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Optimal Parallel String Algorithms: 

Sorting, Merging and Computing the Minimum 

Torben Hagerup* 

Abstract: We study fundamental companson problems on strings of characters, 

equipped with the usual lexicographical ordering. For each problem studied, we give 

a parallel algorithm that is optimal with respect to at least one criterion for which no 

optimal algorithm was previously known. Specifically, our main results are: 

• Two sorted sequences of strings, containing altogether n charaders, can be merged 

in O(logn) time using O(n) operations on an EREW PRAM. This is optimal as 

regards both the running time and the number of operations. 

• A sequence of strings, containing altogether n characters represented by integers of 

size polynomial in n, can be sorted in O(lognjloglogn) time using O(nloglogn) 

operations on a CReW PRAM. The running time is optimal for any polynomial 

number of processors. 

• The minimum string in a sequence of strings containing altogether n characters 

can be found using (expected) O(n) operations in constant expected time on a 

randomized CRCW PRAM, in O(loglogn) time on a deterministic CReW PRAM 

with a program depending on n, in O«loglogn)3) time on a deterministic eReW 

PRAM with a program not depending on n, in O(logn) expected time on a ran­

domized EREW PRAM, and in O(log n log log n) time on a deterministic EREW 

PRAM. The number of operations is optimal, and the running time is optimal for 

the randomized algorithms and, if the number of processors is limited to n, for the 

nonuniform deterministic CRCW PRAM algorithm as wen. 

Key words: parallel algorithms, sorting, merging, computing the minimum, strings. 

1 Introduction 

The recent surge of interest in computational biology has revitalized the area of string pro­

cessing, the strings of interest being chiefly those encoded by molecules such as DNA. It 

is widely recognized that the computational demands of computational biology are such 

that the design of efficient parallel algorithms for its core tasks will playamajor role. We 

contribute to the body of knowledge concerning parallel string processing. 

One of the basic concerns of computational biology is to maintain a large data base of 

strings or objects resembling strings, the bulk of operations on which consists of searches of 

various kinds. In order to enable fast searching, one may choose to organize the data base 

·Max-Planck-Institut für Informatik, Im Stadtwald, D-66123 Saarbrücken, Gennany. Supported by the 
ESPRIT BasiC Research Actions Program o! the EC under contract No. 7141 (project ALCOM II). 

1 



as a sorted sequence, in which case the basic ordering operations of merging and sorting 

become very important. This presupposes that a linear ordering is imposed on the set 

of strings. No such linear ordering is troly natural, and different linear orderings may be 

preferable in different situations. As a general-purpose linear ordering, however, the standard 

lexicographical ordering seems as good as any. This paper studies the fundamental operations 

of merging, sorting and finding the minimum, as they apply to strings equipped with the 

lexicographical ordering. 

The first problem studied is that of merging two sorted sequences of strings containing 

altogether n characters. The best previous algorithms for this problem [20] nm in O(log n) 

time on the CRCW PRAM and in O«logn)2) time on the EREW PRAM, in either case 

using O(n) operations. We show how to achieve the O(logn) time bound ofthe old CRCW 

PRAM algorithm on the weaker EREW PRAM, while preserving the linear time-processor 

product. This could be viewed as somewhat surprising for the following reason: All well­

known eflicient EREW PRAM merging algorithms for the standard setting of constant-size 

objects operate in O(log n) rounds of comparisons, but a comparison between two long strings 

needs O(log n) time. Although certainly not a true lower bound, this argument would seem 

to indicate some difliculty in obtaining an eflicient EREW PRAM string merging algorithm 

with a running time below 0( (log n )2). The new algorithm is not similar to standard EREW 

PRAM algorithms for merging sequences of constant-size objects, and its specialization to 

l-characterstrings is a new optimal EREW PRAM algorithm for this task. 

The new algorithm is optimal not only as regards the number of operations executed, 

but also as regards the running time, on both the EREW PRAM and the CREW PRAM. 

This follows from the fundamentallower bound of Cook et al. [15], which states that the 

computation of the OR of n bits needs O(log n) time on a CREW PRAM with any number 

of processors, in conjunction with the following simple reduction of the computation of OR 

to string merging: Given n bits bb"" bm construct the strings X = (bI, b2 , •• . , bn , 0) and 

Y = (0,0, ... ,0,1) of length n + 1 each and merge the I-element sequences consisting of 

X and Y, respectively. X will precede Y in the output sequence (i.e., be lexicographically 

smaller than Y) exact1y if the OR of b1 , .•. , bn is zero. 

The lower bound of O(log n) does not apply to the CRCW PRAM, and a much fast er 

solution is indeed possible: Since the CRCW PRAM can compare any two strings in con­

stant time using a linear number ofprocessors (Lemma 7.1), it is easy to merge two sorted 

sequences of strings containing altogether n characters in constant time with n 2 processors 

by comparing every string in each sequence with all strings in the other sequence (given a 

suitable input representation). It is not known, however, whether there is a sublogarithmic 

string merging algorithm for the CRCW PRAM with optimal speedup. 

The second problem considered is that of sorting a sequence of strings containing alto­

gether n characters, whereby the characters are assumed to be represented by integers of 

size polynomial in n. For the CRCW PRAM, the best previous algorithm [25] uses O(logn) 

time and O(nloglogn) operations. We improve this to O(lognjloglogn) time, still with 

O(nloglogn) operations. Noting that the string sorting problem generalizes the problem 

of sorting integers of polynomial size (consider each integer as a l-character string), we 
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can conclude from the lower bound of Beame and Hastad [7] that the new time bound of 

O(logn/loglogn) is optimal for any polynomial number of processors. The time-processor 

product of O(nloglogn) is not known to be optimal. In the context of the well-studied 

integer sorting problem, however, it has stood unchallenged for six years, so that abound 

below 0(nloglogn) would be quite surprising. Furtherm.ore, any improvement in integer 

sorting would translate directly into a corresponding improvement in string sorting. 

A variation of the CRCW PRAM string sorting algorithm yields corresponding algorithms 

for the CREW and EREW PRAMs. These have running times of O((logn)3/2(1oglogn)1/2) 

and bounds on the number of operations executed around O(n(logn)1/2). 

The final problem studied is that of computing the minimum among strings containing 

altogether n characters. We are not aware of any previous parallel algorithm for this problem, 

for which we provide a variety ofresults, all needing (expected) O(n) operations: Constant 

expected time on a randomized CRCWPRAM, either O(loglogn) or O((loglogn)3) time 

on a deterministic CRCW PRAM, depending on whether or not we allow nonuniformity, 

O(logn) expected time on a randomized EREW PRAM, and O(lognloglogn) time on a 

deterministic EREW PRAM. In all cases the number of operations is clearly optimal. The 

result obtained for the randomized EREW PRAM is optimal for the randomized EREW 

and CREW PRAMs as regards time as wellj this follows from [16, Theorem 5], which states 

that the time complexities of any boolean function on the deterministic and randomized 

CREW PRAMs agree to within a constant factor. The time bound of the nonuniform 

deterministic CRCW PRAM algorithm is optimal for any algorithm that uses at most n 

processorsj following an O(loglogn) bound for the parallel comparison-tree model given by 

Valiant [38], this was proved by Fich et al. [17]. 

2 Preliminaries 

Astring is a finite tuple X = (Z1' ... ' ZIe) of characters drawn from an alphabet E equipped 

with a total order < that can be evaluated in constant time by a single processor for any 

given pair of arguments. We shall occasionally write X simply as Z1 ... Zie. The integer k is 

called the length of X and is denoted by lXI. For ease in stating resource bounds, we assume 

that the empty string does not appear in the input to our algorithms. Given astring X = 

(Z1, ... , ZIe), take ZieH = Zk+2 = ... = U, where U is a symbol not occurring in E ("blank"), 

and extend the total order< from E to Eu U} by declaring U to precede every element in E, 

Le., U < Z for all Z E E. Given two strings X = (Z1' Z2, ... ) and Y = (Yb Y2, .. . ), a position 

in which X and Y difJer is an integer j E IN such that Zj '" Yj. The total order on Einduces 

a lezicographical order on the set of all strings. Let X = (ZI, Z2, ... ) and Y = (Yl, Y2, . .. ) be 

distinct strings. Following [20], we define the similarity sim(X, Y) of X and Y as the most 

significant position in which X and Y differ, Le., sim(X, Y) = niin{j EIN: Zj '" Yj}. Now 

X precedes Y in the lexicographical order if and only if Zj < Yj, where j = sim(X, Y). 

The representation of a sequence of m strings is assumed to consist of two parts. The 

characters of each string X are stored in lXI consecutive cells, not overlapping those of any 

other string, in a character tablej in addition, the positions of the first and last characters of 
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X in the character table are given in the form of astring descriptor, and the descriptors of 

all m strings are provided together and in order in an array of size m. When we speak about 

merging or sortingsequences of strings, what we mean is rearranging the string descriptors 

to create a new sequence that is sorted with respect to the lexicographical order. Given a 

sequence X = (Xl, X 2 , ••• ) or a (multi- )set X = {Xl, X 2 , • •• } of strings and astring Y, the 

rank of Y in X, rank(Y, X), is defined as the cardinality of the set {i : 1 ~ i ~ lXI and 

Xi ~ Y}. 

For adefinition of the various PRAM models, see, e.g., [24]. The variant of the CRCW 

PRAM used in this paper is the ARBITRARY PRAM, on which in each concurrent writing 

some (unknown) processor succeeds. 

3 Merging 

This section describes how to merge two sorted sequences of strings, containing altogether n 

characters, in O(logn) time using O(n) operations on an EREW PRAM. 

In order to understand the algorithm, it is useful first to recall the standard 0 (log log n)­

time merging algorithm for the CREW PRAM [38, 12, 29]. The workhorse of the standard 

algorithm is a trivial subroutine that merges two sequences of length n each in constant time 

using n 2 processors by comparing every element in each sequence with every element in the 

other sequence. A more efficient algorithm for merging sequences of length n each uses the 

fast subroutine for merging sequences of Vii equally-spaced representatives from the original 

sequences, and then recursively merges the subsequences between successive representatives; 

the complete algorithm uses O(loglogn) time and n processors. A final refinement reduces 

the number of processors to obtain an algorithm with optimal speedup. 

The top-level structure of our approach is similar. The fast and wasteful core subroutine 

is characterized in Lemma 3.3; it no longer takes constant time and no longer is trivial. The 

operation count of the fast subroutine is linear in the total number of characters involved, but 

slightly worse than quadxatic in the number of strings. We subsequently derive an algorithm 

with the same properties, except that the dependence of the number of operations on the 

number of strings becomes strictly quadxatic (Lemma 3.4). An algorithm with a slightly 

superlinear operation count is described in Lemma 3.5. From this, we finally obtain an 

algorithm with optimal speedup (Theorem 3.6). 

We now describe the fast subroutine. A central concern in this subroutine is to compute 

the rank of astring Y in a sorted sequence X = (Xl, ... , X m ), where m 2: 2. Without loss of 

generality we will assume that of the strings Y, Xl, .. . , X m , none is a prefix of another; this 

property can be ensured by appending a suitable end marker to each string. hnagine that 

we begin by constructing a digital search tree for the set {Xl. . .. , X m } (see [28] or [31] for 

a discussion of digital search trees, and Fig. 1 below for an example). Recall that a digital 

search tree for {X ll ... , X m } is a rooted tree Tx whose no des are the prefixes of strings in 

{Xl. ... , X m }; the root is the empty string E, and the parent of a nonempty string X in Tx 

is the string obtained from X by removing its last character. It is useful to consider each 

edge in Tx, say, between anode v and its parent u, to be labeled by the unique string w 
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that, appended to u as a suffix, yields v (i.e., v = uw); in the present context, each edge label 

w is a single character. We also assume that the children of each node in Tx are ordered 

lexicographically from left to right. 

Fig. 1. A digital search tree for the strings aaaa, aaab, abaa, abab, abbaa, abbab, acaaa, 

acba, acbb. 

It is very easy to determine the rank of Y in X via a sequential search in Tx. For 

j = 0,1, ... , IYI, let Yj be the prefix of Y of length j. Then, starting at Yo = e, repeatedly 

move from Y; to Yj+l in Tx, stopping at the first node Yjo such that YjoH is not anode in 

Tx (see Fig. 2). At this point insert Y in Tx and observe that the rank of Y in X is the 

number of leaves in T X strictly to the left of the path in T X from the root to Y; this number 

is easily obtained through apreorder traversal of Tx. 

Fig. 2. The digital search tree of Fig. 1, with heavier lines denoting the path taken in 

a sequential search for the string acaab. 
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Computing the rank of Y in X fast in parallel is also easy, at least if we allow concurrent 

reading. We begin by marking certam edges in Tx. An edge between nodes uand tI = uz, 

where z E ~, is marked exactly if the Itllth character of Y equals z, i.e., if the label of the 

edge matches the relevant character of Y (see Fig. 3). It is easy to see that the marked edges 

form disjoint paths in Tx. The root of Tx belongs to exactly one of these paths, cal.led the 

root path; note that the root path is precisely the path folIowed by a sequential search for Y. 

The nodes on the root path can be identified using repeated pointer doubling, after which 

Y can be inserted in Tx as in the sequential case. Agam the rank of Y is the number of 

leaves strictly to the left of Y. This quantity can be computed through an application of the 

Euler tour technique, described in great detail by Tarjan and Vishkin [36]. Brie1ly, construct 

a linked list L that visits the leaves of Tx in the order from left to right, label each edge of 

L with 1 if it leads into a leaf of Tx and with 0 otherwise, and then use repeated pointer 

doubling applied to L to compute the sum of the labels of the edges of L to the left of Y. 

Fig. 3. The digital search tree of Fig. 1, with heavier lines denoting the edges marked 

in a parallel search for acaab. 

Fig. 4. The compressed digital search tree T~. 

We do not actually construct the full digital search tree Tx, which may be too large for 

our purposes. Instead we construct a compressed digital search tree of size O(m). 
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Let T~ be the tree obtained from Tx by removing the nodes with exactly one child 

(including the root, if it has exactly one child) in any order, while after each removal of a 

nonroot node v making the former child of v a child of the former parent of v (see Fig. 4). 

Each edge in T~ corresponds to a path in Tx , and each edge label consists of one or more 

characters. 

A parallel search in T~ can proceed much as in Tx. Again certain edges are marked. 

An edge between nodes u and v = uzw, where z E ~ and w E ~., is marked exactly if the 

(Iul + 1)st character of Y equals z, i.e., only the first character of an edge label is checked 

against the query string Y (see Fig. 5). Again the marked edges form disjoint paths, and 

the nodes on the root path can be determined via repeated pointer doubling. 

Fig. 5. The digital search tree of Fig. 4, with heavier lines denoting the edges marked 

in a parallel search for acaab. 

A crucial observation is that although a sequential search in Tx may not follow the root 

path 1r in T~ (more precisely, the corresponding path in Tx) in its entirety (because of the 

incomplete checking of edge labels against the query string mentioned above), it will follow 

an initial part of 1r and then stop (i.e., it never leaves 1r); this includes the case in which the 

sequential search never gets as far as to the root of T~. We can therefore insert Y in T~, 

which allows us to determine the rank of Y in X as before, in the following way: Let w be 

the last node on 1r, whereby 1r is considered to be directed away from the root, and let X, be 

any leaf descendant of w. Then determine $ = sim(Y, XL). If $ = Iwl + 1, Y should become 

a new child· of w. Otherwise ($ S Iwl) use binary search on 1r to determine the first node v 

on 1r with lvi ~ $ and note that Y should become a second child of a new node with v as its 

other child and the former parent of v, if any, as its parent. 

The tree T~ is still not quite what we want; we aim for an even smaller data structure. 

To motivate this, note that although the number ofnodes in T~ is O(m), the totallength 

of its edge labels may not be O(m). Fortunately, the edge labels were introduced merely for 

the sake of explanation. Before we describe the construction of a slimmed-down version of 

T~ that contains only the truly essential information, it is useful to take a look at aversion 

of a data structure introduced by Vuillemin [39]. 

Given a sequence al , ... , a,. of n distinct elements drawn from a totally ordered universe, 

the Cartesian tree of al, ... , a,. is the (possibly empty) tree T on the node set {ab . .. ,a,.} 

defined inductively as follows: (1) If n = 0, T is the empty tree; (2) If n ~ 1, the root of T 
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is Clio = min{ al, ... ,an}, and the left and right subtrees of the root are the Cartesian trees 

of the sequences ab ... , Clio-l and Clio+ll ... , an, respectively. 

LEMMA 3.1 For all integers n 2: 2, the Cartesian tree 0/ a sequence al, .•• , an 0/ n distinct 

elements drawn /rom a totally ordered universe can be constructed in O(logn) time using 

O(n) operations on an EREW PRAM. 

PROOF For i = 1, ... , n, define a nearest smaller of Cli as an input element aj < Cli such that 

a/e > ai for every integer k strictly between i and j. For i = 1, .. . ,n, let N(Cli) be the set 

of nearest smallers of ~j it is easy to see that IN( ai)1 E {O, 1, 2}. The key observation is 

that unless ~ is the smallest input element and hence the root of the Cartesian tree T of 

ab ... , an, the parent of Cli in T is maxN( ~), for i = 1, ... , n [8]. The construction of T 

therefore reduces to the computation of the set of nearest smallers of each input element. 

As shown by Kim [27, Theorem 2.2] and Wagener [40, Theorem 3.1], the latter problem can 

be solved in O(logn) time using O(n) operations (the algorithm of [40] was formulated for 

the CREW PRAM, but can be implemented without loss on the EREW PRAM [41]). 0 

In order to obtain our final data structure Tff, begin by computing Si = sim(Xi, Xi+1), for 

i = 1, ... , m - 1. Then construct the Cartesian tree T of the sequence (Sb 1), ... , ( Sm-ll m -

1), whereby pairs are compared using the lexicographical ordering (see Fig. 6). 
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Fig. 6. From bot tom to top: The sorted sequence of example strings (written verti­

cally), the sequence of similarities between consecutive strlngs, and the Carte­

sian tree of these similarities. 

Calling the nodes of Tinternal, obtain Tff from T by adding externalleaves as follows: 

Add an externalieft child to each node of T that has no left child, and add an external right 

child to each node of T that has no right child. The result is shown in Fig. 7 for our running 

example. 
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Fig. 7. The Cartesian tree of Fig. 6, wi th externalieaves added. Internal and external 

nodes are shown as eirdes and rectangles, respectively. 

It is easy to see that T; eontains exactly m (externa!) leaves. We ean say more, however. 

The tree in Fig. 7 is isomorphie to that in Fig. 4, exeept that each node in Fig. 4 with k ~ 3 

children (there is precisely one such node) eorresponds in Fig. 7 to a path of k - 1 interna! 

nodes eonnected to deseendants via exactly k edges. From the eonstruction of T~ and T;, 

this property ca.n be seen to hold in general. This makes it relatively simple to translate our 

search algorithm from T~ to T;. 
The first step is the edge marking. Every interna! node (Si, i) in T; marks the edge 

leading to its left child if the Sith character of Y is no larger than the Sith character of 

Xi, and the edge leading to its right child otherwise. To see that this makes sense, note 

that the node (Si. i) may be viewed as representing the fact that Xi and Xi+! "separate" at 

character position Si. The resulting marking may not eorrespond to our marking of T~, but 

it preserves the erucial property that the sequential search in Tx follows an initial part of 

the root path and then stops. The nodes on the root path ean be identified in T; exaetly as 

in T~, and Y is eompared to the string XI such that the Ith leaf in T; is the last node on 

the root path. A binary search is used to determine the last interna! node u = (Si, i) with 

Si ~ sim(Y, Xz) on the root path (if there is no such node, let u be the root), after which Y 

can be (eoneeptually) inserted as a new child of u. We omit the straightforward details. 

REMAB.K H the full uneompressed digital search tree Tx of the input strings is actually 

desired, it can easily be derived from T; using O(log m) time and O( n) operations, essentially 

by expanding edges into paths. N oting that the eonstruction of T; needs 0 (log n) time and 

O(n) operations, we see that Tx ean be eonstructed in O(logn) time using O(n) operations 

on an EREW PRAM. The problem of eonstructing a digital search tree for a given sorted 

sequenee of m strings eontaining a total of n characters was also eonsidered by JaJa et al. [26, 

Theorem 4.1], who achieve O((logm)2 jloglogm) time and O(mlogm + n) operations on a 

CRCW PRAM. Our result is dearly superior exeept when m is much smaller than n, in 

which ease the running time of [26] may be o(log n). A time bound of o(log n) is not possible 

on the EREW PRAM, even for m = 2. Moving to the CRCW PRAM, however, we can 

easily achieve O(logm) time together with O(n) operations. This is beeause more than 
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0(10gm) time is needed in the EREW PRAM algorithmonly for computing the similarities 

of consecutive input strings, which can certainly be done in O(logm) time on a CRCW 

PRAM (Lemma 7.1). 

Before proceeding with the main development, we define the segmented broadcast prob­

lem and recall a well-known fact following from a reduction of segmented broadcasting to 

(generalized) prefix summation. 

DEFINITION For all integers n ~ 1, the segmented broadcast problem 0/ size n is, given an 

array A 0/ n cells, some 0/ which are marked, to store in each cell 0/ A a copy 0/ the value 

in the nearest marked cell to its left (assume that the leftmost cell 0/ A is always marked). 

LEMMA 3.2 For all integers n ~ 2, segmented broadcast problems 0/ size n can be solved in 

O(logn) time using O(n) operations on an EREW PRAM. 

LEMMA 3.3 For all integers n ~ 2 and m z , m y ~ 1, two sorted sequences 0/ m z and my 

strings, containing altogether n characters, can be merged in O(logn) time using O(n + 
mzmy + (mz +my)logn) operations on an EREW PRAM. 

PROOF Let the two input sequences be X = (Xb ... , X m .. ) and Y = (Y1, ... , Ymy) and 

assume that no input string is aprefix of another input string. It suftices to show how 

to compute the rank of Yi in X, for i = 1, ... , my. Since the algorithm for this task was 

essentially described above, we mainly need to bound the time and the number of operations 

and to show how to avoid concurrent reading. A time bound of O(logn) will be obvious for 

all steps of the algorithm and will not be mentioned explicitly in the following. 

Begin by computing Si = sim(Xi, Xi+l), for i = 1, .. . , mz - 1, which needs O(n) opera­

tions. Then construct the Cartesian tree T of (Sb 1), (82, 2), ... , (Sm.,-l, mz - 1) and obtain 

T; from T by adding the externalleaves. According to Lemma 3.1, this can be done using 

O(mz) operations. Now create my copies ofthe single tree Tx constructed so far. Since the 

size ofT; is O(m",), this needs O(mZmy ) operations. As a result, each string in Y can work 

on its own copy of Tx. Consider therefore one particular string Y in Y and its associated 

copyofT;. 

In order to mark one of the edges to its children, each internal node in T; needs to 

compare a character in Y with a character in astring in X. The latter character can 

be considered to be built into T; and therefore poses no problem of concurrent reading. 

Likewise, the position of the relevant character in Y can be built into T;, whereas the 

actual character in that position clearly depends on Y. In order to access the characters 

in Y without concurrent reading, essentially carry out the standard simulation of one step 

of a CREW PRAM on an EREW PRAM. Specmcally, first sort the nodes in T; by the 

position in Y that they want to inspect, which partitions the nodes into segments of nodes 

that want to access the same cello Then let OnlY the first node in each segment carry out 

the actual reading and use segmented broadcasting (Lemma 3.2) to distribute the value 

read to all other nodes in the segment. Except for the initial sorting, the simulation needs 

O(m",) operations, which sums to O(mzmy) operations over all strings Y. The sorting 
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takes O(mzlogmz ) = O(mzlogn) operations, which is too much for being summed over all 

strings Y. On ce again, however, the sorting is preprocessing that needs to be done only once 

and whose outcome can be built into T;. 
The depth of each node in T; can be obtained via the Euler tour technique. With this 

precomputed information available to guide the pointer doubling, it is not too difficult to 

identify the root path using O(mz ) operations, which sums to O(mzmy) over all strings Y. 

This informs each string Y of astring Xl with which it is to be compared. Note that it suflices 

to provide each string Y with a private copy ofthe first min{IXII, IYI + 1} characters of Xl -

any remaining characters of Xl are of no relevance to the comparison. We will show how to do 

this without concurrent reading. Divide each ofthe requested strings Xl into blocks of llognJ 

characters each, except for one block that may be smaller, and let each requesting string Y 

generate a read request for each block that it wants. Since the totallength of the strings Y is 

bounded by n, the total number of read requests is O(n/logn + my). We can therefore sort 

the read requests by the requested blocks using O( n + my log n) operations. Similarlyas in 

the simulation of concurrent reading earlier in the proof, we now use segmented broadcasting 

to satisfy the read requests using 0 (n + my log n) operations. The difference to the earlier 

setting is that here the number of read requests is a factor of at least log n smaller than the 

desired operation bound, whereas each request is for at most log n characters. Running the 

standard algorlthm llog n J times in parallel performs as required. 

The remainder of the algorithm is easy. The binary search on the root path of T; is 

done sequentially and independently for each string Y, and the final Euler tour computation 

can be moved to a precomputation stepj the precomputation should mark each node in T; 
with the position of its first and last leaf descendants in the ordering of allleaves from left 

to right. 

o 

The algorithms described in the three nen proofs are instances of a generic merging 

algorithm, a variant of which appears in [20]. The generic algorithm inputs two sorted 

sequences X and y of pairwise distinct strings and then executes the following steps: 

Step 1 (Choose representatives) 

Construct subsequences X' = (Xl' . .. , X p ) and Y' = (Yi, ... , Yq ) of representatives of 

X and y, respectively, marking each representative with its original position. 

Step 2 (Merge representatives) 

Merge X' and Y' into a sequence Z = (Zl' ... , Zp+q). 

Step 3 (Prepare for ranking representatives) 

For i = 1, ... ,p + q, determine rank ( Zi, X'). Then, for i = 0, ... , p, compute ZI and 

XI as the subsequences of Z and X, respectively, of strings of rank i in x'. 

Step 4 (Rank representatives) 

For i = 0, ... ,p, merge ZI and XI. 
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Step 5 (Set up subproblems ) 

For i = 1, ... ,p + q, determine rank(Zi, X). Use the outcome to compute the rank in 

Z of each string in X. Then, for i = O, ... ,p + q, construct A:i as the subsequence of 

X of strings of rank i in Z. 

Steps 3'-5' Repeat Steps 3-5, but with X, X', Xi and XI replaced by y, Y', Yi and YI, 
respectively, and with p and q interchanged. This constructs Yi as the subsequence of 

Y of strings of rank i in Z, for i = 0, . .. ,p + q. 

Step 6 (Solve subproblems ) 

For i = 0, ... , p + q, merge A:i and Yi into a sequence Zi. 

Step 7 (Combine solutions of subproblems ) 

Concatenate Zo, ... , Zp+q in this order. 

The correctness of the generic algorithm is readily established. If the input strings contain 

a total of n characters, Steps 3, 5 and 7 are easily executed in O(logn) time using O(n) 

operations, and Steps 3'-5' are analogous to Steps 3-5; the details are left to the reader, who 

should note that the segmented broadcasting of Lemma 3.2 comes in handy more than once. 

The implement at ion of the remaining steps is discussed in the proofs to follow. 

Given a set S' of elements of a finite sequence S, define the maximum gap of S' in S as 

the maxjmum length of a contiguous subsequence of S that contains no element of S'. 

LEMMA 3.4 For all integers n ~ 2 and ma:, my ~ 1, two sorted sequences 0/ mz and my 

strings, containing altogether n characters, can be merged in O(1ogn) time using O(n + 
mzmy) operations on an EREW PRAM. 

PaooF Without loss of generality assume that m z ~ my. It is easy to see that the algorithm 

of Lemma 3.3 performs as required unless my ~ log n. The case my ~ log n can be handled 

using the following somewhat degenerate form of the generic algorithm: In Step 1, choose a 

set of O( n/log n) representatives from X whose maximum gap in X is O(1og n) and declare 

every element of Y to be a representative. In Step 2, merge the representatives using the 

algorithm of Lemma 3.3. This needs O(logn) time and O(n) operations. In Step 4, again 

use the algorithm of Lemma 3.3. Since at most log n of the sequences ZI actually include an 

element of Y and every merging problem involves o (log n) strings, O( n) operations certainly 

suffice. Furthermore, since every element of Y is a representative, Steps 3'-5' and 6 are not 

needed - Step 5 already establishes the rank of every element in the opposite sequence. 0 

LEMMA 3.5 For all integers n ~ 4, two sorted sequences, containing altogether n characters, 

can be merged in O(logn) time using O(nloglogn) operations on an EREW PRAM. 

PaOOF We describe a recursive instance of the above generic algorithm. Let the two se­

quences to be merged be X and Y and take m = lXI + IYI. There are two cases. If 

m 2 ~ n (Case 1), apply the algorithm of Lemma 3.4, which takes O(logn) time and uses 

O(n + m 2 ) = O(n) operations. Otherwise (Case 2) execute the generic algorithm according 

to the following specmcation: 
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Step 1 Ghoose a set of O( ym) representatives from X whose maximum gap in X is O( ym)i 
analogously, choose a set of 0 (y'm) representatives from Y whose maximum gap in Y is 

O(ym). 

Step 2 Merge the representatives using the algorithm of Lemma 3.4. This needs 0 (log n) 

time and uses O(n + y'mym) = O(n) operations. 

Step 4 Solve every merging problem using the algorithm of Lemma 3.4. Since the total size 

of the sequences ZIJ, ... , Z; is O( ym), while each sequence XI is of size O( y'm), this needs 

O(logn) time and O(n + ymym) operations. 

Step 6 Solve the subproblems recursively. 

For m,n E IN, denote by T(m,n) the time taken by the above algorithm to merge two 

sequences of at most m strings each and containing altogether at most n characters. Gase 1 

in the algorithm requires O(logn) time, whereas Gase 2 is easily seen to need O(logn) + 

T( cym, n) time, for some constant c > O. Since Gase 2 is not entered unless n < m2 and 

hence logn= O(logm), there is a constant c > 0 such that 

T(m,n):::; max{clogn,clogm+ T(cVm,n)}. 

This recurrence solves to T(m,n) = O(logn). The depth of recursion is O(loglogm) = 

O(loglogn), and each recursive level uses O(n) operations, for a total of O(nloglogn) op­

erations. 0 

THEOREM 3.6 For all integers n 2: 4, two sorted sequences, containing altogether n charac­

ters, can be merged in O(logn) time using O(n) operations on an EREW PRAM. 

PROOF We again use an instance of the generic algorithm. The steps of interest are imple­

mented as follows: 

Step 1 Ghoose O(njloglogn) representatives from X whose maximum gap in X is 

O(loglogn) and that contain O(njloglogn) characters; it is easy to see that such representa­

tives exist and can be found in O(log n) time using O( n) operations. Gompute representatives 

from Y in the obvious analogous way. 

Step 2 Merge the representatives using the algorithm of Lemma 3.5. 

Step 4 Solve the merging problems using the algorithm of Lemma 3.4. The total number 

of strings in ZIJ, .. . , Z; is o (njlog log n) and each XI contains o (log log n) strings, so that 

this takes O(logn) time and needs O(n) operations. 

Step 6 Each subproblem to be solved comprises O(loglogn) strings. If the strings in 

a subproblem contain fewer than [log log n 12 characters, solve the problem sequentially, 

which takes O((loglogn?) time. Otherwise solve it in O(logn) time using the algorithm of 

Lemma 3.4. In either case, the number of operations needed is proportional to the number 

of characters in the subproblem. 

o 
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4 Sorting on the CRCW PRAM 

The first fast and efficient parallel algorithm for string sorting on the CReW PRAM, designed 

only for the case of strings of equallength, was given by Vaidyanathan et al. [37]. Their basic 

insight was that two adjacent character positions (such as the two most significant positions) 

of the strings to be sorted can be combined into a single character position as folIows: Within 

each string, interpret the substring consisting of the two characters in the chosen positions 

as a single integer in an order-preserving manner (e.g., according to a suitable positional 

system), then sort the substrings using an integer sorting algorithm, and finally replace each 

substring by its rank in the resulting sorted sequence, viewed as a 1-character string over the 

alphabet {1, ... , n}. This replaces two character positions by a single position, as desired, 

without altering the relative order of the strings to be sorted. 

The above algorithm can be applied in parallel to any set of disjoint pairs of adjacent 

character positions, whereby it maIres no difference whether the substrings originating in a 

particular pair of character positions are sorted separately or together with all other sub­

strings; in the interest of simplicity, we will assume the latter. The number of character 

positions can therefore be reduced from I to rl/21 in the time needed by a single integer sort­

ing. Since the initial number of character positions is no larger than n, carrying out at most 

flog n 1 iterations as described replaces the original input strings by 1-character strings with 

the same relative order, which can be determined in one final integer sorting. Since the total 

number of characters in the strings to be sorted drops by a constant factor in each iteration, 

the operation count of the whole algorithm is within a constant factor of that of the first 

iteration. H the character-combining subroutine is implemented using the algorithm of Bhatt 

et al. [10], which sorts n integers in O(logn/loglogn) time using O(nloglogn) operations, 

the complete string sorting algorithm of Vaidyanathan et al. runs in O((logn)2/loglogn) 

time using O(nloglogn) operations. 

FolIowing the demonstration by Vaidyanathan et al. that efficient parallel string sorting 

is feasible, the basic scheme was improved in two directions. Hagerup and Petersson [20] 

adapted the algorithm to the case of strings of different lengths without compromising the 

resource bounds of the original algorithm. Subsequently JaJa and Ryu [25] observed that it 

suffices to execute 0(log log n) character-combining iterations, since the resulting reduction 

in the problem size by a factor of n(log n) allows one to switch to a less efficient, but 

faster comparison-based sorting algorithm. Based on this, they derived the best algorithm 

predating the present paper, which works in O(logn) time using O(nloglog n) operations. 

Taking the algorithm of JaJa and Ryu as our starting point, we introduce additional 

improvements that reduce the running time to the optimal O(logn/loglogn), still with 

O(nloglogn) operations. The basic idea is to replace the integer sorting subroutine by a 

subroutine for so-called padded integer sorting, which turns out to be just as useful for the 

present application. Since padded integer sorting can be done much faster than standard 

integer sorting, we can carry out many more than 0(log log n) character-combining iterations. 

This allows us to build up a significant processor advantage, Le., the problem size drops far 

below the number of available processors, and this in turn enables us to speed up the final 
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comparison-based sorting from O(logn) to O(log n/log log n). 
Before turning to the details of the algorithm, we discuss the concept of padded (inte­

ger) sorting, which was introduced by MacKenzie and Stout [30]. Following Hagerup and 

Raman [21], to padded-sort n keys with padding factor ~ ~ 0 is to output them in sorted 

order in an array of size at most (1 + ~)n, unused cells in the output array being filled with 

a special null value. The following was proved in [22, Theorem 20]: 

LEMMA 4.1 For all integers n ~ 4, n integers of size polynomial in n can be padded-sorted 

with constant padding factor in O((logn)1/2(loglogn)3/2) time using O(nloglogn) opera­

tions on a CRCW PRAM. 

In the algorithm of JaJa. and Ryu and its precursors, the sorting of the 2-character 

substrings serves to determine the rank of each substring within the set of all substrings. 

Since a lower bound of O(log n/log log n) applies to the computation of ranks, while we intend 

to be significantly faster, we must substitute a different quantity for the rank of a substring. 

To this end, note that the only properties of the rank function relevant to us are (1) equal 

substrings have equal ranks, (2) smaller substrings have smaller ranks, and (3) ranks are 

integers of size polynomial in n. Instead of the rank of a substring, we can therefore use 

its pseudo-ranJe., defined relative to a particular padded-sorted array of the substrings as the 

position in the padded-sorted array of the fust occurrence of the substring. 

We now describe the new string sorting algorithm· at three successively more detailed 

levels, using stepwise refi.nement in order not to overwhelm the reader with implementation 

details before the overall idea is clear. 

First description. The algorithm consists of three phases. Phase 1 executes a number 

of rounds, in each of which characters are paired and the input size is reduced as in the 

algorithm of [37]. A complication not present in the original algorithm is due to strings that, 

after a number of rounds, consist of a single character. Such strings must be removed from 

the process, since character-pairing operations applied to them no longer yield any reduction 

in the problem size, Le., their continued presence could ruin the operation bound. Each round 

therefore separates out a sorted sequence of 1-character strings that do not participate in 

subsequent rounds. Phase 2 sorts those strings that survive Phase 1, i.e., those that are 

not removed in any round. The third phase, starting with the sorted sequence produced in 

Phase 2, gradually merges back the sequences removed in Phase 1 in the reverse order of 

their removal, which produces the final. sorted output sequence. 

Second description. Each round of Phase 1 consists of the following: First the strings 

remaining from previous rounds are padded-sorted by their fust characters with constant 

padding factor according to Lemma 4.1, whereby in the tase of ties strings of length 1 are 

considered smaller, and the strings of length 1 are removed and saved for Phase 3. Each 

of the remaining strings is replaced by the corresponding sequence of substrings of length 2 

eachj in order to do this for the strings of odd length as well, a suffix consisting of one 'f 
character is fust appended to each such string. Then the substrings of length 2 are padded­

sorted with constant padding factor, and each substring is replaced (in its position in the 

original strings) by its pseudo-rank. This creates the set of input strings for the next round. 
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It is easy to see that any two successiv~ rounds reduce the total number of characters 

by a factor of at least 2. We fix the number of rounds at N = 2r(logn)1/3l Then, by 

Lemma 4.1, all rounds can be executed in O(N(logn)1/2(loglogn)3/2) = o(lognjloglogn) 

time using O(nloglogn) operations, and this reduces the number of characters to at most 

nj2N / 2• At the beginning of Phase 2, we can therefore allocate k = 28 r(logn)1/fl processors to 

each remaining character. This allows us to execute any set ofpairwise comparisons between . 

strings in constant time, provided that no string participates in more than k comparisons 

at a time. The task therefore is to find an algorithm for standard comparison-based sorting 

that works in O(lognjloglogn) time without ever comparing an element to more than k 

other elements simultaneously. Such an algorithm can be derived from the AKS network [1]. 
Recall that the AKS network is a sorting network, in the sense of Knuth [28], with n data 

lines and O(logn) levels of comparators (see Fig. 8). 

~ 
Fig. 8. A sorting network with 4 inputs and 3 levels of comparators. 

If the AKS network is divided into blocks of at most r = l~ log log k J successive levels 

each (a related idea was used in [5]), fan-in considerations imply that each output of a block 

is a function of at most 2" inputs to the block, and fan-out considerations imply that at 

most 2" outputs of the block depend on any particular input. Within each block, therefore, 

each fixed input is compared only toinputs in a fixed set of size at most 22
7' :$ k, so that an 

algorithm that processes one block at a time and carries out all such potential comparisons 

within each block is suitable for being used in Phase 2. We argue J:>elow that there is a 

CReW PRAM algorithm of this kind that processes each block in constant time, which 

yields a total running time of O(lognjr) = O(lognjloglogn). 

Phase 3 starts with the sequence X of strings sorted in Phase 2 and then, for i = N, ... ,1, 

merges into X the sorted sequence of strings removed in Round i of Phase 1. We will ensure 

that each comparison relevant to this merging can be carried out in constant time by one 

processor, so that any standard merging algorithm can. be used. Since standard merging 

problems involving n elements can be solved in O(loglogn) time using O(n) operations [29], 

it is then easy to see that the time and the number of operations needed for Phase 3 are 

dominated by those consumed in Phase 1. 

Third description. We now discuss the remaining implementation details. A first issue 

is how to compute the pseudo-ranks needed in Phase 1. We reduce this problem to the 

segmented broadcast problem defined in Section 3. The following lemma, due to Berkman 

and Vishkin [9] and Ragde [34], shows that segmented broadcasting can be done faster on 

the CReW PRAM than on the EREW PRAM. The authors mentioned actually provide 

much faster ("inverse Ackermann") running times, but the weaker form given here suffices 

for our purposes. 

16 



LEMMA 4.2 For all integers n ~ 4, segmented broadcast problems 0/ size n can be solved in 

O(loglogn) time using O(n) operations on a CRCW PRAM. 

Following the padded-sorting of substrings in a round in Phase 1, the eorresponding 

pseudo-ranks ean be determined via two applieations of Lemma 4.2. In the first application, 

each substring learns the position of the nearest substring to its left, if any (reeall that null 

entries may intervene), which enables it to decide whether it is a first oeeurrenee. In the 

seeond application, each substring that is not a first oeeurrenee is informed of the position 

of the nearest first oecurrenee to its left, which is its pseudo-rank. By Lemma 4.2, the eost 

of eomputing pseudo-ranks is domina ted by that of the preeeding padded sorting. 

In order to actually capitalize on the geometrie reduction in the problem size during 

Phase 1, we need to eompact the remaining strings and characters into arrays of size linear 

in their number after each round. Thjs problem is formalized as the interval allocation 

problem below, after which we give a lemma showing that the resourees needed for the 

interval alloeation are also dominated by those used by the preeeding padded sorting. 

DEFINITION For all integers n ~ 1, the interval allocation problem 0/ size n is, given n 

nonnegative integers a1,"" an, to compute an upper bound s on s = Ei=l aj with s = O(s) 

and to allocate Ji. e., compute the off sets 0/) n nonoverlapping subarrays 0/ sizes a1, ... , an 
0/ a base array 0/ s cells. 

LEMMA 4.3 [19] For all integers n ~ 4, interval allocation problems 0/ size n can be solved 

in 0((loglogn)3) time using O(n) operations on a CRCW PRAM. 

We next show that the operation of the AKS network can indeed be simulated in 

O(logn/loglogn) time, as claimed above. Beeause ofthe large proeessor advantage available, 

we will usually not worry about the number of proeessors needed. Speeifieally, we bound the 

number of proeessorsneeded in the most proeessor-intensive substep of the algorithm and 

leave the eonsideration ofthe remaining substeps to the reader. Reeall that k = 28f(logn)1/4' 

and r = l ~ log log k J . 
Working through the descriptions of the AKS network given, e.g., by Chvatal [13], 

Paterson [32] and Pippenger [33], one ean see that (a reasonable graph representation of) an 

m-input AKS network ean be eonstructed in O(logm/loglog m) time on a CRCW PRAM us­

ing 0 (m log m) operations. Fuxthermore, each eomparator in the network ean be labeled with 

its level number, so that it is easy, in our case, to divide the network into O(logn/loglogn) 

blocks of at most r sueeessive levels each. 

Using a sequential search, each output line of a block ean now determine the set of at 

most 21' input lines of the block whose values affeet it, and plaee requests for all pairwise 

eomparisons between these values with the input linesj this deviee is neeessary beeause the 

eomparisons will be earried out by proeessors associated with the input strings, Le., values. 

Fuxthermore, simulating the operation of part of the block for each of the at most 222
,. 

possible outeomes of all pairwise eomparisons between these input values in parallel, 222
,. 

proeessors associated with the output line can eonstruct a table mapping each such possible 
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outcome, encoded as an integer, to the input line whose value will appear on the output line. 

The part of the sorting algorithm described so far can be viewed as preprocessing. 

Presented with a set of input values, a block first carries out those comparisons that 

were requested during the preprocessing, and each output line obtains the outcome of those 

comparisons that affect it. U sing a team. of 22,. processors for each of the at most 222
,. possible 

out comes, it then converts the outcome of the comparisons to the corresponding integer, 

performs a lookup in the table discussed above, and produces its value in constant time. 

The sorting hence takes constant time per block and O(lognjloglogn) time altogether, as 

required. The number of processors needed is dominated by the 222
,. teams of 22,. processors 

each for each output line of a block, a total of O(log n· 222
,. .22,.) = o( k) processors per string 

to be sorted. 

We finally take a closer look at the reintroduction in Phase 3 of the 1-character sequence 

removed in Round i of Phase 1, for some i E {1, ... , N}, the goal being to show that every 

comparison between a "new" string (one that is currently being reintroduced) and an "old" 

string (one that was reintroduced earlier or that was never removed in Phase 1) can be 

carried out in constant time by a single processor. Note that there was a time when the 

relevant comparisons were easy, namely after the padded-sorting of strings by their first 

characters in Round i of Phase 1; at that time comparing two strings could have been done 

simply by comparing their positions in the array Ai resulting from the padded-sorting by 

first characters. We therefore save Ai and use it to facilitate comparisons in Phase 3. All that 

is required is that before reintroducing the "new" strings removed in Round i of Phase 1, we 

mark both "old" and "new" strings with their positions in~. This can be done in constant 

time using a number of operations proportional to the size of Ai; by the geometric decrease 

in the number of remaining strings during Phase i, this sums to 0 ( n) operations over all 

rounds. 

We have proved 

THEOREM 4.4 For all integers n ~ 4, a sequence of strings, containing altogether n charac­

ters represented by integers of size polynomial in n, can be sorted in o (log njlog logn) time 

using O(nloglogn) operations on a CRCW PRAM. 

More generally, we have 

THEOREM 4.5 Suppose that n integers of size polynomial in n can be sorted in O(t(n)) 

time using O(nq(n)) operations on a CRCW PRAM, for all nEIN and for nondecreasing 

functions t, q : IN -+ IN. Then for all nEIN ,asequence of strings, containing altogether 

n characters represented by integers of size polynomial in n, can be sorted in O(t(n)) time 

using O(nq(n)) operations on a CRCW PRAM. 

5 Sorting with a General Alphabet 

The algorithm in the previous section assumes that characters are represented by integers of 

size polynomial in n, the total number of characters. Apart from being motivated by practical 
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considerations, this serves to make the problem interesting. In a comparison-based setting 

in which information about characters can be obtained only through pairwise comparisons, 

the usuallower bounds for sorting apply, i.e., the sorting requires O(nlogn) operations, and 

0(nlogn) operations can be achieved only together with a running time ofO(1ogn) [3,5,11]. 

On the other hand, a variant of the idea of Vaidyanathan et al. [37] used in the previous 

section makes it easy to carryout the sorting in O(logn) time using O(nlogn) operations: 

First sort the n characters present in the input, then replace all characters in the input 

strings by their ranks in the sorted sequence, which does not alter the relative order of the 

strings, and finally apply the sorting algorithm developed in the previous section for the case 

of integer characters. 

JaJa. et al. [26] investigate the question in finer detail by introducing the number ofinput 

strings as a second complexity parameter and show that m strings containing altogether n 

characters can be sorted in 0 ((log m? flog log m) time using 0 ( m log m + n) operations on 

a CRCW PRAM. The time bound results from the execution of O(logm) iterations, each 

of which solves merging and prefix summation problems of size O(m). We can obtain an 

immediate improvement by noting that the O(logmfloglogm)-time exact prefix summation 

can be replaced by the faster approximate prefix summation of [22, Corollary 9]. The only 

nontrivial observation needed is that padded-sorted sequences can be merged with the aid 

of the algorithm of Lemma 4.2. 

THEOREM 5.1 Far all integers n, m 2:: 8 J m strings containing altogether n characters 

(drawn from a general alphabet) can be sorted in O(log m(1og log m)4 flog log log m) time 

using O(mlogm + n) operations on a CRCW PRAM. 

6 Sorting on the CREW and EREW PRAMs 

Our CREW and EREW PRAM algorithms for string sorting are similar to the CRCW PRAM 

algorithm described in Section 4. It is advantageous, however, to implement Phase 2 using 

a sorting algorithm based on multiway merging, rather than on the AKS network. Suppose, 

as in Section 4, that Phase 2 is carried out with k processors allocated to each character. 

Starting with each string forming al-element sequence by itself, we then repeatedly merge 

sequences in disjoint groups of k sequences each. Mter rIognflogkl merging steps, only a 

single sorted sequence remains. 

In order to merge the k sequences in a group, merge all pairs of sequences. This yields the 

rank of each string in each of the k sequences, and its rank in the combined sequence can be 

obtained by adding these; with the rank of each string available, of course, the merging can 

be completed in constant time. Since each character can contribute one processor to each 

merging in which it participates, Theorem 3.6 implies that each merging step can be executed 

in O(logn) time, and hence that the complete sorting algorithm works in O((logn)2flogk) 

time. We will balance this contribution with the time needed to obtain a processor advantage 

of k. 

In dealing with the substrings in Phase 1, we revert from padded sorting to standard 

sorting. For the CREW PRAM algorithm, we rely on an algorithm by Albers and Hagerup [2] 
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that sorts n integers in O(lognlog log n) time using O(n(logn)1/2) operations. Applying this 

algorithm in 0((logn)1/2j(loglogn)1/2) successive rounds in Phase 1 uses O(n(logn)1/2) 

operations, takes O((logn)3/2(loglogn)1/2) time and alJ,ows us to execute Phase 2 with 

logk = O((logn)1/2j(loglogn)1/2). We hence have 

THEOREM 6.1 For all integers n ~ 4, a sequence 0/ strings, containing altogether n charac­

ters represented by integers 0/ size polynomial in n, can be sorted in O((logn)3/2(loglog n)1/2) 

time using O(n(logn)1/2) operations on a CREW PRAM. 

In the case of the EREW PRAM algorithm, we fix some parameters differently. The 

situation is more complicated, since the best known integer sorting algorithm for the EREW 

PRAM [2] exhibits a tradeoff between speed and efficiency: For all t with log n log log n $ 

t $ (logn)3/2j(loglogn)1/2, n integers can be sorted in O(t) time using O(n(logn)2jt) 

operations. Our best strategy is to begin by operating the algorithm at the slowest point ofits 

tradeoff curve, where it uses O((logn ?/2 j(log logn)1/2) time and O(n(logn)1/2(loglog n)1/2) 

operations. Mter each group of 4 rounds, however, the problem size has decreased by a factor 

of at least 4, and we can allow the algorithm to run a factor of 2 faster (if it is not already 

running in O(lognloglogn) time). This ensures that both the total time and the total 

number of operations consumed by the algorithm over all rounds will be within a constant 

factor of the corresponding resource bounds for the first round, except that each round takes 

at least 0(lognloglogn) time. We fix the number of rounds at the same value as for the 

CREW PRAM algorithm, which can easily be seen to result in the same overall time bound. 

THEOREM 6.2 For all integers n ~ 4, a sequence 0/ strings, containing altogether n charac­

ters represented by integers 0/ size polynomial in n, can be sorted in O((logn)3/2(loglog n)1/2) 

time using O(n(logn)1/2(loglogn)1/2) operations on an EREW PR4M. 

Just as for the CRCW PRAM algorithm (cf. Theorem 4.5), any improvement in integer 

sorting on the CREW or EREW PRAM will yield an improvement in string sorting on the 

same machine. We omit the details. 

7 Computing the Minimum 

We describe several related algorithms for the task of computingthe minimum string among 

strings containing altogether n characters. They center around the fol1owing ideas. 

On the CRCW PRAM, computing the minimum among strings of the same length is 

essentially the same as computing the minimum among constant-size objects: When an 

algorithm for the standard setting compares two objects, a derived algorithm for the string 

setting can compare the two corresponding strings in constant time (Lemma 7.1). The same 

is true if the input strings, although not of the same length, have lengths that differ by at 

most a constant factor. We can therefore partition the input strings into O(logn) groups 

such that the lengths of any two strings in the same group differ by at most a factor of 2 

and compute the minimum within each group. This leaves us with only one candidate string 

in each group, and the minimum among these can be found in constant time. The main 
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outstanding problem is to rearrange the input strings so that the strings forming each group 

occur together, which is necessary for processing the group efficiently. 

It is well-known that the minimum of two strings can be determined in constant time on 

a CRCW PRAM. We include a proof for the sake of completeness. 

LEMMA 7.1 For all integers n, m ~ I, the similarity of two distinct strings of n and m char­

acters can be computed in constant time on a CRCW P RAM with k = min{ n, m} processors. 

Hence two strings of n and m characters can be compared within the same resource bounds. 

PROOF Let the input strings be X = (Z1' .. " zn) and Y = (Y1'.'.' y",) and compute bj, 

for j = 1, ... , k, as folIows: bj = 1 if Zj i Yj, and bj = 0 otherwise. If b1 = ... = bio = 0, 

sim(X, Y) = k + 1. Otherwise sim(X, Y) = min{j : 1 ::; j ::; k and bj = I}, and this quantity 

can be computed in constant time with k processors using the algorithm of Fich et al. [18, 

Theorem 1]. 0 

The following lemma shows that input strings of the same length are easy to handle. 

LEMMA 7.2 For all integers n, m ~ 4 such that m divides n, the minimum among nj m 

strings of m characters each can be computed in 0 (log log n) time using 0 ( n) operations on 

a CRCW PRAM. 

PROOF Without loss of generality assume that the input strings are pairwise distinct. Carry 

out [log logn 1 preprocessing steps, in each of which the remaining strings are compared in 

pairs, with at most one string left out. Within each pair, the maximum is discarded. Since 

each stage reduces the number ofremaining strings by at least a constant factor, Lemma 7.1 

shows that the preprocessing can be carried out in O(loglogn) time using O(n) operations. 

As a result, we can associate m processors with each remaining string. We now simulate 

the standard minimum-finding algorithm [35], which works in O(loglogn) time: Whenever 

the standard algorithm uses one processor to compare two constant-size objects, we use m 

processors to compare the two corresponding strings in constant time (Lemma 7.1). This 

computes the minimum string in O(loglogn) time. 0 

Another easy case is that in which the lengths of the input strings form a geometrie 

series. 

LEMMA 7.3 Let nEIN and let X be a sequence of strings, containing altogether n characters, 

such that for i = 1, 2, ... , llog n J, X contains at most one string whose length lies in the 

interval [2 i - 1
, 2i ). Then the minimum string in X can be found in constant time using O( n) 

operations on a CRCW PRAM. 

PROOF Comparing astring of length m in X with a11 shorter strings in X can be done in 

constant time using O( m) operations. Doing this for a11 strings in X uses constant time and 

o (n) operations, and the minimum is easily deduced from the outcome of the comparisons. 

o 

We can now combine Lemmas 7.2 and 7.3 to obtain a general algorithm that works in 

logarithmic time. 
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LEMMA 7.4 For all integers n ~ 4, the minimum among strings containing altogether n 

characters can be computed in O(logn) time using O(n) operations on a CRCW PRAM. 

PROOF Increase the length of each input string to the nearest larger power of 2 by padding 

it with the 'f character, after which there are only O(logn) different lengths. Then sort 

the strings by their lengths using the integer sorting algorithm of Cole and Vishkin [14, 

remark following Theorem 2.3] or Wagner and Ran [42]. Since the number of distinct keys 

is O(logn), this takes O(logn) time and uses O(n) operations. Then apply the algorithm of 

Lemma 7.2 separately to each group of strings of a common length, which takes O(loglogn) 

time and O(n) operations. This leaves exactly one string in each length group, and the 

overall minimum can be determined in constant time using the algorithm of Lemma 7.3. 0 

The bottleneck in the above algorithm clearly is the initial integer sorting. In order to 

derive a faster algorithm, suppose that at some point O(n/logn) candidates for being the 

minimum are left. We can then use an interval allocation routine first to place the remaining 

candidate strings in an array of size O(n/logn), and subsequently independently for each 

length group to place the strings in that group in an array only a constant factor larger than 

the number of strings in the group, after which we can continue as in the proof of Lemma 7.4. 

In order to reduce the number of candidate strings to O( n/log n), partition the input strings 

into groups of 9(10gn) strings each and use the algorithm of Lemma 7.4 to compute the 

minimum within each group of those strings in the group that are of length at most n·og n 1. 
Because of the length restrietion, this takes O(1oglogn) time and uses O(n) operations. It 

leaves a number of strings of length ~ log n, plus at most one additional string per group. 

The total number ofremaining strings is therefore O(n/logn), as desired. 

It can be shown that interval allocation problems of size n can be solved in O(loglogn) 

time by a nonuniform algorithm using O( n) operations. Complementing Lemma 4.3 with 

this result, we obtain 

THEOREM 7.5 For all integers n ~ 4, the minimum among strings containing altogether n 

characters can be computed on a CRCW PRAM using O(n) operations in O((10glogn)3) 

time by a uniform algorithm, and in O(loglogn) time bya nonuniform algorithm. 

We finally develop a randomized algorithm. In the following discussion, "with high 

prob ability" will always mean with probability 1-2-"O{l). Without loss of generality assume 

that the input strings are pairwise distinct. 

The minimum of n constant-size objects can be found in constant time with n processors 

with high prob ability [4], and interval allocation problems of size n can be solved in constant 

time with n processors with high prob ability if the number of nonzero input values (in our 

case, strings to be compacted) is O(n/logn) [6, Corollary 4.3]. If we draw a random sampie 

from the input strings by including each string with prob ability 1/ lfoJ and independently 

of all other strings, a well-known Chemoff bound (see, e.g., [23]) shows that with high 

probability the number of strings in the sampie will be O( fo), so that we can use these 

facts to compute the minimum string in the sampie in constant time with high prob ability. 

Subsequently comparing every input string with the minimum string X in the sampie, we are 
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left with the problem of computing the minimum only among the strings no larger than X. 

With high probability, the number of such strings is O( n2/ 3 ); specifically, the probability that 

none ofthe k smallest input strings is included in the sampie is at most (1-1/ y'n)k $ e-k/./ii., 

which for k = l n 2/ 3 J is negligible. The remaining problem can therefore also be solved in 

constant time with high probability. 

THEOREM 7.6 There is a constant € > 0 such that for all integers n 2: 1, the minimum 

among strings containing altogether n characters can be computed in constant time on an 

n-processor CRCW PRAM with probability at least 1 - 2-n
€. 

It is easy to simulate the algorithms of Theorems 7.5 and 7.6 on an EREW PRAM with a 

logarithmic slowdown, but uniformly and without any increase in the number of operations. 

We hence have 

THEOREM 7.7 For all integers n 2: 4, the minimum among strings containing altogether 

n characters can be computed on an EREW PRAM using O(lognloglogn) time and O(n) 

operations. 

THEOREM 7.8 There is a constant € > 0 such that for all integers n 2: 1, the minimum 

among strings containing altogether n characters can be computed on an EREW PRAM 

using O(logn) time and O(n) operations with probability at least 1 - 2-n ". 
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