MPI-INF Logo
MPI-INF/SWS Research Reports 1991-2021

2. Number - only D1

MPI-I-93-152

Optimal parallel string algorithms: sorting, merching and computing the minimum

Hagerup, Torben

1993, 25 pages.

.
Status: available - back from printing

We study fundamental comparison problems on strings of characters, equipped with the usual lexicographical ordering. For each problem studied, we give a parallel algorithm that is optimal with respect to at least one criterion for which no optimal algorithm was previously known. Specifically, our main results are: % \begin{itemize} \item Two sorted sequences of strings, containing altogether $n$~characters, can be merged in $O(\log n)$ time using $O(n)$ operations on an EREW PRAM. This is optimal as regards both the running time and the number of operations. \item A sequence of strings, containing altogether $n$~characters represented by integers of size polynomial in~$n$, can be sorted in $O({{\log n}/{\log\log n}})$ time using $O(n\log\log n)$ operations on a CRCW PRAM. The running time is optimal for any polynomial number of processors. \item The minimum string in a sequence of strings containing altogether $n$ characters can be found using (expected) $O(n)$ operations in constant expected time on a randomized CRCW PRAM, in $O(\log\log n)$ time on a deterministic CRCW PRAM with a program depending on~$n$, in $O((\log\log n)^3)$ time on a deterministic CRCW PRAM with a program not depending on~$n$, in $O(\log n)$ expected time on a randomized EREW PRAM, and in $O(\log n\log\log n)$ time on a deterministic EREW PRAM. The number of operations is optimal, and the running time is optimal for the randomized algorithms and, if the number of processors is limited to~$n$, for the nonuniform deterministic CRCW PRAM algorithm as wel

URL to this document: https://domino.mpi-inf.mpg.de/internet/reports.nsf/NumberView/1993-152

Hide details for BibTeXBibTeX
@TECHREPORT{Hagerup93,
  AUTHOR = {Hagerup, Torben},
  TITLE = {Optimal parallel string algorithms: sorting, merching and computing the minimum},
  TYPE = {Research Report},
  INSTITUTION = {Max-Planck-Institut f{\"u}r Informatik},
  ADDRESS = {Im Stadtwald, D-66123 Saarbr{\"u}cken, Germany},
  NUMBER = {MPI-I-93-152},
  YEAR = {1993},
  ISSN = {0946-011X},
}