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Abstract

An integer sequence d is called a degree sequence if there exists a simple graph G such that
the degrees of its vertices are precisely the components of d; in that case, (G is a realization
of d. Given d and an integer k, we study two problems: (i) compute a k-edge-connected
realization of d, (ii) compute a k-vertex-connected realization of d. The main contributions
of this paper are the first parallel algorithms for these problems. Specifically, we show that
problem (i) can be solved in O(k) time using a polynomial number of processors. For problem
(ii) we present an efficient algorithm when & = 2; the algorithm runs in logarithmic time
using a linear number of processors.

1 Introduction

1.1 Problem Definition

A fundamental problem in graph algorithms is to compute a (simple) graph satisfying the given
degree constraints and having good connectivity properties. More formally, an integer sequence
d is called a degree sequence if there exists a graph G such that the degrees of its vertices are
precisely the components of d; in that case G is said to be a realization of d.

Given d and an integer k, we study the parallel complexity of following problems.

Problem 1: Compute a k-edge-connected realization of d.
Problem 2: Compute a k-vertex-connected realization of d.

Degree sequence problems have several applications in diverse areas such as network reliability,
structural reliability and stereochemistry (see [18, 21]).
1.2 Previous Results

On the distinction between search and decision problems in parallel computation, Upfal, Karp
and Wigderson said [19], “In the context of parallel computation the distinction between search
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problems and decision problems is far more important [than in sequential computation] because
we are interested in algorithms that run in sublinear time. And in fact there are many cases
where a decision problem is easy or even trivial to solve in parallel, but the corresponding search
problem is challenging.” Degree sequence problems are one such important case. The decision
problems can be solved by verifying certain linear inequalities and the verification can be done
easily and efficiently in parallel (cf. Section 2). The status of the search problems, on the other
hand, has been open so far.

Recently several authors worked on the problem of computing any realization (no connectiv-
ity requirements). Dessmark, Lingas, and Garrido [5] showed that a special case of this problem
is in NC'. Arikati and Maheshwari [1, 2] showed that the general problem has an efficient de-
terministic parallel solution; their algorithm runs in logarithmic time using a linear number of

CRCW PRAM processors.

1.3 New Results

The main contributions of this paper are the first parallel algorithms for the problems defined
above. Specifically, we obtain the following results, where n and m denote the number of vertices
and edges in the realization.

e A randomized parallel algorithm for Problem 1 that runs in O(k) time® using O(n*®m)
CRCW PRAM processors; a deterministic parallel algorithm for the same problem that
runs in O(k) time using a polynomial number of processors (the polynomial has a very

high degree).

o An efficient deterministic parallel algorithm for Problem 2 when k& = 2; the algorithm runs

in O(logn) time using O(n + m) CRCW PRAM processors.

1.4 An Overview

Our basic technique is to start with any realization of d, make appropriate modifications on G
without leaving the space of all realizations, and finally reach a realization that has the desired
properties. The technique is based on a natural, fundamental operation called exchange (see
Figure 2 in Section 2) that transforms one realization into another.

The algorithm to compute a connected (i.e. k = 1) realization of d is simple and efficient.
Starting with any realization G, we compute connected components of G and merge these
components by performing appropriate exchanges. We show that many exchanges can be done
in parallel. The algorithm runs in deterministic O(logn) time using O(n+m) PRAM processors.
The details are presented in Section 3.

Wang and Kleitman [20] presented in 1973 an algorithm to solve Problem 2, and Asano [3]
recently proposed an efficient sequential implementation of their algorithm. We partially solve
Problem 2 by presenting a deterministic NC' algorithm when k& = 2. Using the results of
Section 3 we compute a connected realization G of d. We exploit the structure of the block-
cutvertex tree of G to compute a 2-vertex-connected realization efficiently. The algorithm is
presented in Section 4.

Edmonds [7] presented in 1964 an algorithm to solve Problem 1. Our algorithm is based
on a non-trivial parallelization of his algorithm. We use an incremental approach to compute

1O(k) means O(k polylog(n)).



a k-edge-connected realization of d, namely we show how to transform an :-edge-connected
realization into an (¢ 4+ 1)-edge-connected realization. We introduce the notion of extreme sets
and show that many extreme sets can be destroyed in one step by performing exchanges in
parallel. The extreme sets can be computed from the elegant cactus representation [6, 16], which
compactly represents all connectivity cuts of a graph. We give in Section 5 a brief description of
this representation. Karzanov and Timofeev [13] presented an efficient sequential algorithm to
compute this representation. Naor and Vazirani [17] presented an RNC algorithm to compute
the cactus representation. The deterministic NC' algorithm of Karger and Motwani [12] to
compute min-cuts can be modified to compute this representation [11]. Our algorithm to solve
Problem 1 is presented in Section 6.

2 Preliminaries

By a graph G we mean a simple graph. We use V(G) and E(G) to denote, respectively, the
vertex set and edge set of G. If uv is an edge in G, we say that uv € G.

Throughout this paper, V' (|[V| = n) denotes a fixed set that usually stands for the vertex set
of the graph under consideration. Also, d = (dy,...,d,) denotes a nonnegative integer sequence,
where dy > dy > --- > d,; we define m = (1/2) Y"1, d;.

The sequence d is realizable if there exists a graph G in which the degrees of the vertices
are precisely the components of d; in that case G realizes d (see Figure 1). The sequence d is a
connected degree sequenceif there exists a connected graph that realizes d; d is a k-edge-connected
degree sequence (resp. k-vertex-connected degree sequence) if there exists a k-edge-connected
graph (resp. k-vertex-connected graph) that realizes d.

[
Figure 1: A realization of (4,4,3,2,2,1).
Theorem 2.1 ( [4, 8, 15]) The sequence d is realizable if and only if (i) Y i—y d; is even and
(ii) S8 di < k(k— 1)+ Xy min(d;, k), fork=1,2,...,n.

Theorem 2.2 ( [4, 15]) The sequence d is a connected sequence if and only if (i) d is realizable
and (i) >y d; > 2(n —1).



Theorem 2.3 ( [7]) The sequence d is a k-edge-connected sequence (k > 2) if and only if (i) d
is realizable and (11) d; > k for all i.

Theorem 2.4 ( [20]) The sequence d is a k-vertez-connected sequence (k > 2) if and only if
(i) d is realizable, (ii) d; > k for all ¢, and
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Given d, a decision problem is to test if, for example, d is k-edge-connected, and the search
problem is to actually compute a k-edge-connected realization of d. It is clear that the decision
problems associated with the above four theorems are all in NC': After sorting d, all the inequal-
ities given in these theorems can be checked in O(logn) time using O(n/logn) EREW PRAM
processors. When we discuss a search problem associated with d we can therefore assume that
the corresponding decision problem is solvable.

We use a fundamental operation to transform one realization of d into another. Suppose G
is a realization of d, and let u, v, w,  be four vertices such that wv, wz € G and ww,ve ¢ G. We
say that (u,v,w,z) is an exchange sequence. An exchange on (u,v,w, ) consists of dropping
the edges uv, waz and adding the edges ww, va (see Figure 2).
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Figure 2: An exchange operation. A solid line indicates the presence of an edge and a dotted
line its absence.

An important observation is the following:

Lemma 2.1 If G’ is obtained from G by performing an exchange on (u, v, w,z), then G’ is also
a realization of d.

A bridge (resp. cut-vertez) in a connected graph G is an edge (resp. a vertex) whose removal
disconnects G.

3 Connected Degree Sequences

Throughout this section, we assume d = (dy,...,d,) is a connected degree sequence. For con-
venience, we reproduce the following condition from Theorem 2.2:

f:d,» > 2(n — 1). (1)

Let G = (V, E) be any realization of d. Assuming that G is not connected, we present an
algorithm that transforms G into a connected realization G™*.



A connected component of G is called big if it contains a cycle; otherwise it is small. Since
d satisfies Equation 1 there must be at least one big component. We begin with the following
simple lemma.

Lemma 3.1 1. IfC is a small component, then |E(C)|= |V (C)| - 1.

2. If T is any spanning tree in o big component C, then the number of non-tree-edges in C

is |[E(C)| - [V(O)| + 1.

Our parallel algorithm is based on the following natural operation to merge components of

G.

Lemma 3.2 Suppose C is a big component and let wv be any non-bridge in it. Let C' be any
other (big or small) component and wz be any edge in it. If G is obtained by performing an
exchange on (u,v,w,z), then G is a realization of d and has fewer components than G.

Proof: CUC’ — {uv,wz} U {uw,va} is a component in G. 1

The algorithm is given in Algorithm 1.

1. Compute a realization G of d.

2. Compute connected components of G. For all components C', find a spanning tree of C;
NT¢ is the set of all the non-tree edges of C'.

3. while there are more than one big component do

(a) Group the big components into pairs.

(b) For all pairs (C, C'/) do in parallel: pick uv € NT¢ and wz € NT.s and perform
an exchange on (u,v,w,z). Set NTp := NTg U NTp — {uv, wz} U {uw}, where
C=Ccul —{uw,we}VU {uw,ve}.

4. Suppose the resulting graph G' is still disconnected. Let € be the big component, and
C1,...,C)p be the small components. Let (uy,v1),..., (ug,vq) be the edges in NT,..
(Comment: The claim below shows that ¢ > p.)

Pick an edge, say (w;, z;), from C; and perform simultaneous exchanges on (u;, v;, w;, ;)
fori=1,...,p.

5. Output the resulting graph G*.

Algorithm 1: Computing a connected realization.

Theorem 3.1 Algorithm 1 computes a connected realization of a connected degree sequence

d=(dy,...,dy,) in O(logn) time using O(n+ m) CRCW PRAM processors.




Proof: Observe that all the edges in NT¢ are non-bridges in the component C. In Step 3(b),
out of the two possible edges uw and vz, we include uw in NTp (ve merges C' and C’ into one
component). Repeated applications of Lemma 3.2 shows that G' is a realization of d. If G is
disconnected, it has exactly one big component. The following claim shows that p simultaneous
exchanges can be performed in Step 4.

Claim. ¢ > p.

Let n' and m’ denote the number of vertices and edges in C’l7 and n; and m; denote the number
vertices and edges in C;. Lemma 3.1 implies m; = n; — 1 and |NTC/| =m —n' +1. Since d
satisfies Equation 1, the total number of edges m’ + P, miis at least n — 1. The claim follows
by observing that n' + SP | n; equals n, the total number of vertices. Repeated application of
Lemma 3.2 again shows that G* is a connected realization of d.

The algorithm of [1] computes G in O(logn) time using O(n+m) CRCW PRAM processors.
The while loop in Step 3 is iterated for at most O(logn) times and each iteration takes constant
time using O(m) processors. The remaining steps can be done within these resource bounds
using standard PRAM algorithms [10]. 1

4 2-Vertex-Connected Degree Sequences

Throughout this section, d denotes a 2-vertex-connected degree sequence. With k = 2, condi-
tion (ii) of Theorem 2.4 becomes d; > 2 for all ¢, and condition (iii) is

m—dy >n—2. (2)

Let G be any realization of d. Based on the results of Section 3 we may assume that G is
connected. A block (also called a 2-connected component) of G is a maximal 2-vertex-connected
subgraph of G. Two blocks are adjacent if they share a vertex. (It is well known that any two
blocks can have at most one common vertex and that the common vertex is a cutvertex in G.)
The nodes of the so-called block-cutverter tree are the blocks and cutvertices of GG, and the edges
of T are of the form (B,v) where B is a block and v € B is a cutvertex. A block B" is said to
be on the B-B' path if the B-B’ path in T passes through B".

For X C V, G[X] denotes the subgraph of G induced by X. The union of two graphs H
and H' is denoted by HU H'; H and H' may have common vertices, but they will always be
edge-disjoint in this paper.

The intuition behind obtaining a 2-connected realization G* of d is to merge all blocks of G
into a single block by performing appropriate exchanges. The following two lemmas form the
basis of our algorithm. Due to space considerations, the proofs of the lemmas are left to the
final version of the paper.

Lemma 4.1 Let B and B' be adjacent blocks with common vertex z. Suppose B — = contains a
cycle and let uv be a non-bridge in B — z. Let wa be an edge in B such that (u,v,w, ) is an
exchange sequence. Finally, let G be obtained by performing an exchange on (u,v,w,z). Then:

1. G is connected.

2. GIV(B)UV(B")] is a block in G.



Lemma 4.2 Let B and B’ be nonadjacent blocks, and let (u,v,w,z) be an erchange sequence
where u,v € B and w,z € B'. Define C to be the union of all blocks (including B and B/) on
the B-B' path. Let G be obtained by performing an exchange on (u,v,w,z). Then:

1. G is connected.

2. G[V(C)] is a block in G.

Our algorithm to compute the desired realization G* consists of two phases. In the first
phase we compute a realization G’ that has at most one cutvertex. If G has exactly two blocks,
we take G = G and go to the second phase.

Phase 1. Compute the block-cutvertex tree T, root it at any non-leaf, and label its leaves
from left to right as By, B, ..., B,. Group the leaves into pairs (B;, Bi1,), 1 = 1,...,q, where
g = p/2. A pair (B, B') is called active if B and B' are nonadjacent. For all active pairs (B, B)
do in parallel: select wv € B and wz € B', and perform an exchange on (u,v,w, z). Denote the
resulting graph by G

Lemma 4.3 G realizes d and has at most one cutverter.

Proof: First assume that pis even. Every block B; has at least three vertices, since Bj is a leaf
and d; > 2 for all ¢. Set Gy = G and let GG; be obtained from G,_; by performing an exchange
on (u,v,w,z), where (u,v,w,z) is as chosen by the algorithm for the active pair (B;, Bjyq).
Lemma 4.2 shows that G;[V(C)] is a block in G;, where C' is the union of all blocks on the
B;~B;,, path in the block-cutvertex tree of G;_;. Because T is rooted at a non-leaf, it follows
that G = G, has at most one cutvertex.

If pis odd, we take ¢ = |p/2]| and group the leaves of T into pairs (B;, Bi14+1) and then
perform the exchanges as above. ]

Phase 2. Let z be the cutvertex of in G'. Define H = G' — z and let ¢ = (c1y...,€n-1) be
the degree sequence of H. Using Algorithm 1 compute a connected realization H™ of ¢. Then
G* = H* U {z}, where uz € G* iff uz € G".

Lemma 4.4 G* is a 2-vertex-connected realization of d.

Proof: We claim that ¢ is a connected degree sequence. By definition, c¢ is realizable. Since
d satisfies Equation 2, it follows that ¢ satisfies Condition (ii) of Theorem 2.3. This proves the
claim. Recall that in Algorithm 1 big components are merged first and then the small compo-
nents are all merged with the remaining big component. This fact combined with Lemma 4.1
proves that G* is a 2-vertex-connected realization of d. ]

We summarize the main result.

Theorem 4.1 A 2-vertez-connected realization of d can be computed in O(logn) (deterministic)

time using O(n + m) CRCW PRAM processors.



Proof: The complexity of our algorithm is dominated by two factors: the construction of the
block-cutvertex tree and the computation of H*. Using standard PRAM algorithms [10], the
former can be done within the resource bounds stated in the theorem; the complexity of the
latter follows from Theorem 3.1. |

5 Cactus Representation

Given a connected graph G = (V, F), a cut (X, X) is a partition of the vertices into two nonempty
sets X and X. An edge uv belongs to the cut (X, X) if one of « and v is in X and the other in X.
The value of a cut is the number of edges that belong to it. The edge-connectivity of G, denoted
by A(G), is the minimum number of edges whose removal disconnects G, or equivalently, A(G)
is defined to be the minimum value of a cut. If there are weights on the edges, then the value
of a cut is the total weight of edges that belong to it. A cut whose value equals A(G) is called a
connectivity cut.

A graph G is called a cactus graph if any two cycles can have at most one vertex in common.
The edges of a cactus graph can be partitioned into cycle-edges (edges that lie on cycles) and
tree-edges.

Let G = (V,E) be a cactus graph with edge-weights w(e) as follows: w(e) = 3 if ¢ is a
cycle-edge, and w(e) = A if e is a tree-edge. Let w and v be two vertices in G. By merglng U
and v, we obtain a new graph G’ = (V', E') with edge-weights w’(e) as follows. V' =V — v;
E =E—{vw:vw € E}YU{uw : w # uand vw € E} w' (uw) = w(uw)—l—w(vw) and
w'(€) = w(e) for all other edges e. It is easy to see that G is also a cactus, and that w'(e) = 2
if ¢ is a cycle-edge, and w'(e) = X if € is a tree-edge.

Dinits, Karzanov and Lomosonov [6] derived the compact and elegant cactus representation
H = H(G) of a graph G = (V, E). We give a brief description of H; more details can be found
n [13, 16, 17]. H is an edge-weighted cactus graph of O(n) nodes and edges. Every vertex
in G maps to exactly one node in H and any node in H corresponds to a subset (possibly
empty) of vertices from G. A cut (S,S) in H induces a cut (X, X) in G, where X consists of
all vertices from G that are mapped into nodes in S. The edge-connectivity of H is also A(G).
Each connectivity cut in H induces a connectivity cut in G, and each connectivity cut in G
corresponds to one or more connectivity cuts in ‘H. Every cycle-edge of H is given a weight %
and every tree-edge is given a weight A. The connectivity cuts in ‘H are of exactly two types:
(i) a cut obtained by removing a tree-edge, and (i) a cut obtained by removing any pair of
cycle-edges that lie on the same cycle.

6 k-Edge-Connected Degree Sequences

In this section d is a k-edge-connected degree sequence (k > 2). Hence d; > k for all 7.
Starting with any realization G = (V, E') of d, we show how to compute a k-edge-connected
realization. Based on the results from Section 3, we may assume that G is connected. We use
an incremental approach. Assume inductively that G is (k —1)-edge connected. We may assume
that G is not k-edge connected.
For U C V, let d(U) denote the ‘degree’ of U, i.e., d(U) = [{uv : u € U,v € U}|, where
U=V -U. Uis a critical set if d(U) <k — 1 (in fact d(U) = k — 1 because G is (k — 1)-edge



connected); U is an eztreme set if (1) U is critical and (2) no proper subset of U is critical.
Observe that singleton sets are not extreme (as d; > k) and that there is at least one extreme
set (as G is not k-edge connected). A straightforward observation is that any two extreme sets
must be disjoint, i.e., W C U for all extreme sets U and W.

The intuition behind obtaining the desired realization of d is to destroy all critical sets
without creating any new ones. Suppose U is an extreme set in G and let ua be an edge such
that v € U and z € U. Since d, > k and d(U) < k — 1, there exists a vertex v € U such that
uv € G, vz ¢ G. Similarly there exists a vertex w € U such that wz € G, uw ¢ G, since d, > k
and d(U) = d(U) < k — 1. Thus (u,v,w,z) is an exchange sequence. Let G be obtained from G
by performing an exchange on (u, v, w,z).

Lemma 6.1 ([7])

1. G is a realization of d and U is not critical in G.

2. Every critical set in G is also a critical set in G.

Proof: Proof of (1) is straightforward. Denote the degree of X in G by d(X). To get a
contradiction, assume that (X, X) is critical in G but not in G. So d(X) < k —1 and d(X) > k.
It follows that both u, w are in one side of the cut (X, X) and both v, z are in the other side;
say u,w € X and v,2 € X. Put p = d(UNX, UOY) ¢=dUnX,UnX), r=d(UnX,UNX),
where d(P,Q) denotes the number of edges in G with one endvertex in P and the other in Q.
Then r > 1 since ux € G weUNX, and z € UNX. This fact combined with d( J=p+q+r
implies p+ ¢ < k — 2. We COIlSldeI’ the case p < |(k — 2)/2]; the proof for the other case,
namely ¢ < |(k —2)/2], is similar. The following claim implies that U is not extreme in G, a
contradiction.

Claim. dUNX)<k—-1lord(UNX)<k-1

Put s = |(UNX,U)] and t = [(UN X,U)|, where |(P,Q)| denotes the number of edges in G
with one endvertex in P and the other in Q. Then kE—12>d(U)=s+t, implying that either
(i) s < |(k=1)/2] or (ii) t < [(k—=1)/2]. If (i) holds, then d(UNX) =p+1+s< k-1
becatse dUNX)=|(UNnX,UNX)|+ (UnNX, U)|, and |(UNX,UNX)| = p+ 1; the second
equality follows from the fact that uv ¢ G uwv € G. Similarly we can prove d(U N X) <k-1if
(ii) holds. 1

6.1 The Algorithm

Our algorithm to compute a k-edge-connected realization of d consists of several phases, and
each phase has 4 steps.

Let S be the set of extreme sets in G. Define the extreme sets graph G as follows. V(G) =8
and two vertices U and W of G are adjacent iff they are ‘adjacent’ in G, i.e., iff there is an edge
in G that joins a vertex in U to a vertex in W.

Step 1. Let M be a maximal matching in G. For all edges (U, W) € M do in parallel: Let ux
be an edge in G such that v € U and o € W select vertices v and w such that v e U, w € W,
and (u, v, w, ) is an exchange sequence; perform an exchange on (u,v,w, ).

The resulting graph is denoted by G'. Let 8’ = {W € 8 : W is extreme in G’ }.



Lemma 6.2 G realizes d. Further, no two extreme sets of S’ are adjacent.

Proof: Repeated applications of Lemma 6.1 shows that G’ realizes d. The second part of the
lemma follows from the fact that M is a maximal matching in G. 1

We discuss Step 2 now. Suppose U € 8. Let vertex v be the smallest neighbor of U, i.e., (i)
v € U, (ii) there is an edge that joins v to a vertex in U, and (iii) v is the smallest such vertex?.
Observe that v exists. The parent of U is defined as v and U is a child of v. A vertex is called
active if it has a child. An active vertex is called big if it has at least two children.

Lemma 6.3 Let U € 8" and let v be the parent of U. Then there exist vertices u,z € U such
that wv,uz € G and va ¢ G'.

Proof: Since v is the parent of U there exists u € U such that uv € G'. The existence of the
desired vertex x follows from the facts d(U) < k — 1 and d, > k. ]

Step 2. For all big vertices v do in parallel: Let Uy,...,U, be the children of v, and u; be
any vertex in U; such that vu; € G'. Let x; be any vertex in U; such that u;x; € G and
va; & G'. Drop the edges {w;z; : 1 <@ < p}, {vy; : 1 < i < p—2}, and vuy; add the edges
{ve; 1 1< <p—1}, uyzy,, ugty, ugty, {wuirr 2 <@ < p— 2} (see Figure 3). Let G" be the
resulting graph.

Figure 3: Step 2 of the algorithm. A solid line indicates the presence of an edge and a dotted
line its absence.

Lemma 6.4 G~ realizes d.

Proof: Fix a big vertex v. Lemma 6.2 shows that the following are all exchange se-
quences: (i) (uy, 1, up,v), (i) (wi, 2 ui—1,v) for 2 <7 <p—2 and (iii) (up,zp, ug, uy). Let
Go =G, Gy,.. ., Gp a sequence of graphs such that G is obtained from Gy be performing an
exchange on (uq, 21, up, v), Gi (2 <1 < p— 2) is obtained from G,_; by performing an exchange

2Here and later, any fixed v suffices; for the sake of definiteness, we choose the smallest v according to a fixed
linear ordering of the vertices.
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on (u;, i, u;—1,v), and G, is obtained from G\,_; by performing an exchange on (up, p, ug, u1).
Lemma 6.1 proves that G), is a realization of d. Now, Lemma 6.2 implies that the parent of
an extreme set doesn’t belong to any extreme set. So no multiple edges are created when the
exchanges are performed in parallel for all big vertices. ]

Let 8" = {W € S' 1 W is extreme in G”}. Let v be an active vertex in G . Since v is not
big, it has a unique child U € 8". Let f(v) be the smallest neighbor of v in U, and g(v) be
the smallest u € U such that (f(v),u) € G' and vu ¢ G'. The friend of v, denoted by h(v), is
defined as the smallest vertex in {w : w & U,vw € G, (f(v),w) ¢ G'}. Define a new graph H as
follows. The vertices of H are the active vertices in G, and two vertices v and w are adjacent
in H iff they are mutual friends (i.e., h(v) = w and h(w) = v).

Observe that every vertex in H has degree either 0 or 1.

Step 3. For all edges vw in H, do the following step in parallel on the graph G": drop the
edges (£(v), 9(v)), vw, (F(w), g(w)), and add the edges (v, g(v)), (F(0), F(w)), (1w, g(w).

It is routine to prove that the resulting graph, denoted by G®), realizes d. Let SG) = {W e
8" W is extreme in G®)}.

Step 4. For all active vertices v in G®) such that the child of v is in @), do the following step
in parallel on the graph G(®): Perform exchange on (f(v), g(v), h(v),v).

The resulting graph is denoted by GM®. This completes the description of one phase of the

algorithm. The proof of the following lemma follows from above discussion.

Lemma 6.5 G® realizes d.

6.2 The Correctness and Complexity

Our proof of correctness and the complexity analysis of the algorithm is based on properties and
manipulations of cactus representation.

Let H = H(G) be a cactus representation of G. A node W is a leafin H if W is either
connected by a single tree-edge, or W is in a cycle and has degree exactly two. By the definition
of H it follows that extreme sets in G are precisely the leaves in H. We denote the set of leaves
of H(G) by L(G).

Recall that G is a realization of d and that A(G) = k — 1. Let U and W be two adjacent
extreme sets in G. Select an edge ux G such that u € U and x € W select vertices v and w such
that v € U, w € W, (u,v,w, ) is an exchange sequence. Obtain another realization G from G
by performing an exchange on (u,v,w,z). Call a node Y of H active if either Y € {U, W} or
(Y is on a U-W path in H and Y doesn’t lie on a cycle).

Lemma 6.6 Let S be the set of active nodes. If S = V (M), then A\(G) > k. Otherwise,
1. MG) =k —-1;
2. The graph H obtained from H by merging nodes of S is a cactus representation of G.

Proof (sketch): Consider first the case S = V(H). Then H is a path with end-nodes U and
W. So every connectivity cut in G separates U and W. Assume if possible that (X, X) is a cut
of value at most k — 1 in G. Since X is critical in G it is also critical in G by Lemma 6.1, and
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the cut (X, X) has value £k — 1 in G. Since two new edges are added between U and W, the
value of this cutin Gis 2+ %k — 1=k + 1, a contradiction. Hence /\(G') > k.

Consider now the case S # V(H). Then there exists a connectivity cut in G that doesn’t
separate the nodes in S. This cut is also a cut in G and has the same value (= k — 1) as in
G. Hence A(G) < k — 1. It follows from Lemma 6.1 that a connectivity cut in G is also a
connectivity cut in G and the cut contains both U and W in one side of the cut. The cuts in G
that separate U and W are precisely those cuts that are obtained from H by deleting tree-edges
incident on the active nodes. Hence H a cactus representation of G. |

Recall that G is the graph obtained from G in Step 1 of the algorithm. Repeated applications
of Lemma 6.6 show that |L(G")| < |L(G)| — &, where p is the number of leaves of H(G) that
are matched by the matching M in Step 1. For Steps 2—4, similar results can be proved; due to

space considerations, these results are left to the final version.

Lemma 6.7 Let the graph G® be defined as above. If G is not k-edge-connected, then
IL(GW)| < IL(G)|.

Below we summarize the main result of this section.

Theorem 6.1 A k-edge-connected realization of d can be computed in O(k10g4 n) using
O(n*5m) CRCW processors on a probabilistic PRAM.

Proof (sketch): In each phase of the algorithm, the number of leaves of the cactus reduces by
a factor of at least 2, by Lemma 6.7. Hence there are O(logn) phases. The correctness of each
phase follows from Lemma 6.5. The time and processor complexity of a phase is dominated
by two subproblems: finding the cactus representation and finding a maximal matching. Naor
and Vazirani [17] presented an RNC algorithm to compute the cactus representation and their
algorithm runs in O(log?n) using O(n*®m) CRCW processors. The algorithm of Israeli and
Shiloach [9] computes a maximal matching in deterministic O(log® n) time using O(m) CRCW
PRAM processors. ]

Observe from Theorem 6.1 that the search problem for k-edge-connected degree sequences
is in RNC for k = polylog(n). The results of Karger and Motwani [12] imply an NC algo-
rithm (though not practical) to compute the cactus representation [11]. Therefore, we have the
following.

Theorem 6.2 The problem of computing a k-edge-connected realization of d can be solved in
deterministic O(k) time using a polynomial number of processors.

7 Conclusions

We presented the first parallel algorithms to solve the degree sequence problems with connectiv-
ity requirements. An important open problem is to solve the vertex-connectivity case completely.
Our techniques for solving k-vertex-connectivity case (when k& = 2) may not generalize for arbi-
trary values of k, especially because finding k-blocks is P-complete for all k > 3 (see [14]).

Acknowledgements: Thanks to Ramesh Hariharan for his helpful comments and to Professor
Kurt Mehlhorn for his support and encouragement.
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