MPI-I-96-1-029
Lower bounds for row minima searching
Bradford, Phillip G. and Reinert, Knut
November 1996, 12 pages.
.
Status: available - back from printing
This paper shows that finding the row minima (maxima) in an
$n \times n$ totally monotone matrix in the worst case requires
any algorithm to make $3n-5$ comparisons or $4n -5$ matrix accesses.
Where the, so called, SMAWK algorithm of Aggarwal {\em et al\/.}
finds the row minima in no more than $5n -2 \lg n - 6$ comparisons.
-
- Attachement: MPI-I-96-1-029.ps (242 KBytes)
URL to this document: https://domino.mpi-inf.mpg.de/internet/reports.nsf/NumberView/1996-1-029
BibTeX
@TECHREPORT{BradfordReinert96,
AUTHOR = {Bradford, Phillip G. and Reinert, Knut},
TITLE = {Lower bounds for row minima searching},
TYPE = {Research Report},
INSTITUTION = {Max-Planck-Institut f{\"u}r Informatik},
ADDRESS = {Im Stadtwald, D-66123 Saarbr{\"u}cken, Germany},
NUMBER = {MPI-I-96-1-029},
MONTH = {November},
YEAR = {1996},
ISSN = {0946-011X},
}