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Abstract

An integer sequence d is called a degree sequence if there exists a simple graph G such that
the degrees of its vertices are precisely the components of d� in that case� G is a realization
of d� Given d and an integer k� we study two problems� �i� compute a k�edge�connected
realization of d� �ii� compute a k�vertex�connected realization of d� The main contributions
of this paper are the 	rst parallel algorithms for these problems� Speci	cally� we show that
problem �i� can be solved in 
O�k� time using a polynomial number of processors� For problem
�ii� we present an e�cient algorithm when k � 
� the algorithm runs in logarithmic time
using a linear number of processors�

� Introduction

��� Problem De�nition

A fundamental problem in graph algorithms is to compute a �simple� graph satisfying the given
degree constraints and having good connectivity properties� More formally� an integer sequence
d is called a degree sequence if there exists a graph G such that the degrees of its vertices are
precisely the components of d� in that case G is said to be a realization of d�

Given d and an integer k� we study the parallel complexity of following problems�

Problem �� Compute a k�edge�connected realization of d�
Problem �� Compute a k�vertex�connected realization of d�

Degree sequence problems have several applications in diverse areas such as network reliability�
structural reliability and stereochemistry �see �	
� �	���

��� Previous Results

On the distinction between search and decision problems in parallel computation� Upfal� Karp
and Wigderson said �	
�� �In the context of parallel computation the distinction between search
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problems and decision problems is far more important �than in sequential computation� because
we are interested in algorithms that run in sublinear time� And in fact there are many cases
where a decision problem is easy or even trivial to solve in parallel� but the corresponding search
problem is challenging�� Degree sequence problems are one such important case� The decision
problems can be solved by verifying certain linear inequalities and the veri�cation can be done
easily and e�ciently in parallel �cf� Section ��� The status of the search problems� on the other
hand� has been open so far�

Recently several authors worked on the problem of computing any realization �no connectiv�
ity requirements�� Dessmark� Lingas� and Garrido ��� showed that a special case of this problem
is in NC� Arikati and Maheshwari �	� �� showed that the general problem has an e�cient de�
terministic parallel solution� their algorithm runs in logarithmic time using a linear number of
CRCW PRAM processors�

��� New Results

The main contributions of this paper are the �rst parallel algorithms for the problems de�ned
above� Speci�cally� we obtain the following results� where n andm denote the number of vertices
and edges in the realization�

� A randomized parallel algorithm for Problem 	 that runs in �O�k� time� using O�n���m�
CRCW PRAM processors� a deterministic parallel algorithm for the same problem that
runs in �O�k� time using a polynomial number of processors �the polynomial has a very
high degree��

� An e�cient deterministic parallel algorithm for Problem � when k � �� the algorithm runs
in O�logn� time using O�n�m� CRCW PRAM processors�

��� An Overview

Our basic technique is to start with any realization of d� make appropriate modi�cations on G
without leaving the space of all realizations� and �nally reach a realization that has the desired
properties� The technique is based on a natural� fundamental operation called exchange �see
Figure � in Section �� that transforms one realization into another�

The algorithm to compute a connected �i�e� k � 	� realization of d is simple and e�cient�
Starting with any realization G� we compute connected components of G and merge these
components by performing appropriate exchanges� We show that many exchanges can be done
in parallel� The algorithm runs in deterministic O�logn� time using O�n�m� PRAM processors�
The details are presented in Section ��

Wang and Kleitman ���� presented in 	
�� an algorithm to solve Problem �� and Asano ���
recently proposed an e�cient sequential implementation of their algorithm� We partially solve
Problem � by presenting a deterministic NC algorithm when k � �� Using the results of
Section � we compute a connected realization G of d� We exploit the structure of the block�
cutvertex tree of G to compute a ��vertex�connected realization e�ciently� The algorithm is
presented in Section ��

Edmonds ��� presented in 	
�� an algorithm to solve Problem 	� Our algorithm is based
on a non�trivial parallelization of his algorithm� We use an incremental approach to compute

� �O�k� means O�k polylog�n���
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a k�edge�connected realization of d� namely we show how to transform an i�edge�connected
realization into an �i� 	��edge�connected realization� We introduce the notion of extreme sets
and show that many extreme sets can be destroyed in one step by performing exchanges in
parallel� The extreme sets can be computed from the elegant cactus representation ��� 	��� which
compactly represents all connectivity cuts of a graph� We give in Section � a brief description of
this representation� Karzanov and Timofeev �	�� presented an e�cient sequential algorithm to
compute this representation� Naor and Vazirani �	�� presented an RNC algorithm to compute
the cactus representation� The deterministic NC algorithm of Karger and Motwani �	�� to
compute min�cuts can be modi�ed to compute this representation �		�� Our algorithm to solve
Problem 	 is presented in Section ��

� Preliminaries

By a graph G we mean a simple graph� We use V �G� and E�G� to denote� respectively� the
vertex set and edge set of G� If uv is an edge in G� we say that uv � G�

Throughout this paper� V �jV j � n� denotes a �xed set that usually stands for the vertex set
of the graph under consideration� Also� d � �d�� � � � � dn� denotes a nonnegative integer sequence�
where d� � d� � � � � � dn� we de�ne m � �	���

Pn
i�� di�

The sequence d is realizable if there exists a graph G in which the degrees of the vertices
are precisely the components of d� in that case G realizes d �see Figure 	�� The sequence d is a
connected degree sequence if there exists a connected graph that realizes d� d is a k�edge�connected
degree sequence �resp� k�vertex�connected degree sequence� if there exists a k�edge�connected
graph �resp� k�vertex�connected graph� that realizes d�

Figure 	� A realization of ��� �� �� �� �� 	��

Theorem ��� � ��� 	� �
�� The sequence d is realizable if and only if �i�
Pn

i�� di is even and
�ii�
Pk

i�� di � k�k� 	� �
Pn

i�k��min�di� k�� for k � 	� �� � � � � n


Theorem ��� � ��� �
�� The sequence d is a connected sequence if and only if �i� d is realizable
and �ii�

Pn
i�� di � ��n� 	�
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Theorem ��� � ���� The sequence d is a k�edge�connected sequence �k � �� if and only if �i� d
is realizable and �ii� di � k for all i


Theorem ��� � ����� The sequence d is a k�vertex�connected sequence �k � �� if and only if
�i� d is realizable� �ii� di � k for all i� and

�iii� m�
k��X

i��

di �
�k � 	��k� ��

�
� n� k�

Given d� a decision problem is to test if� for example� d is k�edge�connected� and the search
problem is to actually compute a k�edge�connected realization of d� It is clear that the decision
problems associated with the above four theorems are all in NC� After sorting d� all the inequal�
ities given in these theorems can be checked in O�logn� time using O�n� logn� EREW PRAM
processors� When we discuss a search problem associated with d we can therefore assume that
the corresponding decision problem is solvable�

We use a fundamental operation to transform one realization of d into another� Suppose G
is a realization of d� and let u� v� w� x be four vertices such that uv� wx � G and uw� vx �� G� We
say that �u� v� w� x� is an exchange sequence� An exchange on �u� v� w� x� consists of dropping
the edges uv� wx and adding the edges uw� vx �see Figure ���

u

w x

u

w x

v v

Figure �� An exchange operation� A solid line indicates the presence of an edge and a dotted
line its absence�

An important observation is the following�

Lemma ��� If G
�

is obtained from G by performing an exchange on �u� v� w� x�� then G
�

is also
a realization of d


A bridge �resp� cut�vertex� in a connected graph G is an edge �resp� a vertex� whose removal
disconnects G�

� Connected Degree Sequences

Throughout this section� we assume d � �d�� � � � � dn� is a connected degree sequence� For con�
venience� we reproduce the following condition from Theorem ����

nX

i��

di � ��n� 	�� �	�

Let G � �V�E� be any realization of d� Assuming that G is not connected� we present an
algorithm that transforms G into a connected realization G��
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A connected component of G is called big if it contains a cycle� otherwise it is small� Since
d satis�es Equation 	 there must be at least one big component� We begin with the following
simple lemma�

Lemma ��� �
 If C is a small component� then jE�C�j� jV �C�j � 	


�
 If T is any spanning tree in a big component C� then the number of non�tree�edges in C

is jE�C�j� jV �C�j� 	


Our parallel algorithm is based on the following natural operation to merge components of
G�

Lemma ��� Suppose C is a big component and let uv be any non�bridge in it
 Let C
�

be any
other �big or small� component and wx be any edge in it
 If �G is obtained by performing an
exchange on �u� v� w� x�� then �G is a realization of d and has fewer components than G


Proof� C � C
�

� fuv� wxg � fuw� vxg is a component in �G�

The algorithm is given in Algorithm 	�

	� Compute a realization G of d�

�� Compute connected components of G� For all components C� �nd a spanning tree of C�
NTC is the set of all the non�tree edges of C�

�� while there are more than one big component do

�a� Group the big components into pairs�

�b� For all pairs �C�C
�

� do in parallel� pick uv � NTC and wx � NT
C

� and perform
an exchange on �u� v� w� x�� Set NT �C �� NTC � NTC� � fuv� wxg � fuwg� where
�C � C � C

�

� fuv� wxg � fuw� vxg�

�� Suppose the resulting graph G
�

is still disconnected� Let C
�

be the big component� and
C�� � � � � Cp be the small components� Let �u�� v��� � � � � �uq� vq� be the edges in NT

C
� �

�Comment� The claim below shows that q � p��
Pick an edge� say �wi� xi�� from Ci and perform simultaneous exchanges on �ui� vi� wi� xi�
for i � 	� � � � � p�

�� Output the resulting graph G��

Algorithm �� Computing a connected realization�

Theorem ��� Algorithm � computes a connected realization of a connected degree sequence
d � �d�� � � � � dn� in O�logn� time using O�n�m� CRCW PRAM processors
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Proof� Observe that all the edges in NTC are non�bridges in the component C� In Step ��b��
out of the two possible edges uw and vx� we include uw in NT �C �vx merges C and C

�

into one

component�� Repeated applications of Lemma ��� shows that G
�

is a realization of d� If G
�

is
disconnected� it has exactly one big component� The following claim shows that p simultaneous
exchanges can be performed in Step ��

Claim� q � p�

Let n
�

and m
�

denote the number of vertices and edges in C
�

� and ni and mi denote the number
vertices and edges in Ci� Lemma ��	 implies mi � ni � 	 and jNT

C
� j � m

�

� n
�

� 	� Since d

satis�es Equation 	� the total number of edges m
�

�
Pp

i��mi is at least n� 	� The claim follows
by observing that n

�

�
Pp

i�� ni equals n� the total number of vertices� Repeated application of
Lemma ��� again shows that G� is a connected realization of d�

The algorithm of �	� computes G in O�logn� time using O�n�m� CRCW PRAM processors�
The while loop in Step � is iterated for at most O�logn� times and each iteration takes constant
time using O�m� processors� The remaining steps can be done within these resource bounds
using standard PRAM algorithms �	���

� ��Vertex�Connected Degree Sequences

Throughout this section� d denotes a ��vertex�connected degree sequence� With k � �� condi�
tion �ii� of Theorem ��� becomes di � � for all i� and condition �iii� is

m� d� � n � �� ���

Let G be any realization of d� Based on the results of Section � we may assume that G is
connected� A block �also called a ��connected component� of G is a maximal ��vertex�connected
subgraph of G� Two blocks are adjacent if they share a vertex� �It is well known that any two
blocks can have at most one common vertex and that the common vertex is a cutvertex in G��
The nodes of the so�called block�cutvertex tree are the blocks and cutvertices of G� and the edges
of T are of the form �B� v� where B is a block and v � B is a cutvertex� A block B

��

is said to
be on the B�B

�

path if the B�B
�

path in T passes through B
��

�
For X 	 V � G�X � denotes the subgraph of G induced by X � The union of two graphs H

and H
�

is denoted by H � H
�

� H and H
�

may have common vertices� but they will always be
edge�disjoint in this paper�

The intuition behind obtaining a ��connected realization G� of d is to merge all blocks of G
into a single block by performing appropriate exchanges� The following two lemmas form the
basis of our algorithm� Due to space considerations� the proofs of the lemmas are left to the
�nal version of the paper�

Lemma ��� Let B and B
�

be adjacent blocks with common vertex z
 Suppose B � z contains a
cycle and let uv be a non�bridge in B � z
 Let wx be an edge in B

�

such that �u� v� w� x� is an
exchange sequence
 Finally� let �G be obtained by performing an exchange on �u� v� w� x�
 Then�

�
 �G is connected


�
 �G�V �B� � V �B
�

�� is a block in �G


�



Lemma ��� Let B and B
�

be nonadjacent blocks� and let �u� v� w� x� be an exchange sequence
where u� v � B and w� x � B

�


 De�ne C to be the union of all blocks �including B and B
�

� on
the B�B

�

path
 Let �G be obtained by performing an exchange on �u� v� w� x�
 Then�

�
 �G is connected


�
 �G�V �C�� is a block in �G


Our algorithm to compute the desired realization G� consists of two phases� In the �rst
phase we compute a realization G

�

that has at most one cutvertex� If G has exactly two blocks�
we take G

�

� G and go to the second phase�

Phase �� Compute the block�cutvertex tree T � root it at any non�leaf� and label its leaves
from left to right as B�� B�� � � � � Bp� Group the leaves into pairs �Bi� Bi�q�� i � 	� � � � � q� where
q � p��� A pair �B�B�� is called active if B and B

�

are nonadjacent� For all active pairs �B�B��
do in parallel� select uv � B and wx � B

�

� and perform an exchange on �u� v� w� x�� Denote the
resulting graph by G

�

�

Lemma ��� G
�

realizes d and has at most one cutvertex


Proof� First assume that p is even� Every block Bj has at least three vertices� since Bj is a leaf
and di � � for all i� Set G� � G and let Gi be obtained from Gi�� by performing an exchange
on �u� v� w� x�� where �u� v� w� x� is as chosen by the algorithm for the active pair �Bi� Bi�q��
Lemma ��� shows that Gi�V �C�� is a block in Gi� where C is the union of all blocks on the
Bi�Bi�q path in the block�cutvertex tree of Gi��� Because T is rooted at a non�leaf� it follows
that G

�

� Gq has at most one cutvertex�
If p is odd� we take q � bp��c and group the leaves of T into pairs �Bi� Bi�q��� and then

perform the exchanges as above�

Phase �� Let z be the cutvertex of in G
�

� De�ne H � G
�

� z and let c � �c�� � � � � cn��� be
the degree sequence of H � Using Algorithm 	 compute a connected realization H� of c� Then
G� � H� � fzg� where uz � G� i� uz � G

�

�

Lemma ��� G� is a ��vertex�connected realization of d


Proof� We claim that c is a connected degree sequence� By de�nition� c is realizable� Since
d satis�es Equation �� it follows that c satis�es Condition �ii� of Theorem ���� This proves the
claim� Recall that in Algorithm 	 big components are merged �rst and then the small compo�
nents are all merged with the remaining big component� This fact combined with Lemma ��	
proves that G� is a ��vertex�connected realization of d�

We summarize the main result�

Theorem ��� A ��vertex�connected realization of d can be computed in O�logn� �deterministic�
time using O�n�m� CRCW PRAM processors


�



Proof� The complexity of our algorithm is dominated by two factors� the construction of the
block�cutvertex tree and the computation of H�� Using standard PRAM algorithms �	��� the
former can be done within the resource bounds stated in the theorem� the complexity of the
latter follows from Theorem ��	�

� Cactus Representation

Given a connected graphG � �V�E�� a cut �X�X� is a partition of the vertices into two nonempty
sets X and X� An edge uv belongs to the cut �X�X� if one of u and v is in X and the other in X�
The value of a cut is the number of edges that belong to it� The edge�connectivity of G� denoted
by ��G�� is the minimum number of edges whose removal disconnects G� or equivalently� ��G�
is de�ned to be the minimum value of a cut� If there are weights on the edges� then the value
of a cut is the total weight of edges that belong to it� A cut whose value equals ��G� is called a
connectivity cut�

A graph G is called a cactus graph if any two cycles can have at most one vertex in common�
The edges of a cactus graph can be partitioned into cycle�edges �edges that lie on cycles� and
tree�edges�

Let G � �V�E� be a cactus graph with edge�weights w�e� as follows� w�e� � �
� if e is a

cycle�edge� and w�e� � � if e is a tree�edge� Let u and v be two vertices in G� By merging u
and v� we obtain a new graph G

�

� �V
�

� E
�

� with edge�weights w
�

�e� as follows� V
�

� V � v�
E

�

� E � fvw � vw � Eg � fuw � w �� u and vw � Eg� w
�

�uw� � w�uw� � w�vw�� and
w

�

�e� � w�e� for all other edges e� It is easy to see that G
�

is also a cactus� and that w
�

�e� � �
�

if e is a cycle�edge� and w
�

�e� � � if e is a tree�edge�
Dinits� Karzanov and Lomosonov ��� derived the compact and elegant cactus representation

H � H�G� of a graph G � �V�E�� We give a brief description of H� more details can be found
in �	�� 	�� 	��� H is an edge�weighted cactus graph of O�n� nodes and edges� Every vertex
in G maps to exactly one node in H and any node in H corresponds to a subset �possibly
empty� of vertices from G� A cut �S� S� in H induces a cut �X�X� in G� where X consists of
all vertices from G that are mapped into nodes in S� The edge�connectivity of H is also ��G��
Each connectivity cut in H induces a connectivity cut in G� and each connectivity cut in G

corresponds to one or more connectivity cuts in H� Every cycle�edge of H is given a weight �
�

and every tree�edge is given a weight �� The connectivity cuts in H are of exactly two types�
�i� a cut obtained by removing a tree�edge� and �ii� a cut obtained by removing any pair of
cycle�edges that lie on the same cycle�

� k�Edge�Connected Degree Sequences

In this section d is a k�edge�connected degree sequence �k � ��� Hence di � k for all i�
Starting with any realization G � �V�E� of d� we show how to compute a k�edge�connected

realization� Based on the results from Section �� we may assume that G is connected� We use
an incremental approach� Assume inductively that G is �k�	��edge connected� We may assume
that G is not k�edge connected�

For U 
 V � let d�U� denote the �degree� of U � i�e�� d�U� � jfuv � u � U� v � Ugj� where
U � V � U � U is a critical set if d�U� � k � 	 �in fact d�U� � k � 	 because G is �k � 	��edge






connected�� U is an extreme set if �	� U is critical and ��� no proper subset of U is critical�
Observe that singleton sets are not extreme �as di � k� and that there is at least one extreme
set �as G is not k�edge connected�� A straightforward observation is that any two extreme sets
must be disjoint� i�e�� W 	 U for all extreme sets U and W �

The intuition behind obtaining the desired realization of d is to destroy all critical sets
without creating any new ones� Suppose U is an extreme set in G and let ux be an edge such
that u � U and x � U � Since du � k and d�U� � k � 	� there exists a vertex v � U such that
uv � G� vx �� G� Similarly there exists a vertex w � U such that wx � G� uw �� G� since dx � k
and d�U� � d�U� � k� 	� Thus �u� v� w� x� is an exchange sequence� Let �G be obtained from G
by performing an exchange on �u� v� w� x��

Lemma 	�� �����

�
 �G is a realization of d and U is not critical in �G


�
 Every critical set in �G is also a critical set in G


Proof� Proof of �	� is straightforward� Denote the degree of X in �G by �d�X�� To get a
contradiction� assume that �X�X� is critical in �G but not in G� So �d�X� � k� 	 and d�X� � k�
It follows that both u� w are in one side of the cut �X�X� and both v� x are in the other side�
say u� w � X and v� x � X � Put p � �d�U �X�U �X�� q � �d�U �X�U �X�� r � �d�U �X�U �X��
where �d�P�Q� denotes the number of edges in �G with one endvertex in P and the other in Q�
Then r � 	 since ux � �G� u � U �X � and x � U �X� This fact combined with �d�X� � p� q� r
implies p � q � k � �� We consider the case p � b�k � ����c� the proof for the other case�
namely q � b�k � ����c� is similar� The following claim implies that U is not extreme in G� a
contradiction�
Claim� d�U �X� � k � 	 or d�U �X� � k � 	�
Put s � j�U � X�U�j and t � j�U � X�U�j� where j�P�Q�j denotes the number of edges in G
with one endvertex in P and the other in Q� Then k � 	 � d�U� � s � t� implying that either
�i� s � b�k � 	���c or �ii� t � b�k � 	���c� If �i� holds� then d�U � X� � p � 	 � s � k � 	
because d�U �X� � j�U �X�U �X�j� j�U �X�U�j� and j�U �X�U �X�j � p� 	� the second
equality follows from the fact that uv �� �G� uv � G� Similarly we can prove d�U �X� � k� 	 if
�ii� holds�

��� The Algorithm

Our algorithm to compute a k�edge�connected realization of d consists of several phases� and
each phase has � steps�

Let S be the set of extreme sets in G� De�ne the extreme sets graph G as follows� V �G� � S
and two vertices U and W of G are adjacent i� they are �adjacent� in G� i�e�� i� there is an edge
in G that joins a vertex in U to a vertex in W �
Step �� Let M be a maximal matching in G� For all edges �U�W � � M do in parallel� Let ux
be an edge in G such that u � U and x � W � select vertices v and w such that v � U � w � W �
and �u� v� w� x� is an exchange sequence� perform an exchange on �u� v� w� x��

The resulting graph is denoted by G
�

� Let S
�

� fW � S �W is extreme in G
�

g�






Lemma 	�� G
�

realizes d
 Further� no two extreme sets of S
�

are adjacent


Proof� Repeated applications of Lemma ��	 shows that G
�

realizes d� The second part of the
lemma follows from the fact that M is a maximal matching in G�

We discuss Step � now� Suppose U � S
�

� Let vertex v be the smallest neighbor of U � i�e�� �i�
v � U � �ii� there is an edge that joins v to a vertex in U � and �iii� v is the smallest such vertex��
Observe that v exists� The parent of U is de�ned as v and U is a child of v� A vertex is called
active if it has a child� An active vertex is called big if it has at least two children�

Lemma 	�� Let U � S
�

and let v be the parent of U 
 Then there exist vertices u� x � U such
that uv� ux � G

�

and vx �� G
�




Proof� Since v is the parent of U there exists u � U such that uv � G
�

� The existence of the
desired vertex x follows from the facts d�U� � k � 	 and du � k�

Step �� For all big vertices v do in parallel� Let U�� � � � � Up be the children of v� and ui be
any vertex in Ui such that vui � G

�

� Let xi be any vertex in Ui such that uixi � G
�

and
vxi �� G

�

� Drop the edges fuixi � 	 � i � pg� fvui � 	 � i � p � �g� and vup� add the edges
fvxi � 	 � i � p� 	g� u�xp� u�up� u�up� fuiui�� � � � i � p� �g �see Figure ��� Let G

��

be the
resulting graph�

v

u xux

u x

1 122

4 4u3x 3

v

u xux

u x

1 122

4 4u3x 3

Figure �� Step � of the algorithm� A solid line indicates the presence of an edge and a dotted
line its absence�

Lemma 	�� G
��

realizes d


Proof� Fix a big vertex v� Lemma ��� shows that the following are all exchange se�
quences� �i� �u�� x�� up� v�� �ii� �ui� xi� ui��� v� for � � i � p� � and �iii� �up� xp� u�� u��� Let
G� � G

�

� G�� � � � � Gp a sequence of graphs such that G� is obtained from G� be performing an
exchange on �u�� x�� up� v�� Gi �� � i � p� �� is obtained from Gi�� by performing an exchange

�Here and later	 any 
xed v su�ces� for the sake of de
niteness	 we choose the smallest v according to a 
xed
linear ordering of the vertices�

	�



on �ui� xi� ui��� v�� and Gp is obtained from Gp�� by performing an exchange on �up� xp� u�� u���
Lemma ��	 proves that Gp is a realization of d� Now� Lemma ��� implies that the parent of
an extreme set doesn�t belong to any extreme set� So no multiple edges are created when the
exchanges are performed in parallel for all big vertices�

Let S
��

� fW � S
�

� W is extreme in G
��

g� Let v be an active vertex in G
��

� Since v is not
big� it has a unique child U � S

��

� Let f�v� be the smallest neighbor of v in U � and g�v� be
the smallest u � U such that �f�v�� u� � G

�

and vu �� G
�

� The friend of v� denoted by h�v�� is
de�ned as the smallest vertex in fw � w �� U� vw � G

�

� �f�v�� w� �� G
�

g� De�ne a new graph H as
follows� The vertices of H are the active vertices in G

�

� and two vertices v and w are adjacent
in H i� they are mutual friends �i�e�� h�v� � w and h�w� � v��

Observe that every vertex in H has degree either � or 	�
Step �� For all edges vw in H � do the following step in parallel on the graph G

��

� drop the
edges �f�v�� g�v��� vw� �f�w�� g�w��� and add the edges �v� g�v��� �f�v�� f�w��� �w� g�w���

It is routine to prove that the resulting graph� denoted by G	
�� realizes d� Let S	
� � fW �
S

��

�W is extreme in G	
�g�
Step �� For all active vertices v in G	
� such that the child of v is in S	
�� do the following step
in parallel on the graph G	
�� Perform exchange on �f�v�� g�v�� h�v�� v��

The resulting graph is denoted by G	��� This completes the description of one phase of the
algorithm� The proof of the following lemma follows from above discussion�

Lemma 	�
 G	�� realizes d


��� The Correctness and Complexity

Our proof of correctness and the complexity analysis of the algorithm is based on properties and
manipulations of cactus representation�

Let H � H�G� be a cactus representation of G� A node W is a leaf in H if W is either
connected by a single tree�edge� orW is in a cycle and has degree exactly two� By the de�nition
of H it follows that extreme sets in G are precisely the leaves in H� We denote the set of leaves
of H�G� by L�G��

Recall that G is a realization of d and that ��G� � k � 	� Let U and W be two adjacent
extreme sets in G� Select an edge ux G such that u � U and x � W � select vertices v and w such
that v � U � w � W � �u� v� w� x� is an exchange sequence� Obtain another realization �G from G

by performing an exchange on �u� v� w� x�� Call a node Y of H active if either Y � fU�Wg or
�Y is on a U �W path in H and Y doesn�t lie on a cycle��

Lemma 	�	 Let S be the set of active nodes
 If S � V �H�� then �� �G� � k
 Otherwise�

�
 �� �G� � k � 	�

�
 The graph �H obtained from H by merging nodes of S is a cactus representation of �G


Proof �sketch�� Consider �rst the case S � V �H�� Then H is a path with end�nodes U and
W � So every connectivity cut in G separates U and W � Assume if possible that �X�X� is a cut
of value at most k � 	 in �G� Since X is critical in �G it is also critical in G by Lemma ��	� and

		



the cut �X�X� has value k � 	 in G� Since two new edges are added between U and W � the
value of this cut in �G is � � k � 	 � k � 	� a contradiction� Hence �� �G� � k�

Consider now the case S �� V �H�� Then there exists a connectivity cut in G that doesn�t
separate the nodes in S� This cut is also a cut in �G and has the same value �� k � 	� as in
G� Hence �� �G� � k � 	� It follows from Lemma ��	 that a connectivity cut in �G is also a
connectivity cut in G and the cut contains both U and W in one side of the cut� The cuts in G
that separate U and W are precisely those cuts that are obtained from H by deleting tree�edges
incident on the active nodes� Hence �H a cactus representation of �G�

Recall that G
�

is the graph obtained fromG in Step 	 of the algorithm� Repeated applications
of Lemma ��� show that jL�G

�

�j � jL�G�j � p
� � where p is the number of leaves of H�G� that

are matched by the matching M in Step 	� For Steps ���� similar results can be proved� due to
space considerations� these results are left to the �nal version�

Lemma 	�� Let the graph G	�� be de�ned as above
 If G	�� is not k�edge�connected� then
jL�G	���j � �

� jL�G�j


Below we summarize the main result of this section�

Theorem 	�� A k�edge�connected realization of d can be computed in O�k log� n� using
O�n���m� CRCW processors on a probabilistic PRAM


Proof �sketch�� In each phase of the algorithm� the number of leaves of the cactus reduces by
a factor of at least �� by Lemma ���� Hence there are O�logn� phases� The correctness of each
phase follows from Lemma ���� The time and processor complexity of a phase is dominated
by two subproblems� �nding the cactus representation and �nding a maximal matching� Naor
and Vazirani �	�� presented an RNC algorithm to compute the cactus representation and their
algorithm runs in O�log� n� using O�n���m� CRCW processors� The algorithm of Israeli and
Shiloach �
� computes a maximal matching in deterministic O�log
 n� time using O�m� CRCW
PRAM processors�

Observe from Theorem ��	 that the search problem for k�edge�connected degree sequences
is in RNC for k � polylog�n�� The results of Karger and Motwani �	�� imply an NC algo�
rithm �though not practical� to compute the cactus representation �		�� Therefore� we have the
following�

Theorem 	�� The problem of computing a k�edge�connected realization of d can be solved in
deterministic �O�k� time using a polynomial number of processors


� Conclusions

We presented the �rst parallel algorithms to solve the degree sequence problems with connectiv�
ity requirements� An important open problem is to solve the vertex�connectivity case completely�
Our techniques for solving k�vertex�connectivity case �when k � �� may not generalize for arbi�
trary values of k� especially because �nding k�blocks is P �complete for all k � � �see �	����
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