegment s(raLpoint p, raLpoint q);

intro duces a variable s of type raLsegment. s is initialized to the
segment (p, q).

raLsegment s(integer xl, integer yl, integer x2, integer y2);

introduces a variable s of type rat.-:>egment. s is initialized to the
segment [(xl, yl), (x2, y2)].

3. Operations

raLpoint s.sourceO

raLpoint s.targetO

double s.xcoordlO

double s.xcoord20

double s.ycoordlO

double s.ycoord20

integer s.XlO

integer s.X20

integer s.YlO

returns the sour ce point of segment s.

returns the target point of segment s.

returns a double precision approximation of the x
coordinate of the start point of segment s.

returns a double precision approximation of the x
coordinate of the end point of segment s.

returns a double precision approximation of the y
coordinate of the start point of segment s.

returns a double precision approximation of the y
coordinate of the end point of segment s.

returns the first homogeneous coordinate of the start
point of segment s.

returns the first homogeneous coordinate of the end
point of segment s.

returns the second homogeneous coordinate of the
start point of segment s.

120CHAPTER 8. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

integer s.Y20

integer s.WI0

integer s.W20

double s.XDI O

double s.XD2O

double s.YDI0

double s.YD2O

double s.WDI0

double s.WD20

integer s.dxO

integer s.dyO

double s.dxdO

double s.dydO

bool s. vertical()

bool s .horizontal()

returns the second homogeneous coordinate of the
end point of segment s.

returns the third homogeneous coordinate of the
start point of segment s.

returns the third homogeneous coordinate of the end
point of segment s.

returns a floating point approximation of the first
homogeneous coordinate of the start point of segment
s.

returns a floating point approximation of the first
homogeneous coordinate of the end point of segment
s .

returns a floating point approximation of the second
homogeneous coordinate of the start point of segment
s.

returns a floating point approximation of the second
homogeneous coordinate of the end point of segment
s.

returns a floating point approximation of the third
homogeneous coordinate of the start point of segment
s.

returns a floating point approximation of the third
homogeneous coordinate of the end point of segment
s.

returns the normalized x-difference Xl· W2 - X2· Wl
of the segment.

returns the normalized y-difference Yl· W2 - Y2 . Wl
of the segment.

returns the optimal floating point approximation of
the normalized x-difference of the segment.

returns the optimal floating point approximation of
the normalized y-difference of the segment.

returns true if s is vertical and false otherwise.

returns true if s is horizontal and false otherwise.

int s.cmp...slope(raLsegment sI)

compares the slopes of sand Sl.

bool s.intersection(raLsegment t, raLpoint& p)

8.4. RATIONAL SEGMENTS (RAT-BEGMENT) 121

if s and t are not collinear and intersect the point of
intersection is assigned to p and the result is true,
otherwise the result is false.

bool s.intersection_ofJines(raLsegment t, raLpoint& p)

int s -- t

int s ! = t

bool identical

Test for identity ...

if the lines supporting sand t are not parallel their
point of intersection is assigned to p and the result
is true, otherwise the result is false.

Test for equality.

Test for inequality.

(rat~egment sI, rat-segment s2)

ostream& ostream& 0 < < rat....segment s

writes the homogeneous coordinates of s (six integer
numbers) to output stream O.

istream& istream& I > > rat....segment& s

reads the homogeneous coordinates of s (six integer
numbers) from input stream I.

int orientation(raLsegment s, raLpoint p)

computes orientation(a, b, p), where a #- band a
and b appear in this order on segment s.

int cmp~lopes(raLsegment 81, rat....segment s2)

returns compare(slope(SI), slope(S2)).

bool intersection(rat....segment sI, rat....segment s2)

decides whether sI and s2 intersect.

122CHAPTER 8. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

8.5 Straight Lines (line)

1. Definition

An instance l of the data type line is a directed straight line in the two-dimensional
plane. The angle between a right oriented horizontalline and l is called the direction
of l.

2. Creation

line l(point p, point q);

introduces a variable l of type line. l is initialized to the line passing
through points p and q directed form p to q.

line l(segment s);

intro duces a variable l of type line. l is initialized to the line
supporting segment s.

line l(point p, vector v);

introduces a variable l of type line. l is initialized to the line of all
poinnts p + Av. Precondition: v.dimO = 2 and v.lengthO > O.

line l(point p, double a);

line l;

introduces a variable l of type line. l is initialized to the line passing
through point p with direction a.

introduces a variable l of type line. l is initialized to the line passing
through the origin with direction O.

3. Operations

double l.directionO

double l.angle(line g)

double l.angleO

bool l. verticalO

bool l.horizontalO

double l.slopeO

double l.y _proj(double x)

returns the direction of l.

returns the angle between land g, i.e.,
g.directionO - l.directionO.

returns l.directionO.

returns true iff l is vertical.

returns true iff l is horizontal.

returns the slope of l.
Precondition: l is not vertical.

returns p.ycoordO, where pE l with p.xcoordO
= x.
Precondition: l is not vertical.

8.5. STRAIGHT LINES (LINE)

double l.x_proj(double y)

double 1.y...a.bsO

123

returns p.xcoordO, where p E 1 with p.ycoordO
= y.
Precondition: 1 is not horizontal.

returns the y-abscissa of 1 (l.y_proj(O)).
Precondition: 1 is not vertical.

bool l.intersection(line g, point& inter)

if 1 and 9 are not collinear and intersect the
intersection point is assigned to inter and true
is returned, otherwise false is returned.

bool l.intersection(segment s, point& inter)

if 1 and s are not collinear and intersect the
intersection point is assigned to inter and true
is returned, otherwise false is returned.

line 1. translate(double a, double d)

line 1. translate(v ector v)

line l.rotate(point q, double a)

returns the line created by a translation of 1
in direction a by distance d.

returns 1 +v, i.e., the line created by translating
1 by vector v.
Precondition: v.dimO = 2.

returns the line created by a rotation of 1 about
point q by angle a.

line l.rotate(double a) returns 1.rotate(point(0, 0), a).

segment l.perpendicular(point p) returns the normal of p with respect to 1.

bool 1 -- 9 Test for equality.

bool 1 ! = 9 Test for inequality.

int orientation(line 1, point p) computes orientation(a, b, p), where a =I- b and
a and b appear in this order on line 1.

int cmp-slopes(line l1, line 12) returns compare(slope(lI), slope(l2)).

124CHAPTER 8. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

8.6 Polygons (polygon)

1. Definition

An instance P of the data type polygon is a simple polygon in the two-dimensional
plane defined by the sequence of its vertices in clockwise order. The number of vertices
is called the size of P. A polygon with empty vertex sequence is called empty.

2. Creation

polygon P(list<point> pI);

polygon P;

introduces a variable P of type polygon. P is initialized to the
polygon with vertex sequence pI.
Precondition: The vertices in pI are given in clockwise order and
define a simple polygon.

intro duces a variable P of type polygon. P is initialized to the empty
polygon.

3. Operations

list<point> P. vertices() returns the vertex sequence of P.

list<segment> P .segmentsO returns the sequence of bounding segments
of P in clockwise order.

list<point>

list<point>

P .intersection(segment s) returns P n s as a list of points.

P .intersection(line I) returns P n I as a list of points.

list<polygon> P.intersection(polygonQ) returns P n Q as a list of polygons.

bool

bool

polygon

polygon

polygon

int

bool

P .inside(point p)

P .outside(point p)

returns true if p lies inside of P, false
otherwise.

ret urns ! P .inside(p).

P . translate(doubl e a, double d)

P . translate(vector v)

returns the polygon created by a translation
of P in direction a by distance d.

returns P + v, i.e., the polygon created by
translating P by vector v.
Precondition: v.dimO = 2.

P.rotate(point q, double a) returns the polygon created by a rotation
of P ab out point q by angle a.

P.sizeO

P.empty()

returns the size of P.

returns true if P is empty, false otherwise.

8.7. CIRCLES (CIRCLE) 125

8. 7 Circles (circle)

1. Definition

An instance C of the data type circle is a circle in the two-dimensional plane, i.e.,
the set of points having a certain distance r !rom a given point p. r is called the
radius and p is called the center of C. The circle with center (0,0) and radius 0 is
called the empty circle.

2. Creation

circle C(point c, double r);

introduces a variable C of type circle. C is initialized to the circle
with center c and radius r.

circle C(double z, double y, double r);

intro duces a variable C of type circle. C is initialized to the circle
with center (z,y) and radius r.

circle C(point a, point b, point c);

circle C;

introduces a variable C of type circle. C is initialized to the circle
through points a, b, and c. Precondition: a, b, and c are not collinear.

intro duces a variable C of type circle. C is initialized to the empty
circle.

3. Operations

point

double

C.centerO

C.radius()

returns the center of C.

returns the radius of C.

list<point> C.intersection(circle D) returns C nD as a list of points.

list<point> C.intersection(line 1) returns C nl as a list of points.

list<point> C .intersection(segment s) returns C n s as a list of points.

segment

segment

double

double

C .lefLtangent(point p) returns the line segment starting in p tangent
to C and left of segment [p, C.centerOl.

C . righLt angent (point p) returns the line segment starting in p tangent
to C and right of segment [p, C.centerOl.

C.distance(point p) returns the distance between C and p (neg
ative if p inside C).

C .distance(line 1) returns the distance between C and 1 (negative
if 1 intersects C).

126CHAPTER 8. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

double

bool

bool

circle

circle

circle

circle

bool

bool

C .distance(circle D)

C .inside(point p)

C .outside(point p)

returns the distance between C and D (neg
ative if D intersects C).

returns true if p lies inside of C, false oth
erWlse.

returns !C .inside(p).

C .translate(double a, double d)

C. translate(vector v)

C.rotate(point q, double a)

C .rotate(double a)

C D

C != D

returns the circle created by a translation of
C in direction a by distance d.

returns C + v, i.e., the circle created by
translating C by vector v.
Precondition: v.dimO = 2.

returns the circle created by a rotation of C
about point q by angle a.

returns the circle created by a rotation of C
ab out the origin by angle a.

Test for equality.

Test for inequality.

8.8. PLANE ALGORITHMS (PLANE..ALG) 127

8.8 Plane Algorithms (plane_alg)

• Triangulations

• Line segment intersection

void SWEEP_SEGMENTS(list<segment> L, GRAPH<point,int>& G);

SWEEP _SEGMENTS takes a list of segments L as input and computes the planar
graph G induced by the set of straight line segments in L. The nodes of Gare all
endpoints and all proper intersection points of segments in L. The edges of Gare
the maximal relatively open subsegments of segments in L that contain no node of
G. All edges are directed from left to right or upwards. The algorithm ([6]) runs
in time 0« n + s) log n) where n is the number of segments and s is the number of
vertices of the graph G.

void SEGMENTJNTERSECTION(list<segment> L, list<point>& P);

SEGMENTJNTERSECTION takes a list of segments L as input and computes the
list of intersection points between all segments in L .
The algorithm ([6]) has running time O«n + k)logn), where n is the number of
segments and k is the number of intersections.

• Convex H ulls

list<point> CONVEX.1IULJ.J(list<point> L);

CONVEX...HULL takes as argument a list of points and returns the polygon representing
the convex hull of L. It is based on a randomized incremental algorithm.

Running time: O(nlog n) (with high probability), where n is the number of points.

list<point> CONVEX.1IULL(list<point>
CONVEX...HULL(list<raLpoint> L);

L); list<raLpoint>

CONVEX...HULL takes as argument a list of (rational) points and returns the polygon
representing the convex hull of L.
Running time: O(n log n) (with high prob ability), where n is the number of points.

• Voronoi Diagrams

void VORONOI(list<point>& sites, double R, GRAPH<point,point>& G)

VORONOI takes as input a list of points sites and areal number R. It computes a
directed graph G representing the planar sub division defined by the Voronoi-diagram
of sites where all "infinite" edges have length R. For each node v G.inf(v) is the
corresponding Voronoi vertex (point) and for each edge e G.inf(e) is the site (point)
whose Voronoi region is bounded by e.

The algorithm ([12]) has running time O(nlog n) (with high prob ability), where n
is the number of sites.

.J..H.LaWOaD 1VNOISNaWla-OM..L HO.j Sad.J...L V.LVa OISVg "8 Ha.LdVHD8'l!

Chapter9

Advanced Data Types for
Two-DiIDensional GeoIDetry

9.1 Two-Dimensional Dictionaries (d2 _dictionary)

1. Definition

An instanee D of the parameterized data type d2_dictionary<K1, K2, I> is a eolleetion
of items (dic2_item). Every item in D contains a key from the linearly ordered data
type K1, a key from the linearly ordered data type K2, and an information from data
type I. K1 and K2 are ealled the key types of D, and I is ealled the information
type of D. The number of items in D is ealled the size of D. A two-dimensional
dietionary of size zero is said to be empty. We use <k1 , k2 , i> to denote the item with
first key kl, seeond key k2 , and information i. For eaeh pair (kl, k2) E K1 x K2 there
is at most one item <k1 , k2 , i> E D. Additionally to the normal dietionary operations,
the data type d2_dictionary supports reet angular range queries on K1 x K2.

2. Creation

d2_dictionary<K1, K2, I> Dj

ereates an instanee D oftype d2_dictionary<K1, K2, I> and initializes
D to the empty dietionary.

3. Operations

K1 D.key1(dic2_item it)

K2 D .key2(dic2..item it)

I D .inf(dic2_it em it)

D.minJrey10

returns the first key of item it.
Precondition: it is an item in D.

returns the seeond key of item it.
Precondition: it is an item in D.

returns the information of item it.
Precondition: it is an item in D.

returns the item with minimal first key.

129

130CHAPTER 9. ADVANCED DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

dic2_item

dic2_item

dic2_item

dic2_item

dic2_item

D.minJcey20

D.maxJcey10

D .max..key2()

returns the item with minimal second key.

returns the item with maximal first key.

returns the item with maximal second key.

D.insert(K1 x, K2 y, I i)

D.lookup(K1 x, K2 y)

associates the information i with the keys
x and y. If there is an item <x, y,j> in D
then j is replaced by i, else a new item
<x, y, i> is added to D. In both cases the
item is returned.

returns the item with keys x and y (nil if
no such item exists in D).

list<dic2_item> D.range..search(K1 xO , K1 xl, K2 yO, K2 y1)

list<dic2_item> D .allitems()

void D.del(K1 x, K2 y)

returns the list of all items <k1 , k2 , i> in D
with Xo ~ k1 ~ Xl and Yo ~ k2 ~ Yl'

returns the list of all items of D.

deletes the item with keys x and y from
D.

void D .delitem(dic2_item it) removes item it from D.
Precondition: it is an item in D.

void D .changeinf(dic2_item it, I i)

void

bool

int

D.dear()

D.empty()

D.sizeO

4. Implementation

makes i the information of item it.
Precondition: it is an item in D.

makes D the empty d2_dictionary.

returns true if D is empty, false otherwise.

returns the size of D.

Two-dimensional dictionaries are implemented by dynamic two-dimensional range
trees [50,33] based on BB[a:] trees. Operations insert, lookup, delitem, deI take time
O(log2 n), range..search takes time O(k + log2 n), where k is the size of the returned
list, key, inf, empty, size, changeinf take time 0(1), and dear takes time O(nlog n).
Here n is the current size of the dictionary. The space requirement is O(nlog n) .

9.2. SETS OF TWO-DIMENSIONAL POINTS (POINT -.SET) 131

9.2 Sets of Two-Dimensional Points (point_set)

1. Definition

An instance S of the parameterized data type point...set<I> is a collection of items
(ps_item). Every item in S contains a two-dimensional point as key (data type point),
and an information from data type I, called the information type of S. The number
of items in S is called the size of S. A point set of size zero is said to be empty. We
use <p, i> to denote the item with point p, and information i. For each point p there
is at most one item <p, i> E S. Beside the normal dictionary operations, the data
type point...set provides operations for rectangular range queries and nearest neighbor
quenes.

2. Creation

poinLset<I> Sj

creates an instance S of type point...set<I> and initializes S to the
empty set.

3. Operations

point S.key(ps..item it)

I S .inf(ps_item it)

S.insert(point p, I i)

ps-item S.lookup(point p)

returns the point of item it.
Precondition: it is an item in S.

returns the information of item it.
Precondition: it is an item in S.

associates the information i with point
p. If there is an item <p, j> in S then j
is replaced by i, else a new item <p, i>
is added to S. In both cases the item is
returned.

returns the item with point p (nil if no
such item exists in S).

S.nearest....neighbor(point q) returns the item <p, i> E S such that
the distance between p and q is minimal.

list<ps-item> S.range....search(double zO, double z1, double yO, double y1)

returns all items <p, i> E S with
Zo :::; p.xcoordO :::; Zl and

list<ps_item> S .convex..hullO

void S.del(point p)

yo :::; p.ycoordO :::; Yl·

returns the list of items containing all
points of the convex hull of S in clockwise
order.

deletes the item with point p from S.

132CHAPTER9. ADVANCEDDATA TYPESFOR TWO-DIMENSIONAL GEOMETRY

void S.del...item(psJtem it) removes item it from S.
Precondition: it is an item in S.

void S.changeinf(ps_itemit, I i) makes i the information of item it.
Precondition: it is an item in S.

list<ps_item> S.all...itemsO returns the list of all items in S.

list<point> S. all_pointsO returns the list of all points in S.

void S .dearO makes S the empty poinLset.

bool S.emptyO returns true iff S is empty.

int S.sizeO returns the size of S.

4. Implementation

Point sets are impiemented by a combination of two-dimensional range trees [50, 33]
and Voronoi diagrams. Operations insert, Iookup, del...item, deI take time 0(log2 n),
key, inf, empty, size, changeinf take time 0(1), and dear takes time O(nlog n). A
range_search operation takes time O(k + log2 n), where k is the size of the returned
list. A nearest..lleighbor query takes time 0(n2

), if it follows any update operation
(insert or delete) and O(log n) otherwise. Here n is the current size of the point set .
The space requirement is 0(n2

).

9.3. SETS OF INTERVALS (INTERVALSET) 133

9.3 Sets ofIntervals (interval_set)

1. Definition
An instance S of the parameterized data type interval.JJet<I> is a collection of items
(is.item). Every item in S contains a closed interval of the double numbers as key
and an information from data type I, called the information type of S. The number
of items in S is called the size of S. An interval set of size zero is said to be empty.
We use <x,y,i> to denote the item with interval [x,y) and information ij x (y) is
called the left (right) boundary of the item. For each interval [x, y) there is at most
one item <x, y, i> E S.

2. Creation
interval.JJet<I> S' ,

creates an instance S of type interval.JJet<I> and initializes S to the
empty set.

3. Operations

double S.left(is...item it) returns the left boundary of item it.
Precondition: it is an item in S.

returns the right boundary of item it.
Precondition: it is an item in S.

returns the information of item it.
Precondition: it is an item in S.

double

I

S .right(is.item it)

S.inf(is...item it)

S.insert(double x, double y, I i)
associates the information i with interval
[x, y). If there is an item <x, y,j> in Sthen
j is replaced by i, else a new item <x, y, i>
is added to S. In both cases the item is
returned.

S.lookup(doublex, doubley) returns the item with interval [x,y) (nil if
no such item exists in S).

list<is.item> S .intersection(double a, double b)

void S.del(double x, double y)

void S.delitem(is...item it)

void S.changejnf(is...itemit, I i)

void S.clearO

bool S.emptyO

int S.sizeO

returns all items <x, y, i> E S with [x, y) n
[a, b) I- 0.
deletes the item with interval [x, y] from
S.

removes item it from S.
Precondition: it is an item in S.

makes i the information of item it.
Precondition: it is an item in S.

makes S the empty interval_set.

returns true iff S is empty.

returns the size of S.

134CHAPTER 9. ADVANCED DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

4. Implementation

Interval sets are implemented by two-dimensional range trees [50, 33]. Operations
insert, lookup, deLitem and del take time 0(log2 n), intersection takes time O(k+log2 n),
where k is the size of the returned list. Operations left, right, inf, empty, and size
take time 0(1), and dear O(nlog n). Here n is always the current size of the interval
set. The space requirement is O(nlog n).

9.4. SETS OF PARALLEL SEGMENTS (SEGMENT_SET) 135

9.4 Sets of Parallel Segments (segment-..Set)

1. Definition

An instance S of the parameterized data type segment....set<I> is a collection of items
(seg_item). Every item in S contains a.s key a line segment with a fixed direction Q

(see data type segment) and an information from data type I, called the information
type of S . Q is called the orientation of S. We use <s, i> to denote the item with
segment s and information i. For each segment s there is at most one item <s, i> ES.

2. Creation

segment....set<I> S(double a);

creates an empty instance S of type segment....set<I> with orientation
a.

segment....set<I> S;

creates an empty instance S of type segment....set<I> with orientation
zero, i.e., horizontal segments.

3. Operations

segment

I

S.key(seg..item it)

S.inf(seg..item it)

returns the segment of item it.
Precondition: it is an item in S.

returns the information of item it.
Precondition: it is an item in S.

S.insert(segment s, I i) associates the information i with segment
s. If there is an item <s, j> in S then j is
replaced by i, else a new item <s, i> is added
to S. In both cases the item is returned.

S .lookup(segment s) returns the item with segment s (nil if no
such item exists in S).

list<seg..item> S .intersection(segment q) returns all items <s, i> E S with sn q =1= 0.
Precondition: q is orthogonal to the seg
ments in S.

list<seg..item> S.intersection(line 1) returns all items <s, i> E S with s n
1 =1= 0. Precondition: 1 is orthogonal to the
segments in S.

void S .del(segment s) deletes the item with segment s from S.

void S.deUtem(seg_item it) removes item it from S.
Precondition: it is an item in S.

void S .changeinf(seg_item it, I i)

136CHAPTER9. ADVANCEDDATA TYPESFOR TWO-DIMENSIONAL GEOMETRY

void

bool

int

S.clearO

S.emptyO

S.sizeO

4. Implementation

makes i the information of item it.
Precondition: it is an item in S.

makes S the empty segment...set.

returns true iff S is empty.

returns the size of S.

Segment sets are implemented by dynamic segment trees based on BB[a] trees
([50, 33]) trees. Operations key, inf, changeinf, empty, and size take time 0(1),
insert, lookup, deI, and delitem take time 0(log2 n) and an intersection operation
takes time O(k +Iog2 n), where k is the size of the returned list. Here n is the current
size of the set. The space requirement is O(niog n).

9.5. PLANAR SUBDIVISIONS (SUBDIVISION) 137

9.5 Planar Subdivisions (sub division)

1. Definition

An instance S of the parameterized data type subdivision<I> is a sub division of the
two-dimensional plane, i.e., an embedded planar graph with straight line edges (see
also sections 7.5 and 7.6). With each node v of S is associated a point, called the
position of v and with each face of S is associated an information from data type I,
called the information type of S.

2. Creation

subdivision<I> S(G RAP H <point, I> G)j

3. Operations

creates an instance S of type subdivision<I> and initializes it to
the sub division represented by the parameterized directed graph
G. The node entries of G (of type point) define the positions of
the corresponding nodes of S. Every face f of S is assigned the
information of one of its bounding edges in G.
Precondition: G represents aplanar sub division, i.e., a straight line
embedded plan ar map.

point S. position(node v) returns the position of node v.

I S .inf(J ace f) returns the information of face f.

face S .locate_point(point p) returns the face containing point p.

4. Implementation

Planar sub divisions are implemented by parameterized planar maps and an additional
data structure for point location based on persistent search trees [15]. Operations
position and inf take constant time, a locate_point operation takes time O(log2 n).
Here n is the number of nodes. The space requirement and the initialization time is
O(n2).

A.H.LiIWOiID 1VNOISNiIWla-OM.L HOi[SiIdA..L V.LVa aiIONVAaV '6 HiI.LdVH08€T

Chapter 10

Graphics

10.1 Graphie Windows (window)

1. Definition
The data type window provides an interface for the input and output of basic
two-dimensional geometrie objects (cf. section 5.1) using the Xl1 window system.
Application programs using data type window have to be linked with lib Wx.a and
the Xll library (cf. section 1.6):

ce prog.c -lP -lG -lL -lWx -IXU -Im
An instance W of the data type window is an iso-oriented reet angular window in the
two-dimensional plane. The default representation of W on the screen is a square
of maximal possible edge length positioned in the upper right corner (cf. creation,
variant c)). The coordinates and scaling of W used for drawing operations are defined
by three double parameters: Xo, the x-coordinate of the left side, Xl, the x-coordinate
of the right side, and Yo, the y-coordinate of the bot tom side. The y-coordinate of
the top side of W is determined by the current size and shape of the window on the
screen, which can be changed interactively. Agraphie window supports operations for
drawing points, lines, segments, arrows, circles, polygons, graphs, .. . and for graphical
input of all these objects using the mouse input device. Most ofthe drawing operations
have an optional color argument. Possible colors are black (default), white, blue,
green, red, violet, and orange. On monochrome displays all colors different !rom
white are tumed to black. There are 6 parameters used by the drawing operations:

1. The line width parameter (default value 1 pixel) defines the width of all kinds
of lines (segments, arrows, edges, circles, polygons).

2. The line style parameter defines the style of lines. Possible line styles are solid
(default), dashed, and dotted.

3. The node width parameter (default value 10 pixels) defines the diameter of
no des created by the draw....node and draw Jilled....node operations.

4. The text mode parameter defines how text is inserted into the window. Possible
values are transparent (default) and opaque.

139

140 CHAPTER 10. GRAPHICS

5. The drawing mode parameter defines the logical operation that is used for
setting pixels in all drawing operations. Possible values are sTc_mode (default)
and xor _mode. In sTc_mode pixels are set to the respective color value, in
XOT _mode the value is bitwise added to the current pixel value.

6. The redraw function parameter is used to remaw the entire window whenever a
redrawing is necessary, e.g., ifthe window shape on the screen has been changed.
Its type is pointer to a void-function taking no arguments, i.e., void (*F)O;

2. Creation

window W(float xpix, float ypix, float xpOS, float ypos);

creates a window W of physical size xpix x ypix pixels with its upper
left corner at position (xpos, ypos) on the screen.

window W(float xpix, float ypiX)i

window Wi

creates a window W of physical size xpix X ypix pixels positioned
into the upper right corner of the screen.

creates a maximal squared window W positioned into the upper right
corner of the screen.

All three variants initialize the coordinates of W to Xo = 0, Xl = 100 and Yo = O.
The init operation (see below) can later be used to change the window coordinates
and scaling.

3. Operations

3.1 Initialization

void

void

void

void

W.init(double xO, double xl, double yO)

W.seLgrid-IIlode(int d)

sets the coordinates of W to Xo, Xl, and

Yo.

adds a rectangular grid with integer co
ordinates and grid distance d to W, if
d> O. Removes grid from W, if d ::; O.

W.init(double xO, double xl, double yO, int d)

like init(xo, Xl, Yo) followed by
set _grid-IIlode(d).

W .dear(color c = BG _color)

dears W.

10.1. GRAPHIe WINDOWS (WINDOW) 141

3.2 Setting parameters

int

line-style

int

tezLmode

W.setJine_width(int piz)

sets the line width parameter to piz pixels
and returns its previous value.

W.setJine....style(line-style s)

sets the line style parameter to sand
returns its previous value.

W .set..node_width(int piz)

sets the node width parameter to piz
pixels and returns its previous value.

W .seLtext....mode(tezt-mode m)

sets the text mode parameter to m and
returns its previous value.

drawing_mode W.set....mode(drawing_mode m)

void

void

void

void

bool

bool

bool

sets the drawing mode parameter to m
and returns its previous value.

W .set..frameJabel(string s)

makes s the window frame label.

W .reset..frameJabel() restores the standard LEDA frame label.

W.set..xedraw(void (*F)O)

W.setJiush(bool b)

sets the redraw function parameter to F.

fiushes Xll output stream after each draw
action iff b = true.

W .load_text..font(string in)

loads Xll font in and uses it as text
font. Returns true on success and false
if the font is not available.

W .load_bold-1ont(string in)

loads Xll font in and uses it as bold
font. Returns true on success and false
if the font is not available.

W .load....message-1ont(string in)

load Xll font in and use it as message
font. Returns true on success and false
if the font is not available.

142 CHAPTER 10. GRAPHICS

3.3 Reading parameters and window coordinates

int W.getJine_widthO

line...style W.getJine_styleO

int W .get Jlode_ wid th()

text_mode W.geLtext..modeO

drawing _mode W.get..modeO

double W.xmin()

double W.yminO

double W.xmaxO

double W.ymaxO

double W.scaleO

returns the current line width.

returns the current line style.

returns the current node width.

returns the current text mode.

returns the current drawing mode.

returns xo, the minimal x-coordinate of
W.

returns Yo, the minimal y-coordinate of
W.

returns Xl, the maximal x-coordinate of
W.

returns Y1, the maximal y-coordinate of
W.

returns the number of pixels of a unit
length line segment.

3.4 Drawing points

void W.draw_point(double x, double y, color c = FG_color)

draws the point (x, y) as a cross of a vertical and
a horizontal segment intersecting at (x,y).

void W.draw_point(point p, color c = FG_color)

draws point (p.xcoordO,p.ycoordO).

void W.draw_pix(double x, double y, color c = FG_color)

sets the color of the pixel at position (x, y) to c.

void W.draw_pix(point p, color c = FG_color)

sets the color of the pixel at position p to c.

3.5 Drawing line segments

void W.draw..segment(double xl, double y1, double x2, double y2, color c =
FG_color)

draws a line segment from (XbY1) to (X2'Y2).

void W.draw..segment(point p, point q, color c = FG_color)

draws a line segment from point p to point q.

void W.draw..segment(segment s, color c = FG_color)

10.1. GRAPHIe WINDOWS (WINDOW) 143

draws line segment s.

3.6 Drawing lines

void W.drawJine(double:d, doubley1, doublex2, doubley2, colorc = FG_color)

draws a straight line passing through points (Xl, Y1)
and (X2' Y2)'

void W.drawJine(point p, point q, color c = FG_color)

draws a straight line passing through points p and
q.

void W.drawJine(segment s, color c = FG_coloT)

draws the line supporting s.

void W.drawJine(line I, color c = FG_color)

draws line 1.

void W.drawJiline(double y, color c = FG_color)

draws a horizontalline with y-coordinate y.

void W.draw_vline(double X, color c = FG_color)

draws a verticalline with x-coordinate x.

void W.draw-Arc(point p, point q, double T , color c = FG_color)

3.7 Drawing arrows

draws a circular arc with radius r from p to q with
the center lying to the right of the directed segment
p ----+ q.

void W.draw-Arrow(double xl, double y1, double x2, double y2, color c =
FG_color)

draws an arrow pointing from (Xl, Y1) to (X2' Y2)'

void W.draw-Arrow(point p, point q, color c = FG_color)

draws an arrow pointing from point p to point q.

void W.draw-Arrow(segment s, color = FG_color)

draws an arrow pointing from s.startO to s.endO.

void W.draw-Arc_arrow(point p , point q, double T, color c = FG_color)

3.8 Drawing circles

draws a circular are arrow with radius r pointing
from p to q with the center lying to the right of the
directed segment p ----+ q.

void W.draw_circle(double x, double y, double T, color c= FG_color)

144 CHAPTER 10. GRAPHICS

draws the circle with center (x, y) and radius r.

void W.draw_circle(point p, double r, color c = FG_color)

draws the circle with center p and radius r.

void W.draw_circle(circle C, color c = FG_color)

draws circle C.

void W.draw_ellipse(double x, double y, double rl, double r2, color c = FG_color)

draws the ellipse with center (x,y) and radii rl and
r2.

void W.draw_ellipse(point p, double rl, double r2, color c = FG_color)

draws the ellipse with center p and radii rl and r2.

3.9 Drawing discs

void W.draw_disc(double x, double y, double r, color c = FG_color)

draws a filled circle with center (x, y) and radius r.

void W.draw_disc(point p, double r, color c = FG_color)

draws a filled circle with center p and radius r.

void W.draw_disc(circle C, color c = FG_color)

draws filled circle C.

void W .drawJilled_ellipse(double x, double y, double rl, double r2, color c =
FG_color)

draws a filled ellipse with center (x,y) and radii rl
and r2.

void W .drawJilled_ellipse(point p, double rl, double r2, color c = FG_color)

draws a filled ellipse with center p and radii rl and
r2.

3.10 Drawing polygons

void W.draw_polygon(list<point> lp, color c = FG_color)

draws the polygon with vertex sequence lp.

void W.draw_polygon(polygon P, color c = FG_color)

draws polygon P.

void W .drawJilled_polygon(list<point> lp, color c = FG_color)

draws the filled polygon with vertex sequence lp.

void W.drawJilled_polygon(polygon P, color c = FG_color)

draws filled polygon P.

10.1. GRAPHIe WINDOWS (WINDOW) 145

3.11 Drawing functions

void W.ploLxy{double :cO, double :cl, draw_/unc_ptr F, color c = FG_color)

draws function F in range [:co, :Cl], i.e., all points
(:c, y) with y = F{:c) and :Co ~ :c ~ :Cl.

void W.ploLyx{double yO, double yl, draw-func_ptr F, color c = FG_color)

3.12 Drawing text

draws function F in range [Yo, YI], i.e., all points
(:c,y) with :c = F(y) and Yo ~ Y ~ YI·

void W.draw_text(double:c, double y, string s, color c = FG_color)

writes string s starting at position (:c, y).

void W.draw_text(point p, string s, color c = FG....color)

writes string s starting at position p.

void W.draw_ctext(double:c, double y, string s, color c = FG_color)

writes string s centered at position (:c,y).

void W.draw_ctext(point p, string s, color c:-' FG_color)

writes string s centered at position p.

3.13 Drawing nodes

void W.draw..node(double :cO, double yO, color c = FG_color)

draws anode at position (:co, Yo).

void W.draw..node(point p, color c = FG_color)

draws anode at position p.

void W.draw.1illed..node(double :cO, double yO, color c = FG_color)

draws a filled node at position (:co, Yo).

void W.draw.1illed..node(point p, color c = FG_color)

draws a filled node at position p.

void W.draw_text..node(double:c, double y, string s, color c = BG_color)

draws anode with label s at position (:c, y).

void W.draw_text..node(point p, string s, color c = BG_color)

draws anode with label s at position p.

void W.drawint..node(double:c, double y, int i, color c = BG_color)

draws anode with integer label i at position (:c, y).

void W.drawint..node(point p, int i, color c = BG_color)

146 CHAPTER 10. GRAPHICS

draws anode with integer label i at position p.

3.14 Drawing edges

void W.draw_edge(doublex1, doubleyl, doublex2, doubley2, colorc = FG_color)

draws an edge !rom (xl,yd to (X2,Y2).

void W.draw_edge(point p, point q, color c = FG_color)

draws an edge from p to q.

void W.draw_edge(segment s, color c = FG_color)

draws an edge !rom s.start() to s.end().

void W.draw_edgeÄrrow(double xl, double y1, double x2, double y2, color c =
FG_color)

draws a directed edge !rom (xl,yd to (X2,Y2).

void W.draw_edge_arrow(point p, point q, color c = FG_color)

draws a directed edge !rom p to q.

void W.draw_edgeÄrrow(segment s, color c = FG_color)

draws a directed edge !rom s.start() to s.end().

void W.draw_arcedge(point p, point q, double r, color c = FG_color)

draws a circular edge arc with radius r from p to
q with the center lying to the right of the directed
segment p--+ q.

void W.draw~cedgeÄrrow(point p, point q, double r, color c = FG_color)

draws a circular directed edge arc with radius r
!rom p to q with the center lying to the right of the
directed segment p --t q.

3.15 Mouse Input

int W .read....mouse() displays the mouse cursor until a button is pressed.
Returns integer 1 for the left, 2 for the middle, and
3 for the right button (-1,-2,-3, if the shift key is
pressed simultaneously).

int W.read....mouse(double& x, double& y)

int W.read....mouse(point& p)

displays the mouse cursor on the screen until a
button is pressed. When a button is pressed the
current position of the cursor is assigned to (x, y)
and the pressed button is returned.

displays the mouse cursor on the screen until a
button is pressed. When a button is pressed the
current position of the cursor is assigned to p and
the pressed button is returned.

10.1. GRAPHIe WINDOWS (WINDOW) 147

int W.read..mouse....seg(double xO, double yO, double& x, double& y)
displays a line segment !rom (xo, Yo) to the current
cursor position until a mouse button is pressed.
When a button is pressed the current position is
assigned to (x, y) and the pressed button is returned.

int W.read..mouse....seg(point p, point& q)

displays a line segment !rom p to the current cursor
position until a mouse button is pressed. When a
button is pressed the current position is assigned to
q and the pressed button is returned.

int W.read..mouse...xect(double xO, double yO, double& x, double& y)
displays a rectangle with diagonal !rom (xo, Yo) to
the current cursor position until a mouse button
is pressed. When a button is pressed the current
position is assigned to (x, y) and the pressed button
is. returned.

int W.read..mouse...xect(point p, point& q)

displays a rectangle with diagonal !rom p to the cur
rent cursor position until a mouse button is pressed.
When a button is pressed the current position is
assigned to q and the pressed button is returned.

int W.read..mouse_circle(double xO, double yO, double& x, double& y)

displays a circle with center (xo, Yo) passing through
the current cursor positionuntil a mouse button
is pressed. When a button is pressed the current
position is assigned to (x, y) and the pressed button
is returned.

int W.read..mouse_circle(point p,point& q)

int W .get _bu t ton()

displays a circle with center p passing through the
current cursor position until a mouse button is
pressed. When a button is pressed the current po
sition is assigned to q and the pressed button is
returned.

non-blocking read operation, i.e., if a button was
pressed its number is returned, otherwise ° is re
turned.

int W.geLbutton(double& x, double& y)

if a button was pressed the corresponding position is
assigned to (x, y) and the button number is returned,
otherwise ° is returned.

int W.geLbutton(point& p) if a button was pressed the corresponding position
is assigned to p and the button number is returned,
otherwise ° is returned.

148 GHAPTER 10. GRAPHIGS

3.16 Events

unsignM".button_press_timeO returns Xll time-stamp of last button press event.

unsignM".button..release_timeO returns Xll time-stamp oflast button release event.

3.17 Panel Input

int W.conn.rm(string s)

void W .acknowledge(string s)

displays string s and asks for conn.rmation. Returns
true iff the answer was "yes".

displays string s and asks for acknowledgement.

int W .read_panel(string h, int n, string*)

displays a panel with header hand an array S[l..n]
of n string buttons, returns the index of the selected
button.

int W.read_vpanel(string h, int n, string*)

like read_panel with vertical button layout.

string W.read....string(string p) displays a panel with prompt p for string input,
returns the input.

double W.read..real(string p)

int W.readint(string p)

void W .message(string s)

void W.del-IllessagesO

displays a panel with prompt p for real input returns
the input.

displays a panel with prompt p for integer input,
returns the input.

displays message s (each call adds a new line).

deletes the text written by all previous message
operations.

3.18 Input and output operators

For input and output of basic geometrie objects in the plane such as points, lines,
line segments, circles, and polygons the < < and > > operators can be used. Similar
to C++ input streams windows have an internal state indicating whether there is
more input to read or not. Its initial value is true and it is turned to false if an
input sequence is terminated by clicking the right mouse button (similar to ending
stream input by the eof character). In conditional statements objects oftype window
are automatically converted to boolean by returning this internal state. Thus, they
can be used in conditional statements in the same way as C++ input streams. For
example, to read a sequence of points terminated by a right button click, use " while
(W » p) { ... } ".

3.18.1 Output

window& W « point p like W.draw_point(p).

10.1. GRAPHIG WINDOWS (WINDOW) 149

window& W «

window& W «

window& W «

window& W «

3.18.2 Input

window& W »

window& W »

window& W »

window& W »

window& W »

segment s

line I

circle C

polygon P

point& p

segment& s

line& I

circle& C

polygon& P

like W.draw...segment(s).

like W.drawJine(I).

like W.draw_circle(C).

like W.draw_polygon(P).

reads a point p: clicking the left button
assigns the current cursor position to p.

reads a segment s: use the left button to
input the start and end point of s.

reads a line I: use the left button to input
two different points on I.

reads a circle C: use the left button to input
the center of C and a point on C.

reads a polygon P: use the left button to
input the sequence of vertices of P, end the
sequence by clicking the middle button.

As long as an input operation has not been completed the last read point can be
erased by simultaneously pressing the shift key and the left mouse button.

3.19 Non-Member Functions

int

void

read...mouse(window * waits for mouse input, assigns apointer to the
&w, double& z, double&y~orresonding window to w and the position

in *w to (z, y) and returns the number of
the pressed button.

put-back_eventO puts last read event back to the input stream
of events.

150 OHAPTER 10. GRAPHIOS

10.2 Panels (panel)

1. Definition

Panels are windows used for displaying text messages and updating the values of
variables. A panel P consists of a set of panel items and a set of buttons. A variable
of a certain type (int, bool, string, double, color) is associated with each item (except
for text items). It can be manipulated through the item and astring label.

2. Creation

panel P;

creates an empty panel P.

panel P(string s);

creates an empty panel P with he ader s.

panel P(string s, int w, int h);

creates an empty panel P of width wand height h with he ader s.

3. Operations

void P.seLbg_color(color bg_col) sets the panel background color to bg-col.

void P.buttons_perJine(int n) defines the maximal number n of buttons per line.

void P.label(string s) sets the panel label to s .

void P.textjtem(string s) adds a textjtem s to P.

void P.booUtem(string s, bool& x)

adds a boolean item with label sand variable x
to P.

void P .realjtem(string s, double& x)

adds areal item with label sand variable x to P.

void P.colorjtem(string s, color& x)

adds a color item with label s and variable x to
P.

void P .lstylejtem(string s, line-style& x)

adds a line style item with label sand variable x
to P.

void P.intjtem(string s, int& x)

adds an integer item with label sand variable x
to P.

10.2. PANELS (PANEL) 151

void P.intitem(string s, int& x, int 1, int h, int step)

adds an integer choice item with label s, variable
x, range 1, ... , h, and step size step to P.

void P.intitem(string s, int& x, int 1, int h)

adds an integer slider item with label s, variable
x, and range 1, ... ,h to P.

void P .stringitem(string s, string& x)

adds astring item with label sand variable x to
P.

void P.stringitem(string s, string& x, 1ist<string>& L)

adds astring item with label s , variable x, and
menu L to P .

void P .choiceitem(string s, int& x, 1ist<string>& L)

adds an integer item with label s, variable x , and
choices from L to P.

void P .choiceitem(string s, int& x, string sl, ... , string sk)

int

void

void

void

void

void

int

int

int

int

int

P.button(string s)

P .new _buttonJine()

P. display()

P .display(int x, int y)

P .display(window& W)

P .display(window& W,

P.readO

P .openO

P .open(int x, int y)

P .open(window& W)

adds an integer item with label s, variable x, and
choices SI, ••• , Sie to P (k :S 4).

adds a button with label s to P and returns its
number.

starts a new line of buttons.

displays P centered on screen.

displays P with left upper corner at (x, y) .

displays P centered over window W.

int x, int y)

displays P with left upper corner at position (x, y)
of window W.

waits for a button selection in P. Returns the
number of the selected button.

P.displayO + P.readO.

P.display(x, y) + P.readO.

P.display(W) + P.readO.

P .open(window& W, int x, int y)

P.display(W,x,y) + P.readO.

SOIHdVHD ·or Hil.LdVHO

Chapter 11

Miscellaneous

This section describes some additional useful data types, functions and macros of
LEDA. The stream data types described in this section are all derived from the
C++ stream types istream and ostream. They can be used in any program that
includes the <LEDA/stream.h> he ader file. Some of these types may be obsolete in
combination with the latest versions of the standard C++ 1/0 library.

11.1 File Input Streams (file3stream)

1. Definition

An instance I of the data type file_istream is an C++ istream connected to a file
F, i.e., all input operations or operators applied to I read from F.

2. Creation

file..istream I(string s)j

creates an instance I of type filejstream connected to file s.

3. Operations

All operations and operators (> » defined for C++ istreams can be applied to file
input streams as well.

11.2 File Output Streams (file_ostream)

1. Definition

An instance 0 of the data type file_ostream is an C++ ostream connected to a file
F, i.e., all output operations or operators applied to 0 write to F.

153

154 CHAPTER 11. MISCELLANEOUS

2. Creation

file_ostream O(char * s)j

creates an instance 0 of type file_ostream connected to file s.

3. Operations

All operations and operators « <) defined for C++ ostreams can be applied to file
output streams as weil.

11.3 String Input Streams (string3stream)

1. Definition

An instance I of the data type string..istream is an C++ istream connected to a
string s, i.e., all input operations or operators applied to I read from s.

2. Creation

string_istream I(string s)j

creates an instance I of type stringistream connected to the string
s.

3. Operations

All operations and operators (> » defined for C++ istreams can be applied to string
input streams as weil.

11.4 String Output Streams (string_ostream)

1. Definition

An instance 0 of the data type string_ostream is an C++ ostream connected to an
interna! string buffer, i.e., all output operations or operators applied to 0 write into
this interna! buffer. The current value of the buffer is called the contents of O.

2. Creation

string_ostream Oj

creates an instance 0 of type string_ostream.

3. Operations

string O.strO returns the current contents of O.

All operations and operators « <) defined for C++ ostreams can be applied to string
output streams as weil.

11.5. COMMAND INPUT STREAMS (CMDJSTREAM) 155

11.5 Command Input Streams (cmd3stream)

1. Definition

An instance I of the data type cmd_istream is an C++ istream connected to the
output of a shell command cmd, i.e., all input operations or operators applied to I
read from the standard output of command cmd.

2. Creation

cmd_istream I(string cmd)j

3. Operations

creates an instance I of type cmdistream connected to the output
of command cmd.

All operations and operators (> >) defined for C++ istreams can be applied to command
input streams as well.

11.6 Command Output Streams (cmd_ostream)

1. Definition

An instance 0 of the data type cmd_ostream is an C++ ostream connected to the
input of a shell command cmd, i.e., all output operations or operators applied to 0
write into the standard input of command cmd.

2. Creation

cmd_ostream O(string cmd)j

3. Operations

creates an instance 0 of type cmd_ostream connected to the input
of command cmd.

All operations and operators «<) defined for C++ ostreams can be applied to
command output streams as well.

156 CHAPTER 11. MISCELLANEOUS

11.7 Some U seful Functions (mise)

The following functions and macros are defined in <LEDA/basic.h>.

int

double

string

eh ar

int

float

float

void

void

T

T

readjnt(string s)

readJeal(string s)

read....string(string s)

read_char(string s)

Yes(string s)

used_time()

used_time(float& T)

wait(float see)

prinLstatisticsO

Max(T a, T b)

Min(T a, T b)

prints sand reads an integer from ein.

prints sand reads areal number from
cz.n.

prints sand reads a line from ein.

prints sand reads a character from ein.

returns (read_char(s) == 'y').

returns the currently used cpu time in
seconds.

returns the cpu time used by the program
from time T up to this moment and assigns
the current time to T.

suspends execution for see seconds.

prints a summary of the currently used
memory.

returns the maximum of a and b.

returns the minimum of a and b.

11.8. MEMORY MANAGEMENT 157

11.8 Memory Management

LEDA offers an eflicient memory management system that is used internally for all
node, edge and item types. This system can easily be customized for user defined
classes by the "LEDA~EMORY" macro. You simply have to add the macro call
"LEDA~EMORY(T)" to the dedaration of a dass T. This redefines new and delete
operators for type T, such that they allocate and deallocate memory using LEDA's
interna! memory manager.

Attention: There is a restriction on the size of the type T, however. Macro
LEDA~EMORY may only be applied to types T with sizeof(T) < 256. Note that
this condition is (for efliciency reasons) not checked.

We continue the example from section 1.5:

struct pair {
double Z;
double y;

pairO{ Z = Y = 0; }
pair(const pair& p) { Z = p.z; y = p.y; }

friend ostream& operator«(ostream&,const pair&) { ... }
friend istream& operator»(istream&,pair&) { ... }
friend int compare(const pair& p, const pair& q) { ... }

LEDA~EMORY(pair)

};

dictionary<pair,int> D;

158 CHAPTER 11. MISCELLANEOUS

11.9 Error Handling

LEDA tests the preconditions of many (not all!) operations. Preconditions are never
tested, if the test takes more than constant time. If the test of a precondition fails
an error handling routine is called. It takes an integer error number i and a char*
error message string s as arguments. It writes s to the diagnostic output (cerr)
and terminates the program abnormally if i =J. o. Users can provide their own error
handling function handl er by calling seLerror lJ.andler(handl er). After this function

call handler is used instead of the default error handler. handler must be a function
of type void handler(int, char*) . The parameters are replaced by the error number
and the error message respectively.

Chapter 12

Programs

12.1 Graph and network algorithms

In this section we list the C++ sources for some of the graph algorithms in the library
(cf. section 5.12).

Depth First Search

#include <LEDA/ graph.h>
#include <LEDA/stack.h>

list<node> DFS(graph& G, node v, node_array<bool>& reached)

{

}

list<node> L;
stack<node> S;
node w;

if (!reached[v])
{ reached[v] = true;

S.push(v);
}

while (!S.emptyO)
{ v = S.popO;

}

L.append(v);
foraILadj._nodes(w, v)

if (!reached[w])
{ reached[w] = true;

S.push(w);
}

return L;

Breadth First Search

159

160

#include <LEDA / graph.h>
#include <LEDA/queue.h>

CHAPTER 12. PROGRAMS

void BFS(graph& G, node v, node_array<int>& dist)

{

}

queue<node> Q;
node w;

foralLnodes(w, G) dist[wJ = -1;

dist[vJ = 0;
Q.append(v);

while (!Q.emptyO)
{ v = Q.popO;

foralLadj...nodes(w, v)
if (dist[wJ < 0)

}

{ Q.append(w);
dist[wJ = dist[vJ + 1;

}

Connected Components

#include <LEDA/ graph.h>

int COMPONENTS(ugraph& G, node_array < int > & compnum)

{

}

node v, w;
list<node> S;
int count = 0;

node_array(bool) reached(G, false);

foralLnodes (v, G)

if (!reached[vJ)
{ S = DFS(G,v,reached);

}

forall (w, S) compnum[wJ = count;

count + +;

return count;

12.1. GRAPH AND NETWORK ALGORITHMS

Depth First Search N umbering

#include <LEDAjgraph.h>

int df s_countl, df s_count2;

void dJ-s(node v,node_array<bool>& S, node_array<int>&
node_array<int>& compnum, list<edge> T)

{ j j recursive DFS

}

node w;
edge e;

S[v] = truej
dfsnum[v] = + + dfs_countlj

foralLadj_edges (e, v)
{ w = G.target(e)j
if (!S[w])

{ T.append(e)j
dJ-s(w, S, dfsnum, compnum, T)j

}
}

compnum[v] = + + dfs_count2j

list <edge>

161

dfsnum,

DFS.NUM(graph& G, node_array<int>& df snum, node_array<int>& compnum
)

{

}

list<edge> Tj
node_array<bool> reached(G, false)j
node Vj

df s_countl = df s_count2 = 0;
foralLnodes (v, G)

if (!reached[v]) dJ-s(v, reached, df snum, compnum, T);
return Tj

162 CHAPTER 12. PRO GRAMS

Topological Sorting

#include <LEDAjgraph.h>

bool TOPSORT(graph& G, node_array<int>&01'd)

{

}

node_array<int> INDEG(G);
list<node> ZEROINDEG;

int count = 0;
node v, w;

edge e;

foralLnodes(v, G)
if ((INDEG[v]=G.indeg(:v))==0) ZEROINDEG.append(v);

while (!ZEROINDEG.emptyO)
{ v = ZEROINDEG.popO;

ord[v] = + + count;

foralLadj-Ilodes(w, v)
if (--INDEG[w]==O) ZEROINDEG.append(w);

}

return (count==G.number_of..nodesO);

j jTOPSORT1 sorts node and edge lists according to the topological ordering:

bool TOPSORT1(graph& G)

{

}

node_array<int> node_ord(G);
edge_array<int> edge_ord(G);

if (TOPSORT(G,node_ord))
{ edge e;

}

foralLedges(e, G) edge_ord [e] =node_ord[target(e)];
G. sort ..nodes(node_ord);
G. sorLedges(edge_ord);
return true;

return false;

12.1. GRAPH AND NETWORK ALGORITHMS

Strongly Connected Components

#include <LEDA/ graph.h>
#include <LEDA/ array.h>

int STRONG_COMPONENTS(graph& G, node_array<int>& compnum)
{

}

node v,w;
int n = G.number_of..nodesO;
int count = 0;
int i;

array<node> V(1, n);
list<node> S;
node_array<int> df s_num(G), compLnum(G);
node_array<bool> reached(G, false);

DFS~UM(G, df s_num, compLnum);

forall_nodes (v, G) V[compl..num[v]] = v;

G.revO;

for (i = n; i > 0; i - -)
if (!reached[V[ilJ)

{ S = DFS(G, V[i], reached);
Forall(w, S) compnum[w) = count;
count + +;

}

return count;

163

164

Dijkstra 's Algorithm

#include <LEDA/ graph.h>
#include <LEDA/node_pq.h>

CHAPTER 12. PRO GRAMS

void DIJKSTRA(graph& G, node s, edgeÄf'l'ay<int>& cost,
node_array<int>& dist, node_array<edge>& pred)

{

}

node_pq<int> PQ(G)j

int Cj

node u,v;
edge e;

foraILnodes(v, G)
{ pred[v] = 0;

}

dist[v] = infinity;
PQ .insert(v, dist[v])j

dist[s] = Oj
P Q . decreaseinf(s, 0) j

while (! PQ .empty())
{ u = PQ . deLmin();

foralLadj_edges(e, u)
{ v = G.target(e);

c = dist[u] + cost[e];
if (c< dist[v])

{ dist[v] = c;

}

pred[v] = e;
PQ.decreasejnf(v, c);

} / * foralLadj _edges *

} /* while */

12.1. GRAPH AND NETWORK ALGORITHMS

Bellman/Ford Algorithm

#indude <LEDA/ graph.h>
#indude <LEDA/queue.h>

bool BELLMANYORD(graph& G, node s, edge_array<int>& cost,
node_array<int>& dist, node_array<edge>& pred)

{

}

node_array<bool> in_Q(G, false)j
node_array<int> count (G, O)j

int n = G.number_of..nodesOj
queue<node> Q(n)j

node U,Vj

edge ej
int Cj

forall_nodes (v, G)
{ pred[v] = Oj

dist[v] = infinitYj
}

dist[s] = Oj
Q.append(s)j
in_Q[s] = truej

while (!Q .emptyO)
{ u = Q.poPOj

in_Q[u] = falsej

if (+ + count[u] > n) return falsej / /negative eyde

foralLadj_edges (e, u)
{ v = G.target(e)j

c = dist[u] + cost[e]j

if (c < dist[v])
{ dist[v] = Cj

pred[v] = ej

}

if (!in_Q[v])
{ Q.append(v)j

in_Q[v] = truej
}

} /* foralLadj_edges */
} /* while */

return truej

165

166 CHAPTER 12. PRO GRAMS

All Pairs Shortest Paths

#include <LEDA/ graph.h>

void alLpairs-shortesLpaths(graph& G, edge_array<double>& cost,
node-IIlatrix<double>& DI ST)

{

}

/ / computes for every node pair (v,w) DIST(v,w) = cost of the least cast
/ / path from v to w, the single source shortest paths algarithms BELLMAN -YORD
/ / and DIJKSTRA are used as subroutines

edge ej
node Vj
double C = 0;

foralLedges(e, G) C+ = fabs(cost[eJ);
node s = G.new....nodeO;
foralLnodes(v,G) G.new_edge(s,v);

node_array<double> distl(G);
node_array<edge> pred(G);
edge_array<double> costl(G);

/ / add s to G
/ / add edges (s, v) to G

foralLedges(e, G) costl[e] = (G.source(e) == s)? C: cost[e];

BELLMAN-YORD(G, s, costl, distl,pred);

G. del....node(s); / / delete s from G
edge_array(double) cost2(G);
foralLedges(e, G) cost2[e] = distl[G.source(e)] + cost[e]- distl[G.target(e)]j

foralLnodes(v, G) DIJKSTRA(G, v, cost2, DIST[v],pred)j

foralLnodes(v, G)
foralLnodes(w, G) DIST(v, w) = DIST(v, w) - distl[v] + distl[w]j

12.1. GRAPH AND NETWORK ALGORITHMS

Minimum Spanning Tree

#include <LEDA/ graph.h>
#include <LEDA/node_partition.h>

167

void MIN...sPANNING_TREE(graph& G, edge-3.rray<double>& cost, list<edge>& EL)
{

}

node V,Wj

edge ej
node_partition Q(G)j

G . sorLedges (cost)j

EL.clearOj
foralLedges(e, G)

{ v = G .source(e)j
W = G.target(e)j

}

if (!(Q .sameJ>lock(v, w»
{ Q.union_blocks(v, w)j

EL.append(e)j
}

168 CHAPTER 12. PRO GRAMS

12.2 Geometry

Using a persistent dictionary (cf. section 4.7) for planar point location (sweep line
algorithm).

#include <LEDA/plane.h>
#include <LEDA/prio.h>
#include <LEDA/sortseq.h>
#include <LEDA/p_dictionary.h>

double X_POS; / / current position of sweep line

int compare(segment s1,segment s2)
{

}

line 11(s1);
line 12(s2);

double y1 = 11.y_proj(X _POS)j
double y2 = 12.y_proj(X _POS)j

return compare(y1, y2)j

typedef priority _queue<segment,point> X....structurej
typedef p_dictionary<segment,int> Y....structurej

sortseq<double,Y....structure> HISTORYj

void SWEEP(list<segment>& L)

{
/ / Precondition: L is a list of non-intersecting
/ / from left to right directed line segments

X....structure X j
Y....structure Y j
segment Sj

forall (s,L)
{ X.insert(s,s.startO)j

X.insert(s,s.end())j
}

/ / initialize the X....structure

HISTORY.insert(-MAXDOUBLE,Y)j / / insert empty Y....structure at -infinity

while (! X .emptyO)
{ point pj

segment Sj
X .deLmin(s, p)j
X_POS = p.xcoordO;

if (s.startO== p)
Y = Y.insert(s,O)j

else
Y = Y.del(s);

/ / next event: endpoint p of segment s

/ / p is left end of s

/ / p is right end of s

12.2. GEOMETRY 169

HISTORY.insert(X .-POS, Y); / / insert Y into his tory sequence
}

HISTORY.insert(MAXDOUBLE,Y); / / insert empty Y -Btructure at +infinity
}

segment LOCATE(point p)

{

}

x _PO S = p.xCOO1'dO j
Y -Btructure Y = HISTORY.inf(HISTORY.pred(X'-pOS));
p_dicjtem pit = Y.succ(segment(p, 0,1»;

if (pit! = nil)
return Y.key(pit);

else
return segment(O)j

SWVHDOHd ·zr Hil.LdVHO 01.1

Chapter 13

Implementations

13.1 List of data structures

This seetion lists the data struetures for dietionaries, dictionary arrays, priority
queues, and geometrie data types eurrently eontained in LEDA. For eaeh of the data
struetures its name and type, the list of LEDA data types it ean implement, and a
literat ure referenee are given. Before using a data struetures xyz the eorresponding
header file <LEDA/impl/xyz.h> has to be included (cf. seetion 1.2 for an example).

13.1.1 Dictionaries

ab..tree
avl..tree
bb..tree
ch_hashing
dp_hashing
pers_tree
rb..tree
rs..tree
skiplist

a-b tree
AVL tree
BB[a] tree
hashing with ehaining
dyn. perl. hashing
persistent tree
red-blaek tree
rand. seareh tree
skip lists

13.1.2 Priority Queues

dietionary, d..array, sortseq
dietionary, dÄrray
dietionary, d..array, sortseq
dietionary, dÄrray
h_array
p_dictionary
dietionary, dÄrray, sortseq
dictionary, d_array, sortseq
dietionary, dÄrray, sortseq

f_heap
p_heap
k_heap
m_heap
eb..tree

Fibonnaeci heap
pairing heap
k-nary heap
monotonie heap
Emde-Boas tree

priority _queue
priority Aueue
priority _queue
priority _queue
priority Aueue

[22]
[46]
[34]
[34]
[18], [49]

171

[7]
[3]
[8]
[34]
[14], [49]
[15]
[25]
[1]
[43]

172 CHAPTER 13. IMPLEMENTATIONS

13.1.3 Geometry

range_tree range tree d2_dictionary, point....set [50], [33]
seg_tree segment tree seg....set [4], [17]
ps_tree pnonty search tree [36]
iv..tree interval tree intervaLset [35], [17]
delaunay..tree delaunay tree poinLset [12]

13.2. USER IMPLEMENTATIONS 173

13.2 User Implementations

In addition to the data structures listed in the previous section user-defined data
structures can also be used as actual implementation parameters provided they fulfill
certain requirements.

13.2.1 Dictionaries

Any dass dic.impl that provides the following operations can be used as
actual implementation parameter for the _dictionary<K, I, dic_impl> and the
Ji,-array<I, E, dic..impl> data types (cf. sections 5.1 and 5.5).

typedef ... dicimplitemj

dass dicimpl {

virtual int cmp(GenPtr, GenPtr) const = 0;
virtual int inLtypeO const = 0;
virtual void dear.Jtey(GenPtr&) const = 0;
virtual void dearinf(GenPtr&) const = 0;
virtual void copy.Jtey(GenPtr&) const = 0;
virtual void copyinf(GenPtr&) const = 0;

public:

dicimplOj
dicimpl(const dicimpl&)j
virtual dicimplO;

dicimpl& operator=(const dicimpl&)j

GenPtr key(dicimplitem) const;
GenPtr inf(dicimplitem) const;

dicimplitem insert(GenPtr, GenPtr) j
dicimplitem lookup(GenPtr) const;
dicimplitem firstitemO const;
dicimplitem nextitem(dicimplitem) constj

dicimplitem item(void* p) const { return dicimplitem(p)j }

void changeinf(dicimplitem, GenPtr);
void delitem(dicimplitem) j
void del(GenPtr)j
void dearO j

int sizeO const;
};

174 CHAPTER 13. IMPLEMENTATIONS

13.2.2 Priority Queues

Any dass prio_impl that provides the following operations can be used as actual
implement at ion parameter for the _priority _queue<K, I, prio_impl> data type (cf.
section 6.1).

typedef ... prioimplitem;

dass prioimpl

virtual int cmp(GenPtr, GenPtr) const = 0;
virtual int inLtypeO const = 0;
virtual void dear...key(GenPtr&) const = 0;
virtual void clearinf(GenPtr&) const = 0;
virtual void copy ...key(GenPtr&) const = 0;
virtual void copyinf(GenPtr&) const = 0;

public:

};

prioimplO;
prioimpl(int);
prioimpl(int,int);
prioimpl(const prioimpl&);
virtual prioimplO;

prioimpl& operator=(const prioimpl&);

prioimplitem insert(GenPtr,GenPtr);
prioimplitem find--.minO const;
prioimplitem firstitemO const;
prioimplitem nextitem(prioimplitem) const;

prioimplitem item(void* p) const { return prioimplitem(p); }

GenPtr key(prioimplitem) const;
GenPtr inf(prioimplitem) const;

void del--.min();
void delitem(prioimplitem);
void decrease...key(prioimplitem, GenPtr);
void changeinf(prioimplitem, GenPtr);
void dear();

int sizeO const;

13.2. USER IMPLEMENTATIONS 175

13.2.3 Sorted Sequences

Any dass seq_impl that provides the following operations can be used as actual
implementation parameter for the _sortseq<K, I, seq.i.mpl> data type (cf. section
5.3).

typedef ... seqjmplitem;

dass seqjmpl {

virtual int cmp(GenPtr, GenPtr) const = 0;
virtual int inLtypeO const = Oj
virtual void dear..key(GenPtr&) const = 0;
virtual void dearjnf(GenPtr&) const = 0;
virtual void copy ..key(GenPtr&) const= Oj
virtual void copy jnf(GenPtr&) const = 0;

public:

seqjmpl();
seqjmpl(const seqjmpl&)j
virtual seqjmp10j

seqjmpl& operator=(const seq jmpl&);
seqjmpl& conc(seqjmpl&)j

seqjmplitem insert(GenPtr,GenPtr)j
seq jmplitem insert _atjtem(seq jmplitem, GenPtr, GenPtr) j
seqjmplitem lookup(GenPtr) constj
seqjmplitem locate(GenPtr) constj
seq implitem locate_pred(GenPtr) const;
seqjmplitem succ(seqimpUtem) const;
seqjmpUtem pred(seqimplitem) const;
seqimpUtem item(void* p) const { return seqimpUtem(p); }

GenPtr key(seqjmpUtem) constj
GenPtr inf(seqimplitem) constj

void del(GenPtr);
void delitem(seqimplitem)j
void change.inf(seqimplitem, GenPtr);
void spliLat.item(seq.implitem,seqimpl&,seq.impl&);
void reverseitems(seq.implitem,seqjmplitem);
void dear() j

int sizeO const;
}j

SNOI.LV.LNrIWrI1dWI '8f HrI.LdVHO 91.I

Chapter 14

Tables

14.1 Data Types

Name Item Header Library Page
array array.h libL.a 39
array2 array2.h libL.a 41
b...node_pq b...node_pq.h libG.a 101
b_priority _queue b_pqjtem b_prio.h libL.a 76
b_queue b_queue.h libL.a 45
b.-Stack b.-Stack.h libL.a 44
circle circle.h libP.a 125
cmdjstream stream.h libL.a 155
cmd_ostream stream.h libL.a 155
d2_dictionary d2_dicjtem d2_dictionary.h libP.a 129
d_array d_array.h libL.a 64
dictionary dicjtem dictionary.h libL.a 57
edge..a.rray edge-array.h libG.a 92
edge....map edge....map.h libG.a 94
edge.-Set edge.-Set.h libG.a 97
filejstream stream.h libL.a 153
file_ostream stream.h libL.a 153
fioatf fioatf.h libL.a 33
graph node/edge graph.h libG.a 77
GRAPH node/edge graph.h libG.a 83
h..a.rray h_array.h libL.a 67
integer integer.h libL.a 29
int.-Set int.-Set.h libL.a 54
intervaLset isjtem intervaLset.h libP.a 133
line line.h libP.a 122
list listjtem list.h libL.a 46
map map.h libL.a 68
matrix matrix.h libL.a 26
node_array node..a.rray.h libG.a 91
nodeJist nodeJist.h libG.a 98
node-IIlap node....map.h libG.a 93

177

178 CHAPTER 14. TABLES

node.-matrix graph.h libG.a 95
node_partition node_partition.h libG.a 99
node_pq node_pq.h libG.a 100
node_set node~et.h libG.a 96
panel panel.h libP.a/lib Wx.a 150
partition partitionjtem partition.h libL.a 55
planar-map node / edge / face planar_map.h libG.a 87
point point.h libP.a 111
point_set psitem poinLset.h libP.a 131
polygon polygon.h libP.a 124
PAueue pqitem PAueue.h libL.a 71
p_dictionary p_dicjtem p_dictionary.h libL.a 69
PLANAR.MAP node / edge / face planar-IIlap.h libG.a 89
queue queue.h libL.a 43
rational rational.h libL.a 31
raLpoint raLpoint.h libP.a 114
raLsegment rat ~egment.h libP.a 119
real real.h libL.a 35
segment segment.h libP.a 116
segment~et segjtem segment~et.h libP.a 135
set set.h libL.a 53
sortseq seqjtem sortseq.h libL.a 60
stack stack.h libL.a 42
string string.h libL.a 19
stringjstream stream.h libL.a 154
string_ostream stream.h libL.a 154
sub division node/face subdivision.h libP.a 137
tree_collection d_vertex tree_collection.h libL.a 56
ugraph node/edge ugraph.h libG.a 86
UGRAPH node/edge ugraph.h libG.a 86
vector vector.h libL.a 24
window window.h libP.a/libWx.a 139

14.2. AL GORITHMS 179

14.2 Algorithms

Name Header Library Page
ALL.-P AIRS~HORTEST.-P ATHS graph_alg.h libG.a 107
BELLMAN ...FORD graph_alg.h libG.a 107
BFS graph_alg.h libG.a 106
COMPONENTS graph_alg.h libG.a 106
CONVEX...HULL plane..a.lg.h libP.a 127
DFS graph_alg.h libG.a 106
DFS~UM graph_alg.h libG.a 106
DIJKSTRA graph_alg.h libG.a 107
MAX_CARD-MATCHING graph_alg.h libG.a 107
MAX_CARD..BIPARTITE-MATCHING graph_alg.h libG.a 107
MAX...FLOW graph_alg.h libG.a 107
MAX_WEIGHT..BIPARTITE-MATCHING graph_alg.h libG.a 107
MIN_CUT graph_alg.h libG.a 107
MIN _COST -MAX...FLOW graph_alg.h libG.a 107
MIN~PANNING_TREE graph_alg.h libG.a 107
PLANAR graph_alg.h libG.a 110
SEGMENT .lNTERSECTION plane_alg.h libP.a 127
SPANNING_TREE graph_alg.h libG.a 107
STRAIGHT .LINE-EMBEDDING graph_alg.h libG.a 110
STRONG_COMPONENTS graph_alg.h libG.a 106
SWEEP _SEGMENTS plane_alg.h libP.a 127
TOPSORT graph_alg.h libG.a 106
TRANSITIVE_CLOSURE graph_alg.h libG.a 106
TRIANGULATE.-PLAN AR-MAP graph_alg.h libG.a 110
VORONOI plane_alg.h libP.a 127

081

Bibliography

[1] C. Aragon, R. Seidel: "Randomized Seareh Trees", Proe. 30th IEEE Symposium
on Foundations of Computer Seienee, 540-545, 1989

[2] A.V. Aho, J.E. Hoperoft, J.D. Ullman: "Data Struetures and Algorithms" ,
Addison-Wesley Publishing Company, 1983

[3] G.M. Adelson-Veslkü, Y.M. Landis: "An Algorithm for the Organization of
Information", Doklady Akademi Nauk, Vol. 146, 263-266, 1962

[4] J.L. Bentley: "Deeomposable Searehing Problems", Information Proeessing Let
ters, Vol. 8, 244-252, 1979

[5] R.E. Bellman: "On a Routing Problem", Quart. Appl. Math. 16, 87-90, 1958

[6] J.L. Bentley, Th. Ottmann: "Algorithms for Reporting and Counting Geometrie
Interseetions", IEEE Trans. on Computers C 28, 643-647, 1979

[7] R. Bayer, E. MeCreight: "Organizatino and Maintenanee of Large Ordered
Indizes", Acta Informatiea, Vol. 1, 173-189, 1972

[8] N. Blum, K. Mehlhorn: "On the Average Number of Rebalaneing Operations
in Weight-Balaneed Trees", Theoretieal Computer Seienee 11, 303-320, 1980

[9] Ch. Burnikel, K. Mehlhorn, and St. Sehirra. How to eompute the Voronoi diagram
of line segments: Theoretieal and experimental results. In LNCS, volume 855,
pages 227-239. Springer-Verlag Berlin/New York, 1994. Proeeedings of ESA'94.

[10] T.H. Cormen, C.E. Leiserson, R.L. Rivest: "Introduetion to Algorithms", MIT
Press/MeGraw-Hill Book Company, 1990

[11] D. Cheriton, R.E. Tarjan: "Finding Minimum Spanning Trees", SIAM Journal
of Computing, Vol. 5, 724-742, 1976

[12] O. Devillers: "Robust and Efficient Implementation of the Delaunay Tree" ,
Teehnieal Report, INRIA, 1992

[13] E.W. Dijkstra: "A Note on Two Problems in Connection With Graphs", Num.
Math., Vol. 1, 269-271, 1959

[14] M. Dietzfelbinger, A. Karlin, K.Mehlhorn, F. Meyer auf der Heide, H. Rohnert,
R. Tarjan: "Upper and Lower Bounds for the Dietionary Problem", Proe. of the
29th Annual IEEE Symposium on Foundations of Computer Seienee, 1988

181

182 BIBLIOGRAPHY

[15] J.R. Driseoll, N.Sarnak, D. Sleator, R.E. Tarjan: "Making Data Struetures
Persistent" , Proe. of the 18th Annual ACM Symposium on Theory of Computing,
109-121, 1986

[16] J. Edmonds: "Paths, Trees, and Flowers", Canad. J. Math., Vol. 17, 449-467,
1965

[17] H. Edelsbrunner: "Interseetion Problems in Computational Geometry", Ph.D.
thesis, TU Graz, 1982

[18] P.v. Emde Boas, R. Kaas, E. Zijlstra: "Design and Implementation of an Efficient
Pririty Queue", Math. Systems Theory, Vol. 10, 99-127, 1977

[19] I. Fary: "On Straight Line Representing of Planar Graphs", Acta. Sei. Math.
Vol. 11, 229-233, 1948

[20] F.W. Floyd: "Algorithm 97: Shortest Paths", Communcieation of the ACM,
Vol. 5, p. 345, 1962

[21] S. Fortune and C. van Wyk. Effieient exaet arithmetie for eomputational geometry.
Proc. 0/ the 9th Symp. on Computational Geometry, pages 163-171, 1993.

[22] M.L. Fredman, and R.E. Tarjan: "Fibonaeci Heaps and Their Uses in Improved
Network Optimization Algorithms", Journal of the ACM, Vol. 34, 596-615, 1987

[23] A. Goraleikova, V. Konbek: "A Reduct and Closure Algorithm for Graphs",
Mathematieal Foundations of Computer Seienee, LNCS 74, 301-307, 1979

[24] K.E. Gorlen, S.M. Orlow, P.S. Plexieo: "Data Abstraetion and Objeet-Oriented
Programming in C++ ", John Wiley & Sons, 1990

[25] L.J. Guibas, R. Sedgewiek: " A Diehromatie Framework for Balaneed Trees",
Proeeedings of the 19th IEEE Symposium on Foundations of Computer Seience,
8-21, 1978

[26] Goldberg, R.E.Tarjan: "A New Approach to the Maximum Flow Problem",
Journal of the ACM, Vol. 35, 921-940, 1988

[27] J.E. Hoperoft, R.M. Karp: "An O(n2
.
5

) Algorithm for Matching in Bipartite
Graphs", SIAM Journal of Computing, Vol. 4, 225-231, 1975

[28] J.E. Hoperoft, R.E. Tarjan: "Effieient Planarity Testing", Journal of the ACM,
Vol. 21, 549-568, 1974

[29] T. Hagerup, C. Uhrig: "Triangulating a Planar Map Without Introdueing multiple
Ares", unpublished, 1989

[30] A.B. Kahn: "Topologieal Sorting of Large Networks", Communieations of the
ACM, Vol. 5, 558-562, 1962

[31] J.B. Kruskal: "On the Shortest Spanning Subtree of a Graph and the Travelling
Salesman Problem", Proe. Ameriean Math. Soeiety 7, 48-50, 1956

BIBLIOGRAPHY 183

[32] S.B. Lippman: "C++ Primer" , Addison-Wesley, Publishing Company, 1989

[33] G.S. Luecker: "A Data Structure for Orthogonal Range Queries", Proc. 19th
IEEE Symposium on Foundations of Computer Science, 28-34, 1978

[34] K. Mehlhorn: "Data Structures and Algorithms", Vol. 1-3, Springer Publishing
Company, 1984

[35] D.M. McCreight: "Efficient Algorithms for Enumerating Intersecting Intervals" ,
Xerox Parc Report, CSL-80-09, 1980

[36] D.M. McCreight: "Priority Search Trees", Xerox Parc Report, CSL-81-05, 1981

[37] M. Mignotte. Mathematics for Computer Algebra. Springer Verlag, 1992.

[38] K. Mehlhorn, S. Näher: " LEDA, a Library of Efficient Data Types and
Algorithms", TR A 04/89, FB10, Universität des Saarlandes, Saarbrücken, 1989

[39] K. Mehlhorn, S. Näher: "LEDA, a Platform for Combinatorial and Geometrie
Computing", Communications of the ACM, Vol. 38, No. 1, 96-102, 1995

[40] K. Mehlhorn and S. Näher. Implementation of a sweep line algorithm for
the straight line segment intersection problem. Technical Report MPI-I-94-160,
Max-Planck-Institut für Informatik, Saarbrücken, 1994.

[41] K. Mehlhorn and St. Näher. The implementation of geometrie algorithms. In 13th
World Computer Congress IFIP94 , volume 1, pages 223-231. Elsevier Science
B.V. North-Holland, Amsterdam, 1994.

[42] S. Näher: "LEDA2.0 User Manual", technischer Bericht A 17/90, Fachbereich
Informatik, Universität des Saarlandes, Saarbrücken, 1990

[43] W. Pugh: "Skip Lists: A Probabilistic Alternative to Balanced Trees", Com
munications of the ACM, Vol. 33, No. 6, 668-676, 1990

[44] M. Stoer and F. Wagner: "A Simple Min Cut Algorithm", Algorithms - ESA
'94, LNCS 855, 141- 147, 1994

[45] B. Stroustrup: "The C++ Programming Language, Second Edition", Addison
Wesley Publishing Company, 1991

[46] J.T. Stasko, J.S. Vitter: "Pairing Heaps: Experiments and Analysis", Commu
nications of the ACM, Vol. 30, 234-249, 1987

[47] R.E. Tarjan: "Depth First Search an Linear Graph Algorithms", SIAM Journal
of Computing, Vol. 1, 146-160, 1972

[48] R.E. Tarjan: "Data Structures and Network Algorithms", CBMS-NSF Regional
Conference Series in Applied Mathematics, Vol. 44, 1983

[49] M. Wenzel: "Wörterbücher für ein beschränktes Universum", Diplomarbeit,
Fachbereich Informatik, Universität des Saarlandes, 1992

184 BIBLIOGRAPHY

[50] D.E. Willard: "New Data Structures for Orthogonal Queries", SIAM Journal of
Computing, 232-253, 1985

	95-1-0020001
	95-1-0020002
	95-1-0020003
	95-1-0020004
	95-1-0020005
	95-1-0020006
	95-1-0020007
	95-1-0020008
	95-1-0020009
	95-1-0020010
	95-1-0020011
	95-1-0020012
	95-1-0020013
	95-1-0020014
	95-1-0020015
	95-1-0020016
	95-1-0020017
	95-1-0020018
	95-1-0020019
	95-1-0020020
	95-1-0020021
	95-1-0020022
	95-1-0020023
	95-1-0020024
	95-1-0020025
	95-1-0020026
	95-1-0020027
	95-1-0020028
	95-1-0020029
	95-1-0020030
	95-1-0020031
	95-1-0020032
	95-1-0020033
	95-1-0020034
	95-1-0020035
	95-1-0020036
	95-1-0020037
	95-1-0020038
	95-1-0020039
	95-1-0020041
	95-1-0020042
	95-1-0020043
	95-1-0020044
	95-1-0020045
	95-1-0020046
	95-1-0020047
	95-1-0020048
	95-1-0020049
	95-1-0020050
	95-1-0020051
	95-1-0020052
	95-1-0020053
	95-1-0020054
	95-1-0020055
	95-1-0020056
	95-1-0020057
	95-1-0020058
	95-1-0020059
	95-1-0020060
	95-1-0020061
	95-1-0020062
	95-1-0020063
	95-1-0020064
	95-1-0020065
	95-1-0020066
	95-1-0020067
	95-1-0020068
	95-1-0020069
	95-1-0020070
	95-1-0020071
	95-1-0020072
	95-1-0020073
	95-1-0020074
	95-1-0020075
	95-1-0020076
	95-1-0020077
	95-1-0020078
	95-1-0020079
	95-1-0020080
	95-1-0020081
	95-1-0020082
	95-1-0020083
	95-1-0020084
	95-1-0020085
	95-1-0020086
	95-1-0020087
	95-1-0020088
	95-1-0020089
	95-1-0020090
	95-1-0020091
	95-1-0020092
	95-1-0020093
	95-1-0020094
	95-1-0020095
	95-1-0020096
	95-1-0020097
	95-1-0020098
	95-1-0020099
	95-1-0020100
	95-1-0020101
	95-1-0020102
	95-1-0020103
	95-1-0020104
	95-1-0020105
	95-1-0020106
	95-1-0020107
	95-1-0020108
	95-1-0020109
	95-1-0020110
	95-1-0020111
	95-1-0020112
	95-1-0020113
	95-1-0020114
	95-1-0020115
	95-1-0020116
	95-1-0020117
	95-1-0020118
	95-1-0020119
	95-1-0020120
	95-1-0020121
	95-1-0020122
	95-1-0020123
	95-1-0020124
	95-1-0020125
	95-1-0020126
	95-1-0020127
	95-1-0020128
	95-1-0020129
	95-1-0020130
	95-1-0020131
	95-1-0020132
	95-1-0020133
	95-1-0020134
	95-1-0020135
	95-1-0020136
	95-1-0020137
	95-1-0020138
	95-1-0020139
	95-1-0020140
	95-1-0020141
	95-1-0020142
	95-1-0020143
	95-1-0020144
	95-1-0020145
	95-1-0020146
	95-1-0020147
	95-1-0020148
	95-1-0020149
	95-1-0020150
	95-1-0020151
	95-1-0020152
	95-1-0020153
	95-1-0020154
	95-1-0020155
	95-1-0020156
	95-1-0020157
	95-1-0020158
	95-1-0020159
	95-1-0020160
	95-1-0020161
	95-1-0020162
	95-1-0020163
	95-1-0020164
	95-1-0020165
	95-1-0020166
	95-1-0020167
	95-1-0020168
	95-1-0020169
	95-1-0020170
	95-1-0020171
	95-1-0020172
	95-1-0020173
	95-1-0020174
	95-1-0020175
	95-1-0020176
	95-1-0020177
	95-1-0020178
	95-1-0020179
	95-1-0020180
	95-1-0020181
	95-1-0020182
	95-1-0020183
	95-1-0020184
	95-1-0020185
	95-1-0020186
	95-1-0020187
	95-1-0020188
	95-1-0020189
	95-1-0020190
	95-1-0020191
	95-1-0020192
	95-1-0020193
	95-1-0020194
	95-1-0020195
	95-1-0020196
	95-1-0020197
	cover-hinten_2099-2897-300dpi

