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Abstract

The problem of �nding an implicit representation for a graph such that vertex ad�
jacency can be tested quickly is fundamental to all graph algorithms� In particular� it
is possible to represent sparse graphs on n vertices using O�n� space such that vertex
adjacency is tested in O��� time� We show here how to construct such a representation
e	ciently by providing simple and optimal algorithms� both in a sequential and a par�
allel setting� Our sequential algorithm runs in O�n� time� The parallel algorithm runs
in O�logn� time using O�n�logn� CRCW PRAM processors� or in O�logn log� n� time
using O�n� logn log� n� EREW PRAM processors� Previous results for this problem
are based on matroid partitioning and thus have a high complexity�
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� Introduction

A fundamental data structuring question in the design of e�cient graph algorithms is how

to represent a graph in memory using as little space as possible� so that given any two

vertices we can test their adjacency quickly 	�
� ���� Following 	�
� ���� we say that a class

of graphs has an implicit representation if there exists a constant � such that for every

n�vertex� m�edge graph G in the class� there is a labeling of the vertices with �dlogne�
bits each that allows us to decide vertex adjacency in O��� time� Implicit representation

eliminates the need for an adjacency matrix� In the adjacency matrix representation of G

adjacency can be tested in O��� time� but n� bits are required even for the case where G

is sparse �i�e� m 
 O�n��� On the other hand� a representation of G using adjacency lists

requires mdlogne bits� but the test for adjacency takes O�logn� time�

An alternative characterization of sparse graphs is given through a graph�parameter

called arboricity� The arboricity of a graph G is de�ned as maxJfjE�J�j��jV �J�j � ��g�
where J is any subgraph of G with jV �J�j vertices and jE�J�j edges� Graphs of bounded

arboricity are called sparse� As observed in 	�
�� an implicit representation can be computed

by decomposing the edges of G into edge�disjoint forests� or alternatively� by coloring the

edges of G with k colors such that there is no monochromatic cycle� If G has this latter

property� we say that it is k�forest colorable� It follows from a theorem of Nash�Williams

	��� ��� that if G has arboricity c then G is c�forest colorable� and consequently that G has

an implicit representation of cndlogne bits�� In such a case� G is said to have an optimal

implicit representation�

In this paper� we are concerned with the e�cient computation of optimal implicit rep�

resentations of sparse graphs� The known sequential and parallel algorithms 	�� ��� for

obtaining an optimal implicit representation are based on involved techniques such as Ed�

monds� results on matroid partitioning 	��� In 	��� an e�cient matroid partitioning algorithm

results in the computation of a c�forest coloring of a graph with arboricity c� �For sparse

graphs� the algorithm runs in O�n���
p
logn� time�� Similarly� the algorithms in 	��� for ma�

troid union and intersection result in a randomized parallel algorithm for �nding a c�forest

coloring of graphs with arboricity c� �The algorithm runs in O�log� n� time using O�n����

processors on a randomized CREW PRAM�� Planar graphs� an important case of sparse

graphs with c � �� have received a considerable amount of attention 	�� �
� ����

An alternative way to generate the implicit representation of a graph is proposed in 	���

�Theorem ����� If G has treewidth t� then it has an implicit representation of tndlog ne bits�
�Note that other authors
 see e�g� ���
 �
�
 refer to this number of bits as �c���ndlog ne due to a slightly

di�erent storage of the implicit representation they use�






Note that this approach is not e�cient in general� since there exist sparse graphs of small

arboricity but of large treewidth� For example� planar graphs may have treewidth ��
p
n��

The main contribution of this paper is twofold� First� we provide optimal sequential

and parallel algorithms for obtaining an optimal implicit representation of a sparse graph�

when its arboricity c is known� Our results and their comparison with previous work are

summarized in Table �� Note that several important subclasses of sparse graphs are of

known arboricity� for example� planar graphs �c � ��� graphs of genus o�n� �c � ��� graphs

of bounded degree d �c � bd�
c� �� and graphs of bounded treewidth t �c � t��

Implicit Previous Results Previous Results Results of
Representation for Planar Graphs for Sparse Graphs this paper

Number

of bits 
ndlog ne cndlog ne cndlog nez
Sequential

Time O�n� O�n���
p
logn� O�n�

Parallel

CRCW Time O�logn log log n� O�log� n�y O�log n�
PRAM Number of

Processors O�n� logn log logn� O�n����y O�n� logn�
Parallel

EREW Time O�log� n log logn� O�log� n�y O�logn log� n�
PRAM Number of

Processors O�n� logn log logn� O�n����y O�n� logn log� n�

Table �� Our results and their comparison with previous work� for sparse graphs of known arboricity

c� The sequential �resp� parallel� previous results for planar graphs are due to ���
 �resp� ��
�� The

sequential �resp� parallel� previous results for sparse graphs are due to ��
 �resp� ���
��

�y� These results are for randomized PRAMs� �z� For planar graphs c � 
�

The second contribution is based on the observation that the results in Table � require

a priori the knowledge of the arboricity of the input graph� However� the known algorithms

for computing the exact value of the arboricity �when nothing else is known about the

graph� are based on matroid theory� a sequential algorithm 	�� and a randomized parallel

algorithm 	���� We also present here simple and optimal algorithms� including a determin�

istic parallel algorithm� to compute a 
�approximation for arboricity �i�e� an approximation

which can be at most twice the exact value�� Furthermore� this approximation leads to

an implicit representation that needs almost the same amount of space as required by the

implicit representation computed using the exact value for arboricity� Our results and their

comparison with previous work are summarized on Table 
�
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Implicit Sparse Graphs of unknown arboricity c
Representation Previous results This paper

Number
of bits cndlog ne �c� ��ndlogne

Sequential
Time O�n���

p
logn� O�n�

Parallel

CRCW Time O�log� n�y O�log� n� log log n�
PRAM Number of

Processors O�n����y O�n log log n� log� n�
Parallel

EREW Time O�log� n�y O�log� n�
PRAM Number of

Processors O�n����y O�n� log� n�

Table �� Our results and their comparison with previous work� for sparse graphs of unknown

arboricity c� The sequential �resp� parallel� previous results are due to ��
 �resp� ���
��

�y� These results are for randomized PRAMs�

Our results are achieved by simple and rather intuitive techniques compared with those

used in 	�� �� �� ��� ��� and moreover� our algorithms are easy to implement� Also� our

results extend to the k�forest coloring problem which is of independent interest since it is a

fundamental problem in the design of fault�tolerant communication networks 	���� analysis

of electric networks 	�� ��� and the study of rigidity of structures 	����

The paper is organized as follows� In Section 
 we show the reduction of the problem

of �nding an implicit representation of a sparse graph G to that of �nding a forest coloring

of G� The latter problem is solved in Section �� under the assumption that the arboricity

of G is known� In Section � we show how a 
�approximation for the arboricity of a graph

can be found� We conclude with Section ��

� Implicit Representation and Forest Coloring

In this section� we show how an implicit representation of a sparse graph with arboricity c

is computed and adjacency queries are answered� if we are provided with a c�forest coloring

of the graph� We then show how a k�forest coloring� for k 
 O�c�� can be used to compute

an almost optimal implicit representation� We begin with some preliminaries�

��� Preliminaries

Our model of parallel computation is the well�known PRAM 	���� A PRAM employs a

number of processors all of which operate synchronously and have access to a common

�



memory� We shall use here two variants� the EREW PRAM �where simultaneous access

to the same memory location by more than one processor is not allowed� and the CRCW

PRAM �which allows concurrent access to the same memory location by more than one

processor� in the case of concurrent writing one such processor succeeds arbitrarily��

Throughout the paper� G 
 �V�E�� jV j 
 n� jEj 
 m� denotes a simple undirected

graph� The vertices of G are given distinct labels �� 
� � � � � n� and� unless stated otherwise�

vi refers to the vertex with label i� We assume that G is given in the standard form of

doubly�linked adjacency lists� This means that for each neighbor u of a vertex v� there

exists one entry for u in the adjacency list of v� �Remark� Only for our EREW PRAM

algorithms� we will further assume that the adjacency lists are provided with the so�called

cross�links� the entry for u in the adjacency list of vertex v is provided� in addition to

its identi�cation� with a pointer to v�s entry in the adjacency list of u� For details� see

e�g� 	�� ����

Many times throughout the paper� we will need to perform parallel pre�x computations

on adjacency lists� Note that performing a pre�x computation on a list �instead of an array�

does not cause a problem� since a list of size p can be converted into an array in O�log p�

time using O�p� log p� EREW PRAM processors 	���� Hence� we shall assume from now

on that every adjacency list Lv � for v � G� has been converted into its associated array

A�Lv� and we shall not make any distinction between Lv and A�Lv� when we refer to the

adjacency list of v�

��� Computing the implicit representation

We �rst show how to compute an implicit representation of G� if G is a tree� Choose any

vertex r and root G at r� The data structure is an array P �v� for all v � V � where P �v� is

the parent of v �P �r� 
 ��� The number of bits needed to store P is ndlogne� Two vertices

u and v are adjacent in G i� either P �v� 
 u or P �u� 
 v� Hence the adjacency test can

be done in constant time� Clearly� the above method works if G is a forest also�

Suppose a c�forest coloring of a sparse graph G is given� where c is the arboricity of

G� To compute an implicit representation of G� root all forests� The data structure is

an n � c array P � where P �v� i� is the parent of v in the i�th forest� The number of bits

needed to store P is cndlogne� Two vertices u and v are adjacent in G i�� for some i� either

u 
 P �v� i� or v 
 P �u� i�� For a given pair of vertices this test takes O�c� 
 O��� time�

since c is constant�

Lemma � Given a c�forest coloring of an n�vertex sparse graph G with arboricity c� an

�optimal� implicit representation of cndlogne bits can be computed either in O�n� sequential

time� or in O�logn� parallel time using O�n� logn� EREW PRAM processors�
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Proof� As shown above� the array P provides an implicit representation of G� The basic

steps for computing P involve� rooting a tree and computing the parent of each vertex�

Both these steps can be implemented in O�n� sequential time� or in O�logn� time with

O�n� logn� EREW PRAM processors using standard techniques �see e�g� 	���� Chapter ���

We now discuss the computation of an implicit representation of G when a k�forest

coloring of G is given� where k is a constant approximation for c� If we use the previous

approach and compute an n � k array P � we need kndlogne bits to store P � However� we

can do better than this by following a di�erent approach to reduce the number of bits�

Our data structure consists of two arrays P and Q� P is an array of length m and Q

of length n� In the array P we store �rst the parents of v�� then the parents of v�� and so

on� Q�i� indicates the position in P where the parents of vi begin �if Q�i� 
 Q�i � �� or

Q�i� � m� then vi has no parents�� The implementation is presented in Algorithm ��

Input� A graph G 
 �V�E�� jV j 
 n� with a k�forest coloring�
Output� An implicit representation of G�

�� � �
 ��


� for i �
 � to n do

�a� Q�i� �
 ��

�b� for j �
 � to k do

i� if vi is not a root in the j�th forest then

ii� P ��� �
 parent of vi in the j�th forest�

iii� � �
 �� ��
�

od

od

Algorithm �� Computation of implicit representation�

Observe that each edge of G is represented exactly once in P � Hence� to store P we

need mdlogne bits and to store Q we need ndlogme bits� Since m � c�n � �� �because G

has arboricity c�� the total number of bits required is at most c�n� ��dlogne � ndlogne�
ndlog ce � �c� 
�ndlogne�

Vertex vi is a parent of vj i� vi 
 P ��� for some Q�j� � � � Q�j � ��� �� These two

vertices are adjacent in G i� one of them is a parent of the other� Since Q�j����Q�j�� k

for all j� the adjacency test takes O�k� 
 O��� time�
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Lemma � Given a k�forest coloring of an n�vertex sparse graph G with arboricity c� where

k 
 O�c�� an implicit representation of �c � 
�ndlogne bits �henceforth almost optimal

implicit representation� can be computed either in O�n� sequential time� or in O�logn�

parallel time using O�n� logn� EREW PRAM processors�

Proof� As shown above� arrays P and Q provide an implicit representation of G� The se�

quential time bound follows immediately by Algorithm �� We derive the parallel complexity

bounds as follows� Let v�� v�� � � � � vn be the vertices of G� From the k�forest coloring� we

create �temporarily� an n�k array P �� In this array we store� for each vertex vi� its parents

in the k forests in the same way as we did in the proof of Lemma �� i�e� �rst the parents

of v�� then the parents of v�� etc� This is done by associating a processor with vertex vi

in forest �� � � � � k� Then� this processor copies the parent of vi in the ��th forest into

the array position P �	�i � ��k � ��� Since every edge of G is represented only once in the

k�forest coloring� some of the entries of P � are empty� We remove all the empty entries by

performing a parallel pre�x computation on P �� The resulting array is the required array P �

It is easy to see that having P and by performing another pre�x summation on it� we can

construct the array Q� Since pre�x sums in an array of size p can be computed in O�log p�

time using O�p�logp� EREW PRAM processors 	���� the required implicit representation

can be achieved within the stated complexity bounds�

We have shown that implicit representation can be computed using forest coloring�

Thus� for the rest of the paper� we will be concerned with the forest coloring problem�

� Forest Coloring With Known Arboricity

In this section we present algorithms for computing forest colorings of sparse graphs� We

begin with some useful technical lemmas�

Lemma � Suppose the vertices of a graph G can be ordered as v�� v�� � � � � vn such that each

vertex vi has at most k neighbors before it �i�e�� among v�� � � � � vi���� Then� G is k�forest

colorable�

Proof� We will use induction on i� The basis� i 
 �� is trivial� Assume that the subgraph

of G induced by v�� � � � � vi�� can be colored using k colors� say integers from � up to k� Let

the neighbors of vi that come before it� be u�� � � � � up� where p � k� For each � � j � p�

color the edge �vi� uj� with color j�

We refer to the ordering de�ned in Lemma � as a k�ordering of the vertices�

Lemma � Let G 
 �V�E� be an n�vertex graph with arboricity c� Then G has a vertex of

degree at most 
c� ��

�



Proof� Since G has arboricity c� m 
 jEj � c�n���� So the sum of the degrees is at most


c�n� �� and hence G must have a vertex of degree at most 
c� ��

Lemma � Let G 
 �V�E� be an n�vertex graph with arboricity c and let U be the set of

vertices of degree at most 
c� Then jU j � � �
�c���n�

Proof� As before� m 
 jEj � c�n� ��� There are n�jU j vertices of degree at least 
c���

and summing the degrees of these vertices we get �n � jU j��
c � �� � 
m� The lemma

follows by rearranging the terms�

Lemma � implies that in order to �nd a k�forest coloring �and thus an optimal implicit

representation� of a sparse graph G� it su�ces to �nd a k�ordering of G� A sequential

algorithm for computing a forest coloring of G is given in Algorithm 
�

Input� A graph G 
 �V�E�� jV j 
 n� and its arboricity c�
Output� A �
c� ���forest coloring of G�

�� G� �
 G� Low �
 fv � degree of v in G� is at most 
c� �g� i �
 n�


� while Low �
 � do

�a� Pick a vertex� say u� from the set Low�

�b� for each neighbor w �� Low of u do

Decrease the degree of w by one and add w to the set Low if its degree becomes

c� ��

�c� G� �
 G� � u� vi �
 u� i �
 i� ��

�� Compute a �
c � ���forest coloring of G using the procedure given in the proof of
Lemma ��

Algorithm �� A sequential algorithm to compute forest coloring�

Theorem � Let G be an n�vertex sparse graph with arboricity c� Then Algorithm � 	nds

a �
c� ���forest coloring of G in O�n� time�

Proof� By Lemma �� G has a vertex of degree at most 
c��� call it vn and delete it fromG�

The remaining graph has also arboricity � c and therefore has a vertex� say vn��� of degree

at most 
c� �� By repeating this process� we obtain a sequence v�� � � � � vn� This procedure

is formalized in Algorithm 
� It is easy to verify that the sequence v�� � � � � vn� generated in

Step 
 of the algorithm� is a �
c� ���ordering of vertices of G and hence� by Lemma �� a

�
c� ���forest coloring of G� We now discuss the complexity of the algorithm� The time

needed by each iteration of the while loop is bounded by the degree of the vertex u� So the

�



total time of the while loop is bounded by the sum of degrees� which is O�m� 
 O�n�� since

G is sparse� Also Step � clearly takes O�n� time� The bound follows�

A parallel algorithmto compute a forest coloring of sparse graphs is given in Algorithm��

Input� A graph G 
 �V�E�� jV j 
 n and its arboricity c�
Output� A 
c�forest coloring of G�

�� G� �
 G� i �
 �� mark all vertices unlabeled�


� while there is an unlabeled vertex do�

�a� Let U be the set of vertices of G� with degree at most 
c�

�b� for each v � U do� label�v� 
 i�

�c� G� �
 G� � U � update the degrees of neighbors of U accordingly�

�d� i �
 i� ��

�� for each vertex v in G do� delete all the neighbors u from its adjacency list satisfying
label�u� � label�v��

�� for each vertex v do� let its neighbors be u�� � � � � u�� where � � 
c� color the edge
�v� ui� with color i� � � i � ��

Algorithm �� A parallel algorithm to compute forest coloring�

Theorem � Let G be an n�vertex sparse graph with arboricity c� Then� Algorithm 
 	nds

a 
c�forest coloring of G in O�logn� time using O�n� logn� CRCW PRAM processors� or

in O�logn log� n� time using O�n� logn log� n� EREW PRAM processors�

Proof� The proof of correctness comes easily by Lemma �� We will now analyze the com�

plexity of the algorithm� Steps � and � can be implemented in O��� time using O�n� pro�

cessors on an EREW PRAM� Step � can be implemented in O�logn� time using O�n� logn�

processors� on an EREW PRAM� by performing a pre�x sum computation in the adjacency

lists of G� 	���� We now argue about the complexity of Step 
� By Lemma �� the number

of iterations of the while�loop is O�logn�� Note that if in each iteration we update the

adjacency list and recompute the degree of each vertex after deleting U � we will spend

�roughly� O�logn� time per iteration and thus O�log� n� time overall� Below� we show how

we can do better than this� We begin with the CRCW PRAM implementation�

We will �rst show how we can implement Step 
 in O�logn� time with O�n� processors�

The implementation is based on the following observation� instead of recomputing the

degree of each vertex in G�� it is su�cient to mark� during the i�th iteration� those vertices

that have degree at most 
c� These are exactly the vertices which will be assigned label i

�



and will not participate in any further iteration� This can be done as follows� For every

vertex v � G�� assign one processor Pu to every vertex u in its adjacency list� Call such a

processor active if u has not been labeled yet� Let M�v� be a speci�c location in shared

memory associated with vertex v� Then all active processors Pu repeat� in parallel� the

following two steps for 
c � � times� �a� Every Pu writes its id� id�Pu�� into the speci�ed

memory location M�v�� �b� All Pu read the contents of M�v�� if M�v� 
 id�Pu�� then

Pu becomes inactive� As a �nal step� we check if the contents of M�v� after the �
c� ���

st iteration is the same as that after the 
c�th iteration� �This �nal step can be easily

implemented in the local memory of one processor�� If this is true� then the degree of v is

at most 
c� otherwise� v has degree greater than 
c� Call the above procedure mark�U � It

is clear from its description that procedure mark�U takes O��� time using O�n� processors

on a CRCW PRAM� Hence� Step 
 takes overall O�logn� time and O�n� processors�

We will now show how to reduce the number of processors to O�n� logn�� The anal�

ysis is identical to the proof of Lemma � in 	�� and originates from the method given in

Section � of 	��� �We only describe it here for the sake of completeness�� We implement

Step 
 in two phases� The �rst phase consists of O�log logn� iterations� During the i�th

iteration we update the adjacency lists and recompute the degrees of vertices in G�� us�

ing the O�logn� log logn��time� O�n log logn� logn��processor CRCW PRAM algorithm of

	�� for computing pre�x sums� By Lemma �� the size of G� reduces by a constant factor

� after each iteration� where � � ���
c � ��� Using O�n� logn� �i�e� fewer� processors�

the i�th iteration can be implemented in time O���� � ��in��� n
logn

� � logn� log logn� 


O���� ��i logn � logn� log logn�� As a consequence� the �rst phase can be implemented

in O�logn� time using O�n� logn� processors� At the end of the �rst phase� the size of

G� has been reduced to O�n� logn�� Then� in the second phase� we simply apply to G�

our non�optimal implementation described above� Hence� Step 
 can be implemented in

O�logn� time using O�n� logn� processors on a CRCW PRAM�

Let us now discuss the EREW PRAM implementation� As before� we will �rst show

how to implement Step 
 in O�logn log� n� time using O�n� processors and then we will

discuss the optimal implementation� Our approach �for the non�optimal implementation�

is inspired by a method used in 	��� Since now concurrent read and�or write is not allowed�

we have to modify the procedure mark�U � The goal is again to mark the vertices with

degree � 
c�

For every vertex v � G�� we allocate� as before� a processor Pu to every vertex u in

the adjacency list of v� Call a vertex u� as well as its associated processor� marked if u

is of degree � 
c� If we delete� in one step� all marked vertices in the adjacency list of a

vertex v �with degree � 
c�� then large �gaps� may be created� But now we do not have

the concurrent access capability to overcome this problem� Instead of deleting all marked

��



vertices� we delete a �large enough� subset of them in such a way that adjacency lists in G�

are correctly updated �i�e� without gaps�� This allows us to check easily if the degree of a

vertex v is � 
c� �Simply assign a processor to the adjacency list of v and let it follow the

successor pointers for at most 
c steps� If after 
c steps� or earlier� the processor reaches

the end of the list� then v has degree � 
c��

To �nd the desired subset of marked vertices� we do the following� In

the i�th iteration of the while�loop we construct an auxiliary graph H 


�VH� EH�� where VH 
 fx � x is marked in G�g and EH 
 f�x� y� �

x� y are consecutive marked vertices in some adjacency list of G�g� Let h 
 jVH j� Note

that H has maximum degree bounded by 
c and can be constructed in O��� time us�

ing O�h� processors� to every marked vertex x in G�� assign a processor Px to its adjacency

list� By following successor pointers and cross�links� processor Px marks �in at most 
c

steps� all occurrences of x in other adjacency lists� Then Px� during a second pass on the

adjacency list of x� checks if the successor vertex of x� succ�x�� in the adjacency list of a

vertex v is also marked� If yes� edge �x� succ�x�� is added to EH � �Note that duplicate edges

are not created� since Px can easily keep track of the edges that it had already added to

EH �� An edge �x� y� in H means that marked vertices x and y should not be simultaneously

deleted in the adjacency list of v� This implies that an independent set in H denotes a set of

marked vertices which can be deleted such that neither large gaps are created nor concur�

rent memory accesses occur� In 	�� �� it is shown how to compute� in such a bounded�degree

graph H � an independent set I of size jI j � 	h� for some constant � � 	 � �� in O�log� h�

time using O�h� EREW PRAM processors�

Now� the implementation of procedure mark�U is completed as follows� If Pu is marked

and u � I � then u is deleted from the adjacency list of v� Since u � I � this operation is not

performed by the predecessor and the successor vertices of u and thus there are no memory

con�icts� Hence� at the end of every iteration the adjacency list of v� for every v � G�� has

been correctly updated�

At the end of the i�th iteration� the size of G� has been reduced by a �constant� factor of

at least 	��
c���� This implies that the total number of iterations is bounded by O�logn��

Since each iteration can be implemented in O�log� n� time with O�n� processors� Step 


takes O�logn log� n� time using O�n� processors�

To achieve an optimal number of processors O�n� logn log� n�� we just apply the method

given in Section � of 	��� or in the proof of Theorem ��� in 	
�� �We do not give the analysis

here� since it is rather tedious and the interested reader is referred to 	
� �� for the details��

��



� Approximating Arboricity

As it is mentioned in Introduction� all previous algorithms as well as those presented in the

previous section require a priori the knowledge of the arboricity of the input graph in order

to obtain its optimal implicit representation� However� the known algorithms for computing

the exact value of the arboricity are based on matroid theory �either in sequential 	�� or in

parallel randomized computation 	���� and therefore are of high complexity�

In this section we present simple and e�cient algorithms to compute a 
�approximation

to the arboricity of a graph� It follows by Lemma 
 that this approximate value gives an

almost optimal implicit representation� In the following� G 
 �V�E�� jV j 
 n� jEj 
 m�

denotes a graph of unknown arboricity c� Algorithm � �nds a sequential 
�approximation

for c�

Input� A graph G 
 �V�E��
Output� A 
�approximation of the arboricity of G�

�� G� �
 G� k �
 ��


� for i �
 n downto � do

�a� Let u be a vertex of smallest degree 	 in G�� De�ne G� 
 G�� u and update the
degrees of neighbors of u accordingly�

�b� vi �
 u� k �
 maxfk� 	g�

od

�� return k�

Algorithm �� A sequential algorithm to approximate arboricity�

Lemma 	 A ��approximation for the arboricity of a graph G can be computed in O�m�n�

time�

Proof� Let k be the value returned by Algorithm �� It is clear that v�� v�� � � � � vn is a

k�ordering and hence G is k�forest colorable by Lemma �� Moreover� G contains an induced

subgraphH such that jE�H�j � �k�
�jV �H�j� since jE�G��j � �	�
�jV �G��j at the beginning
of each iteration of the algorithm� Hence c � �k�
�� implying that k is a 
�approximation

for c� It is routine to implement Algorithm � in O�m� n� time�

Our parallel algorithm to �nd a 
�approximation for the arboricity c of a graph G

consists of two phases� In the �rst phase we use a repeated�doubling scheme to �nd a range

for c� as follows� Assume we have a procedure � that� given a graph G and an integer 
�

�




returns true if it can �nd an 
�ordering of G� Now� observe that � 
 dm
n
e is a lower bound

for c� We set 
 
 � and call �� If it returns false� then we double �� set 
 
 �� and call

� again� After O�log c� calls to procedure � we will obtain a �� such that ��

�
� c � �� and

� returns false for 
 
 ��

� and true for 
 
 ��� In the second phase we do a binary search

in the range ��
�

�
� ��� to �nd a � such that procedure � returns true for 
 
 � and false for


 
 � � �� The entire algorithm is given in Algorithm ��

Input� A graph G 
 �V�E��
Output� A 
�approximation of the arboricity of G�
Comment� Procedure Par�Test�Ord is described in Algorithm ��

�� � �
 dm�ne� i �
 ��


� while Par�Test�Ord�G� �� 
 false do
i �
 i� �� � �
 
i��
od

�� L �
 ��
 � �� R �
 �� stop �
 false�

�� while stop 
 false do

�a� � �
 b�L� R��
c�
�b� If Par�Test�Ord�G� �� 
 true then

If Par�Test�Ord�G� � � �� 
 false then stop �
 true else R �
 �
else L �
 �

od

�� Return ��

Algorithm �� A parallel algorithm to approximate arboricity�

Lemma 
 A ��approximation for the arboricity c of a graph G can be found in

O�log� n log c� log logn� time using O�m log logn� log� n� CRCW PRAM processors� or in

O�log� n log c� time using O�m� log� n� EREW PRAM processors�

Proof� First note that dm�ne is a lower bound on the arboricity of G� Let �� be the

value of � for which the algorithm stops� Observe that �� is the smallest such value for

�� Then �� � 
c� since the algorithm stops for � 
 
c by Theorem 
� A ���ordering of

G results in a ���forest coloring of G by Lemma �� Hence �� is a 
�approximation for

arboricity of G� Let us now discuss the complexity of Algorithm �� Step 
 is executed

at most dlog ce times� The number of iterations of the while�loop in Step � is O�log c��

In each iteration of the while�loops in Steps 
 and �� we call the procedure Par�Test�Ord�

��



PROCEDURE Par�Test�Ord�H�
�
Input� A graph H 
 �V�E�� jV j 
 n� and an integer 
�
Output� A boolean variable ans� The variable ans is set to true if and only if the procedure
is able to �nd an 
�ordering of G�

�� H � �
 H � n� �
 n� ans �
 true� mark all vertices unlabeled�


� while there is an unlabeled vertex and �ans 
 true� do

Let U be the set of vertices of H � with degree at most 
�
If jU j � � �

����n
� then ans �
 false

else

�a� mark all vertices of U as labeled�

�b� H � �
 H � � U � n� �
 n� � jU j� update the degrees of neighbors of U accordingly�

�

od

Algorithm 	� The procedure called by Algorithm ��

The complexity of this procedure dominates the resource bounds of the algorithm� since all

other steps can be trivially done in O��� time� Therefore� in the following we argue only

for the complexity of the procedure� Although procedure Par�Test�Ord is very similar to

Algorithm �� unfortunately we cannot implement it in the bounds stated in Theorem 
� The

reason is that during every iteration of the while�loop in Step 
 of the procedure� we have

to count the cardinality of U � Hence� in every iteration we need O�logn� log logn� time

using O�m log logn� logn� CRCW PRAM processors 	��� or O�logn� time and O�m� logn�

EREW PRAM processors 	���� Note that if the procedure does not return false� then the

size of H � is reduced by a constant factor after every iteration� This means that the total

execution time of the procedure is O�log� n� log logn� and it can be implemented using

an optimal number of O�m log logn� log� n� CRCW PRAM processors� Similarly� on the

EREW PRAM model� we can implement procedure Par�Test�Ord in O�log� n� time with

O�m� log� n� processors� Hence the complexity bounds stated in the lemma follow�

By Lemmas 
� � and � it is clear that Algorithms � and � can be used to compute implicit

representations of sparse graphs� even without knowing the exact value of arboricity� We

summarize the result below�

Theorem � Let G be an n�vertex sparse graph of unknown arboricity� Then an almost

optimal implicit representation of G can be computed in� �i� O�n� sequential time� �ii�

O�log� n� log logn� parallel time using O�n log logn� log� n� CRCW PRAM processors� �iii�

O�log� n� parallel time using O�n� log� n� EREW PRAM processors�

��



� Final Remarks

We have presented simple and optimal algorithms to compute implicit representations of

sparse graphs� It is known that many intersection graphs also have implicit representa�

tions 	�
�� The problem of characterizing the classes of graphs having implicit representation

is open�

Note that Lemmas � and � compute a 
�approximation of the arboricity of any graph

G �i�e� not necessarily sparse�� Our bounds compare favorably with both the sequential

results in 	�� �whose time varies between O�n���
p
logn� and O�n� logn�� and the parallel

ones in 	��� �presented in Introduction� which �nd the exact value of the arboricity� It will

be interesting to �nd better approximations for the arboricity of a graph than what we

have presented�

Although with our approximation we can compute an almost optimal implicit repre�

sentation� our algorithms compute a number of forests which is at most twice the optimal�

The known algorithms for computing an optimal forest coloring use matroid partitioning

and thus have a high complexity� It is of independent interest to come up with e�cient

algorithms for computing an optimal forest coloring�
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