
MAX-PLANCK-INSTITUT
..

FUR
INFORMATIK

New On-Line Algorithms for the Page

Replication Problem

Susanne Albers and Hisashi Koga

MPI-I-94-106 February 1994

o

mPD
________ IN F 0 R M AT I K ________ _

Im Stadtwald

66123 Saarbrücken

Germany

New On-Line Algorithms for the Page

Replication Problem

Susanne Albers and Hisashi Koga

MPI-I-94-106 February 1994

N ew 011-Line Algorithms for the Page Replication Problem

Susanne Albers
Max-Planck-Institut für Informatik

Saarbrücken, Germany

Abstract

Hisashi Koga
The U niversity of Tokyo

Tokyo, Japan

The page replication problem arises in the memory management of large multiprocessor
systems. Given a network of processors, each of which has its local memory, the problem
consists of deciding which local memories should contain copies of pages of data so that a
sequence of memory accesses can be accomplished efficiently. We present new competitive
on-line algorithms for the page replication problem and concentrate on important network
topologies for which algorithms with a constant competitive factor can be given. We develop
the first optimal randomized on-line replication algorithm for trees and uniform networksj its
competitive factor is approximately 1.58. Furthermore we consider on-line replication algo
rithms for rings and present general techniques that transform large classes of c-competitive
algorithms for trees into 2c-competitive algorithms for rings. As a result we obtain a random
ized on-line algorithm for rings that is 3.16-competitive. We also derive two 4-competitive
on-line algorithms for rings which are either deterministic or memoryless. All our algorithms
improve the previously best competitive factors for the respective topologies.

1 Introduction

This paper deals with problems that arise in the memory management of large multiprocessor
systems. Such multiprocessing environments typically consist of a network of processors, each
of which has its local memory. A global shared memory is modeled by distributing the physica1
pages among the local memories. Accesses to the global memory are then accomplished by
accessing the 10ca1 memories. Suppose a processor p wants to read a memory address from page
A. HAis stored in p's local memory, then this read operation can be accomplished locally.
Otherwise, p determines a processor q holding the page and sends arequest to q. The desired
information is then transmitted from q to p, and the communication cost incurred thereby is
proportional to the distance from q to p. H p has to access page A frequently, it may be
worthwhile to move or copy A from q to p because sub se quent accesses will become cheaper.
However, transmitting an entire page incurs a high communication cost proportional to the page
size times the distance from q to p.

Ha page is writable, it is reasonable to store only one copy of the page in the entire system.
This avoids the problem ofkeeping multiple copies of the page consistent. The migration problem

is to decide in which local memory the single copy of the page should be stored so that a sequence
of memory accesses can be processed at low cost. On the other hand, if a page is read-only, it
is possible to keep several copies of the page in the system, i.e. a page may be copied from one

1

Iocal memory to another. In the replication problem we have to determine which local memories
should contain copies of the page. Finding efficient migration and replication strategies is an
important problem that has been studied from both a practical and theoretical point of view
[DF82, SD89, BS89, BFR92, W92, ABF93, CLRW93, K93]. In this paper we will study on-line
algorithms for the page replication problem. In order to analyze the performance of an on-line
algorithm we will use competitive analysis [ST85], the worst case ratio of cost incurred by an
on-line algorithm and the cost incurred by an optimal off-line algorithm.

Awerbuch et al. [ABF93] have presented a deterministic on-line replication strategy for gen
eral graphs that achieves an optimal competitive ratio of O(logn), where n is the number
processors. However, for many important topologies, this bound is not very expressive. Black
and Sleator [BS89], who have initiated the theoretical study ofthe replication problem, proposed
a 2-competitive deterministic on-line algorithm for trees and uniform networks. A uniform net
work is a complete graph in which all edges have the same length. Black and Sleator also proved
that no deterministic on-line replication algorithm can be better than 2-competitive. Recently
Koga [K93] has developed a randomized on-line replication algorithm for trees that is 1.71-
competitive for large values of the page size, thereby beating the deterministic lower bound. He
also presented a randomized 4-competititive algorithm for the case that the network topology
forms a ring. However, his algorithm uses a large amount of randomness, namely one random
number for each read operation. The competitive ratios hold against the oblivious adversary
[BBKTW94]. Bartal et al. [BFR92] have presented a randomized replication algorithm for rings
which is 2(2 + v'3)-competitive against adaptive adversaries. Using the 4-comptitive algorithm by
Koga and the 2(2 + v'3)-competitive algorithm by Bartal et al., one can construct a deterministic
replication algorithm for the ring which achieves a competitive ratio of 4·2(2 + v'3) ~ 29.86, see
[BBKTW94] for details. However, that algorithm is very complicated and not useful in practica1
applications.

In this paper we develop a number of new deterministic and randomized on-line replica
tion algorithms. We concentrate on network topologies that are important in practice and for
which on-line algorithms with a constant competitive factor can be developed. In Section 4
we present a randomized on-line replication algorithm for trees and uniform networks, called
GEOMETRIC, which is (/~l)-competitive. Here p = ~ and r is the page size factor. For
large values of r, which occur in practice, GEOMETRIC's competitiveness is approximately
e~l ~ 1.58. We also show that GEOMETRIC is optimal. Specifically, we prove that no ran

domized on-line replication algorithm can be better than (fr)-competitive. Interestingly, our
algorithm GEOMETRIC uses only one random number during an initialization phase and runs
completely deterministically thereafter. Such algorithms which use only a very little amount
of randomness are valuable from a practical standpoint because random bits are usually an
expensive resource. In Section 5 we consider replication algorithms for rings. We present a
deterministic technique that transforms a large dass of c-competitive algorithms for trees into
2c-competitive algorithms for rings. As a result we obtain a randomized (p!~l)-competitive
algorithm for rings that also uses only one random number during an initialization phase. Note
that the competitive ratio is approximately 3.16 and beats the previously best ratio of 4. We
also derive two 4-competitive algorithms for rings which are either deterministic or memoryless.
Our 4-competitive deterministic algorithm greatly improves the competitive factor of 29.86 men-

2

tioned above. Furthermore,our algorithm is very simple, as opposed to the 29.86-competitive
algorithm. Finally we present a randomized version of our deterministic technique for construct
ing ring algorithms and prove that this randomized variant achieves the same performance. All
our randomized competitive factors hold against the oblivious adversary.

2 Problem statement and competitive analysis

Formally, the page replication problem can be described as follows. We are given an undirected
graph G. Each node in G corresponds to a processor and the edges represent the interconnec
tion network. Associated with each edge is a length that is equal to the distance between the
connected processors. We assume that the edge lengths satisfy the triangle inequality. In the
page replication problem we generally concentrate on one particular page. We say that anode
v has the page if the page is contained in v's local memory. Arequest at anode v occurs if v
wants to read an address from the page. The request can be satisfied at zero cost if v has the
page. Otherwise the request is served by accessing anode w holding the page and the incurred
cost equals the distance from v to w. Immediately after the request, the page may be replicated
into v's local memory. The cost incurred by this replication is r times the distance from v to
w. Here r denotes the page size factor. In practical applications, r is a large value, usually
several hundred or thousand. (The page may only be replicated after arequest because it is
impossible to delay the service of a memory access while the entire page is copied.) We study
the page replication problem under the assumption that anode having the page never drops it.
A page replication algorithm is usually presented with an entire sequence of requests that must
be served with low total cost. A page replication algorithm is on-Une if it serves every request
without knowledge of any future requests.

We analyze the performance of on-line page replication algorithms using competitive analysis
[ST85]. In a competitive analysis, the cost incurred by an on-line algorithm is compared to the
cost incurred by an optimal off-line algorithm. An optimal off-line algorithm knows the entire
request sequence in advance and can serve it with mjnjmum cost. Let CA(O') and COPT(O') be
the cost of the on-line algorithm A and the optimal off-line algorithm OPT on request sequence
0'. Usuallyan on-line algorithm Ais called c-competitive if there e:Dsts an constant a such that
for every request sequence

However, this definition is not reasonable in the context of page replication because an on-line
replication algorithm can be O-competitive by replicating the page initially to all processors and
assigning that cost to the constant a. Therefore, we call an on-line replication algorithm A
c-competitive if

CA(O') ::; C· COPT(O')

for all request sequences 0'. HAis a randomized algorithm, then CA (0') must be replaced by the
expected cost incurred by A, where the expectation is taken over the random choices made by A.
In this paper we evaluate randomized on-line algorithms only against the oblivio-us adversary,
see [BBKTW94]. The competitive factor of an on-line algorithm Ais the infimum of all c such
that A is c-competitive.

3

3 Basic definitions and techniques

A substantial part of this paper deals with on-line replication algorithms for trees. Even when
considering uniform networks and rings, we will reduce the algorithms and their analyses to
the case that the underlying topology forms a tree. For this reason we introduce some basic
definitions for trees.

Consider an arbitrary tree. The root of the tree is generally denoted by s. We assume that
initially, only s has the page. Consider an undirected edge e = {v, w} in the tree. The node in
{v, w} that is farther away from the root is called the child node of e. The length of eis denoted
byl(e).

In the following we will always assume that if an algorithm (on-line or off-line) replicates
the page from anode v to anode w, then the page is also replicated to all nodes on the path
from v to w. This does not incur extra cost. Thus, the nodes with the page always form a
connected component of the given tree. Note that if anode v does not have the page, then the
closest node w with the page lies on the path from v to the root, and all paths from v to a
node with the page pass through w. Therefore, we may assume without loss of generality that
a replication algorithm always serves requests at anode not holding the page by accessing the
closest node with the page. This cannot increase the total cost incurred in serving the whole
request sequence.

We present a technique that we will frequently use to analyze on-line replication algorithms
for trees. Let T be a tree and u be arequest sequence for T. Let OPT be the optimal off-line
replication algorithm. Weusually analyze an on-line replication algorithm A by partitioning the
cost that is incurred by A and by OPT into parts that are incurred by each edge of the tree.
Suppose an algorithm serves arequest at anode v. Then an edge e incurs a cost equal to the
length of e if e belongs to the path from v to the closest node with the page. If e does not belong
to that path, then e incurs a cost of zero. An edge also incurs the cost of a replication across
it. Given an arbitrary tree T and arequest sequence u for T, let CA(u, e) denote the cost that
is incurred by edge e when A serves u. Analogously, let COPT(u,e) be the cost that is incurred
by e when OPT serves u. (If A is a randomized algorithm, then CA (u, e) is the expected cost
incurred by e, where the expectation is taken over the random choices made by A.) We generally
evaluate the performance of an on-line algorithm A by comparing CA(U, e) to COPT(U, e) for all
edges e of the tree.

In order to analyze CA(U, e), we use some notation. Let u = u(1), u(2), ... , u(m) be arequest
sequence oflength m and let u(t), 1 ~ t ~ m, be the request at time t. Suppose u(t) is arequest
at node v. We set

aO'(e, u(t)) = 1

if e belongs to the path from v to the root. Otherwise we set

aO'(e, u(t)) = O.

If aO'(e, u(t)) = 1, we say that u(t) causes an access at edge e. Let
m

aO'(e) = L aO'(e, u(t)),
t=l

i.e. aO' (e) is the number of requests that cause an access at edge e. The following simple lemma
is crucial in our analyses.

4

Lemma 1 Let A be an on-line replication algorithm that, given an arbitrary tree T and arequest

sequence U for T, satisfies
CA (u, e) :::; c . min { alT (e), r} . 1 (e)

for all edges e. Then the algorithm A is c-competitive. (Again, if A is a randomized algorithm,

then CA(U, e) is the ezpected cost incurred by e.)

Proof: We prove that for any edge e, CA(u,e):::; c· COPT(u,e). This implies the lemma.

If a(T(e) < r, then OPT does not replicate the page across e and e incurs a cost of a(T(e)l(e).

Hence
CA (u, e) :::; c . min { a(T' r } 1 (e) = c . alT (e) . 1 (e) = c . CO PT (u, e).

On the other band, if a(T(e) 2: r, then OPT replicates the page across e, and e incurs a cost of
rl(e). Thus

CA(u,e):::; c ·min{a(T,r}l(e) = c· r ·l(e) = c· COPT(u,e). 0

4 An optimal algorithm for trees and uniform networks

First we will describe and analyze a randomized on-line algorithm for trees. This algorithm can
be applied to uniform networks, too. Then we prove that the competitive factor of our algorithm
is optimal for all values of r. Throughout this section let p = tf-.
Algorithm GEOMETRIe (for trees): The algorithm first chooses a random number from
the set {l, 2, ... , r}. Specifically, the number i is chosen with probability Pi = a . pi-I, where
a = :.. __ \. While processing the request sequence, the algorithm maintains a count on each
edge of the tree. Initially, all counts are set to O. If there is arequest at anode v that does
not have the page, then all counts along the path from v to the closest node with the page are
incremented by 1. When a count reaches the value of the randomly chosen number, the page is
replicated to the child node of the corresponding edge.

Before we analyze the performance of GEOMETRlC, we mention a few observations and
remarks. The algorithm is called GEOMETRlC because Pi+1/pi = P is constant for all i =
l,2, ... ,r-1. Notethat

Suppose that GEOMETRlC pro ces ses arequest sequence u. It is easy to prove by induction
on the number of requests processed so far that the counts on a path from the root to anode v

are monotonically non-increasing. Furthermore, after each request' anode has the page if and
only if it is the child node of an edge whose count is equal to the value of the randomly chosen
number.

Theorem 1 FOT any tree, the algorithm GEOMETRIC is (l~l) - competitive.

Note that (l~l) goes to e~l :::::: 1.58 as r tends to infinity. Furthermore, GEOMETRlC uses
only one random number during an initialization phase and runs completely deterministically
thereafter .

5

The proof of the theorem follows from Lemma 1 and Lemma 2 below. For a given tree T
and an arbitrary request sequence u on T, let E [CG(u, e)] denote the expected cost incurred by
edge e when GEOMETRIC serves u.

Lemma 2 Given an arbitrary tree T and request sequence u Jor T, the algorithm GEOMETRIC
satisfies

Jor all edges e oJ T.

p'"
E[CG(u,e)]::; (--) ·min{aq(e),r} ·l(e)

p'" -1

Proof: Consider an arbitrary tree T and arequest sequence u for T. Let e be an edge of the
tree. Fuxthermore, let k = aq (e) and u(t1), u(t2), ... , u(tle) be the requests that cause an access
at the edge e. Note that the algorithm GEOMETRIC increases the count of e exactlyat the

requests U(tl), U(t2),"" u(tle), provided that the page has not been replicated across e so far.

First, assume that k > r. Since Ei=l Pi = 1, GEOMETRIC has replicated the page across e
before request u(t.,.+1)' Thus the edge e incurs the same cost as if we had k = r. For this reason
it suffices to consider the case that k satisfies 1 ::; k ::; r and show

E[CG(u, e)] ::; c· k ·l(e), (1)

where l~l' This proves the lemma.

So suppose we have 1 ::; k ::; r. The algorithm GEOMETRIC first chooses a random number
i from the set {1, 2, ... , r}. H i satisfies i ::; k, the edge e incurs a cost of r + i. Otherwise e
incurs a cost of k. Thus

Ie .,.

E[CG(u,e)] = l(e)(~)r+i)Pi+ L kpi)
i=l i=le+l

Ie Ie .,.

l(e)(L rapi-l + L iapi-l + L ka/-1)

i=l i=l i=le+l

r(ple - 1) kple+l - (k + l)ple + 1 k(p'" - 1) - k(ple - 1)
al(e)(1 + (1)2 + 1)' p- p- p-

We have p - 1 = ~. Thus

E[CG(u, e)] al(e) (r(/ -1) + kple _ r(ple -1) + k(p'" _ pie))
p-1

= al(e) (kp"')
p-1

p'"
--.k·l(e)
p'" -1

and this proves inequality (1). 0

The algorithm GEOMETRIC is easily applied to uniform networks. Consider an arbitrary
uniform network and let s be the node that has the page initially. Since all edges in the graph
have the same length, we may assume without loss of generality that a replication algorithm

6

(on-line or off-line) serves requests and replicates the page only along edges {s,v}. Hence the
network can be reduced to a tree by neglecting the edges {v, w} with s =F v, s =F w. Run on this
tree, the algorithm GEOMETRlC is (l~I)-competitive.

We now prove that GEOMETRlC's competitive factor is optimal for all values of r.

Theorem 2 Let A be a randomized on-line replication algorithm. Then A cannot be better than
(l~ I) -competitive, even on a graph consisting of two nodes.

Proof of Theorem 2: Let s and t be two nodes that connected by an edge of length 1. We
assume that initially, only node s has the page. We will construct arequest sequence U consisting
ofrequests at node t such that the expected cost incurred by Ais at least l~1 times the optimal
off-line cost.

For i = 1,2, ... , let qi be the probability that A replicates the pages from s to t after exactly
i requests, given arequest sequence that consists only of requests at node t. In the following we
compare the algorithm A to the algorithm GEOMETRlC. Let E[CA(U)] and E[CG(u)] denote
the expected cost incurred by A and GEOMETRlC on arequest sequence u. Furthermore, for
i = 1,2, ... , r, let Pi = Q • pi-I. We consider two cases.

Case 1: There exists an I, where 1 ~ 1 ~ r, such that L:~=I qi ;::: L:~=I Pi.
Let k be the smallest number satisfying the above inequality, i.e. L:f=1 qi ;::: L:f=1 Pi and L:f=1 qi <
L:f=1 Pi for all j with 1 ~ j < k. Let U be the request sequence that consists of k requests at
node t. We show that

(2)

Calculating E[CG(u)] in the same way as in the proof of Lemma 2, inequality (2) implies
E[CA(U)] ;::: E[CG(u)] = l~1 . k. Hence A cannot be better than (l~I)-competitive because
the optimal off-line cost on U equals k. We have

k k k

E[CA(u)] = I)r + i)qi + L kqi = L(r + i)qi + k(l - L qi)
i=1 i~k+1 i=1 i=1

k k k

E[CG(u)] = L(r + i)pi + L kpi = L(r + i)pi + k(l- LPi).
i=1 i=1 i=1

Hence

k k

E[CA(U)] - E[CG(u)] = L(r + i)(qi - Pi) + k L(Pi - qd
i=1 i=1

k k

= Li(qi - Pi) + (r - k) L(qi - pd
i=1 i=1

Since L:f=1 qi ;::: L:f=1 Pi and r - k ;::: 0, we obtain

k k k k

E[CA(u)] - E[CG(u)] ;::: L i(qi - Pi) = L(L qi - LPi)'
i=1 i=1 j=i j=i

7

For i = 2,3, ... , k we have L:;-:i qi < L:;-:i Pi and hence

k k k k i-I i-I k k

Lqi - LPi > Lqi - LPi + Lqi - LPi = Lqi - LPi.
j=i j=i j=i j=i j=1 j=1 j=1 j=1

We conclude

k k k k k k

E[CA(U)) - E[CG(u)) 2: L(Lqi - LPi) 2: L(Lqi - LPi) 2: 0
i=1 j=i j=i i=1 j=1 j=1

and inequality (2) is proved.

Case 2: For all k = 1,2, ... , r, the inequality L:7=1 qi < L:7=1 Pi is satisfied.
Let U be the request sequence that consists of 2r requests at node t. Let A' be the on-UnE

algorithm with qi = qi, for i = 1,2, ... , r - 1, and q~ = L:i~r qi. Then

~ r-l r-l

E[CA(U)) = L(r + i)qi + L 2rqi 2: L(r + i)qi + 2rq; = L(r + i)qi + 2rq; = E[CA'(U)).
i=1 i>2r i=1 i=l

Since L:i=1 qi = L:i=l Pi = 1 and L:t=l qi < L:t=1 Pi for all i with 1 $ j < r, Case 1 immediat eil
implies

pr
E[CA(U)) 2: E[CA'(U)) 2: E[CG(u)) = -;:----lr ,

p -

and A cannot be better than (/~1)-competitive because the optimal off-Une cost equals r. 0

5 Algorithms for the ring

In this section we assume that the givennet of processors forms a ring. We will present techniques
that transforms a large class of c-competitive algorithms for trees into 2c-competitive algorithm~
for rings.

We assume that initially, only one node of the ring, say s, has the page. Let n be the number
of no des in the ring and let VI, V2, ... ,Vn be the nodes if we scan the ring in clockwise directiOD
starting from s, i.e. VI = s. For i = 1,2, ... , n, let ei = {Vi, Vi+!} be the undirected edge from
Vi to Vi+!. Naturally, Vn +l equals VI. Let z and y be any two points on the ring; z and y need
not necessarily be processor nodes. We denote by (z, y) the arc of the ring that is obtained jj
we start in z and go to y in clockwise direction. Let 1 (z, y) be the length of the are (z, y).

Algoritlun RING: Let P, P f; s, be the point on the ring satisfying I(s, P) = l(P, s), Le. P
is the point "opposite" to s. The algorithm first cuts the ring at P. It regards the resulting
structure as a tree T with root s = VI. The arc (s, P) represents one branch of the tree and
the are (P, s) represents another branch of the tree (see Figure 1). We assume that the point
P becomes part of the are (s, P). This is significant if P coincides with one of the nodes Vi.

The algorithm RING then uses an on-line replication algorithm A for trees in order to serve a
request sequence u. That is, RING assumes that U is arequest sequence for T and serves the
request sequence using the tree algorithm A.

8

p p

Figure 1: A cut of the ring

Theorem 3 Let A be an on-line replication algorithm that, given an arbitrary tree T and a
request sequence u for T, satisfies

(3)

for all edges e of the tree. (CA(U, e) is the expected cost incurred by e if A is a randomized
algorithm.) If the algorithm RING uses A as tree algorithm, then the resulting algorithm is
2c-competitive.

Before we prove this theorem, we mention some important implications. Lemma 2 immedi
ately implies the following result.

Corollary 1 If RING uses the algorithm GEOMETRIC as tree algorithm, then the resulting
algorithm is c-competitive, where c = p!e:.1 •

We observe that c goes to e~l ~ 3.16 as r tends to infinity. Also note that if RING uses the
GEOMETRIC algorithm, then only one random number is used during an initialization phase.
While processing arequests sequence, the algorithm runs completely deterministically. Next we

consider a deterministic replication algorithm for trees, called DETERMINISTIC_COUNT. This
algorithm was proposed by Black and Sleator [BS89] who showed that it achieves an optimal

competitive factor of 2.

Algorithm DETERMINISTIC_COUNT: The algorithm maintains a count on each edge of

the tree. Initially, all counts are set to zero. While arequest sequence is processed, the counts

are incremented in the same way as by the algorithm GEOMETRlC. However DETERMINIS
TIC_COUNT does not choose a random number in order to determine when a replication should

occur. Rather it replicates the page to the child node of an edge when the corresponding count

reaches r.

It is easy to see that, given an arbitrary tree T and arequest sequence u,

for all edges e. Here CDc(u,e) denotes the cost that is incurred byedge e when DETERMIN
ISTIC_COUNT serves u.

Corollary 2 If the algorithm RING uses DETERMINISTIC_COUNT as tree algorithm, then
the resulting algorithm is 4-competitive.

9

We remark that the combination of RING and DETERMINISTIC_COUNT runs completely
deterministically. Another interesting on-line replication algorithm for trees was presented by
Koga [K93].

Algoritlun COINFLIP: If there is arequest at a. node with the page, then the algorithm
performs no action. If there is arequest at anode v without the page, the algorithm serves the
request by accessing the c10sest node u with the page. Then with probability ;, the algorithm
replicates the page from u to v.

Theorem 3 and Lemma 3 below imply the following result.

Corollary 3 If RING uses the algorithm COINFLIP as tree algorithm, then the resulting algo
rithm is -I -competitive.

The combination of RING and COINFLIP is memoryless [RS89], Le. it does not need any
memory (for instance for counts) in order to determine when a replication should take place.

Lemma 3 Let T be an arbitrary tree and u be arbitrary request sequence for T. For an edge e

in T, let E[CcF(u,e)] be the ezpected cost incurred by e when COINFLIP serues u. Then

E[CCF(u,e)] ~ 2 ·min{acr(e),r} ·l(e)

for all edges e of T.

Proof: Given a tree T and arequest sequence u, consider an arbitrary edge e ofT. Each time
there is arequest u(t) with acr(e, t) = 1, the algorithm COINFLIP replicates the page across e
with probability ;, provided the replication across e has not occurred so far. Let k = acr(e) and
let u(t1)' u(t2), ... , u(t1c) be the requests which cause an access at edge e. The probability that
the replication of the page across e occurs after exactly i of these requests equals

(1- ~)i-l . ~
r . r

With probability (1 - ;)1c, no replication occurs. We have

1c 1. 1 1
E[CCF(u,e)] = l(e)(L:(r+i)(1--t-1-+k(1--)1c)

i=l r r r
1c 1c

= l(e)(L:(1- ~)i-l + ~ L:i(1- ~)i-l + k(1- ~)1c)
i=l r r i=l r r

_ I 1- (1- ;)1c ~ k(1- ;)1c+l - (k + 1)(1- ;)1c + 1 k 1- ~ 1c
- (e)(. ,. 1\ +r (1-(1-:))2 + (r))

= 1(e)(r(2 + k(1- ~)1c+1 - (k + 2)(1- ~)1c) + k(1- ~)1c)
r r r
1 1c k 1 1c 1 1c 1 1c = 1(e)(r(2+k(1--) --(1--) -(k+2)(1--))+k(1--))
r r r r r
1

1(e)(r(2- 2(1- _)1c).
r

10

Thus

If k = aO' (e) ;::: r, then

1
E[CcF(u,e)] = 21(e)r(1- (1- _)k).

r

E[CcF(u,e)] = 21(e)r(1- (1- !y)::; 21(e)r = 2min{aO'(e),r}1(e),
r

and the lemma is proved.

Suppose k < r. We show that
1 k k

1-(1--) ::;-.
r r

(4)

For z E IR, let l1(z) = 1- (1 - :)~ and 12(z) = ;. Note that l1(z) is an exponential function
whereas 12(Z) is a line with slope ~. Hence 11(Z) and 12(Z) can intersect in at most two points.
We have 11(0) = 12(0) and 11(1) = 12(1). Since l1(z) is bounded from above by 1 and 12(Z)
is an unbounded function, we conclude that 11 (z) ::; 12 (z) or all z ;::: 1 and inequality (4) must
hold. Hence

E[CCF(u, e)] = 21(e)r(1 - (1 - !)k) ::; 21(e)r~ = 21(e)k = 2 min{ aO'(e), r} ·l(e).
r r

This concludes the proof of the lemma. 0

Finally we present a randomized variant of the algorithm RING.

Algorithm RING(RANDOM): The algorithm works in the same as the algorithm RING.
However, instead of cutting the ring at the point opposite to s, the algorithm RING(RANDOM)
chooses a point P uniformlyat random on the ring and cuts the ring at that point P.

We can show a statement analogous to Theorem 3.

Theorem 4 Let A be an on-line replication algorithm that, given an arbitrary tree T and a

request sequence U for T, satisfies

(5)

lor all edges e of the tree. (CA (u, e) is the e:z:pected cost incurred by e if A is a randomized

algorithm.) If the algorithm RING(RANDOM) uses A as tree algorithm, then the resulting

algorithm is 2c-competitive.

Theorem 4 implies that statements analogous to Corollaries 1 - 3 hold. Note, however, that a
combination ofRING(RANDOM) and DETERMINISTIC_COUNT is not a purely deterministic
algorithm.

It remains to prove the two main theorems.

Proof of Theorem 3: Let U = u(1),u(2), ... ,u(m) be arequest sequence for the ring. We
start with some observations on how OPT serves u. Consider the state of the ring after OPT
has served u. Let Va be the node farthest from s to which OPT has replicated the page in
clockwise direction. Similarly, let Vb be the node farthest from s to which OPT has replicated
the page in counter-clockwise direction. Figure 2(a) illustrates this situation.

11

s s

Vb Vb

Va Va

Q

(a) (b)

Figure 2: The state of the ring when OPT serves u.

We mayassume without 10ss of generality that OPT replicates the page from s to Va and
from s to Vb at the beginning of the request sequence, before any requests are served. This does
not incur a higher cost as if the replication is done while requests are processed. Any re quest at
anode that belongs to (s, Va) or (Vb, S) can then be served at zero cost. Let Q be the point on
(va, Vb) which satisfies l(Va, Q) = l(Q, Vb), see Figure 2(b). Any request at anode Vi that belongs
to (va, Q) is served by accessing Va and the incurred cost equals I (Va, Vi). Any request at anode
Vi that belongs to (Q, Vb) is served by accessing Vb, and the incurred cost equals l(Vi, Vb). Let
I = {1, 2, ... , n}. Let u(td, u(t2), ... , u(t1c) be the requests in u which re quest anode that does
not belong to (s, va) or (Vb, S). For i = 1,2, ... , k, let vll(tj) be the node requested by u(tj). The
cost incurred by OPT in serving u equals

1c

COPT(u) = rl(s, va) + rl(Vb's) + Lmin{l(va,VllCtj»),I(vll(tj),Vb)}'
j=1

Note that also OPT implicitely uses a tree in order to serve the requests sequence. This tree is
obtained if the ring is cut at the point Q. Let C R (u) be the cost incurred by RING in serving
u. In the following we show that

CR(U) ~ 2c· COPT(U). (6)

This implies the theorem.

For the analysis of CR(u) we need some more notation. Let T be the tree that is obtained
if the ring is cut at point P. Let i E {1, 2, ... , n} and t E {1, 2, ... , m} be arbitrary. We denote

by vll(t) the node requested at time t. We set

acr (ei, t) = 1

if in the tree T, ei is on the path from vll(t) to the root. Otherwise we set acr (ei, t) = O. H
acr(ei,t) = 1, we say that u(t) causes an access at theedge ei in the tree T. We set

m

acr (ei) = L acr (ei, t).
t=1

By inequality (3), RING incurs a total cost of

n

CR(U) = Lcmin{acr(ei),r}l(ei).
j=1

12

s

p

(a)

s

P

(b)

Figure 3: Point P belongs to (s, Va) or (Vb, s)

In the following we investigate two eases. First we will eonsider the ease that P belongs either to

(s, va) or to (Vb, S). Then we will study the ease that P belongs neither to (s, Va) nor to (Vb, s).

Case 1: Suppose that P belongs either to (s,va) or to (Vb,S), see Figure 3.

Then

and

L:l(ei)::; 2max{l(s,va),I(Vb,S)}::; 2(I(s,va)+I(Vb'S))
ieI

CR(O') < L: e mini aO'(ei), r }l(ei)
iEI

< erL:l(ei)
ieI

< 2er(l(s, va) + I(Vb'S))

< 2e· COPT(O').

Inequality (6) is proved.

s

Figure 4: The loeation of w

Case 2: Now suppose that P belongs neither to (s, va) nor to (Vb, s).
We only eonsider the case that l(S, Va) ~ l(Vb, s). The tase l(Vb, s) ~ l(S, Va) is symmetrie. Let

w be the point on the are (P,s) such that l(w,s) = l(s,va), see Figure 4. We may assume
without loss of generality that w eoincides with a proeessor node. Otherwise we can replaee

w by dummy proeessor node at which no requests oeeur. If ej = {Vj, Vj+1} is the edge w
originally belonged to, then we can split ej into two edges e} = {Vj, w} and ej = {w, Vj+1}'
Sinee aO'(e}) = aO'(ej) = aO'(ej), the total eost ineurred by the two new edges equals the eost
ineurred by ej, i.e.

e . mini aO'(e}), r }l(e}) + e . mini aO'(ej), r }l(ej) = e . mini aO'(ej), r }l(ej).

13

Hence the introduction of a dummy processor node at w does not change the cost CR(O'). In
the remainder of this proof we will assume that the total number of processor nodes in the ring
(including a possible dummy node) equals n. The nodes and edges are numbered in the way
described in the beginning of this section.

Let

and

We have

Furthermore,

and hence

11 = {i E 11ei belongs to the arc (w, va)}

12 = {i E 11ei belongs to the arc (va,w)}.

CR(0') = C ~ min{ aq(eil, r }l(eil
iEI

C ~ min{aq(ei), r }l(ei) + C ~ min{aq(ei), r }l(ei)
iEIl iEI2

< C ~ rl(ei) + C ~ aq(ei)l(ei).
iEIl iEI2

~ l(ei) = 2 ·l(s,va) ::; 2(l(s,va) + l(Vb,S))
iEIl

CR(O') ::; 2c(rl(s,va) + rl(vb,s)) + C ~ aq(ei)l(ei)
iEI2

< 2c(rl(s, Va) + rl(Vb, S) + ~ aq(ei)l(ei)).
iEI2

In the following we show

k

~ aq(ei)l(eil ::; ~ min{l(Va, VIl(tj»)' l(VIl(tj)' Vb)}.
iEI2 ;=1

(7)

Note that arequest O'(t) can only tause an access at an edge ei, i E 12 , if VIl(t) belongs to (va, w)
and VIl(t) =/: Va, VIl(t) =/: w. Let O'(tD, O'(t~), . .. , O'(tl) be all the requests in 0' satisfying these
properties. Then we have

I

~ aq(ei)l(ei) = ~ ~aq(ei,tj)l(ei)
iEI2 iEI2 ;=1

I

= ~ ~ aq(ei,tj)l(ei)
;=1 iEI2

I

~(~ aq(ei,tj)l(ei) + ~ aq(ei,tj)l(ei)).
;=1 iEI 2

i<l'(tj>

14

iEI2
i~l'(tj>

w

s

P

(a)

w

Figure 5: Arequest at v/-'(tj)

s

P

(b)

Consider a fixed i E {1,2, .. . ,l}. H Vlo'{tj) belongs to (s,P), then acr(ei,tj) = 0 for all i E 12

with i ~ JL(tj), see Figure 5(a). Thus

L acr(ei,tj)l(ei) + L acr(ei,tj)l(ei) = L acr(ei,tj)l(ei)
ieI2

i~,,(tj)

= L l(ei)
ieI 2

i<,,(tj)

l(va, v/-'(tj»)

< mini l(Va, V/-,(t l.»), l(V/-'(t'.) , w)}.
J J

HV/-'(tj) belongs to (P,s) and v/-'(tj) '1 P, then acr(ei,tj) = 0 for all i E 12 with i < JL(tj), see
Figure 5(b). Hence

We obtain

I

L acr (ei, tj)l(eil
ie I 2

i~,.(ti>

L l(ei)
ieI 2

i~,.(tj)

= l(v/-'(tj) , w)

< mini l(va, V/-'(tj»)' l(V/-,(tj) , w)}.

< 2c(rl(s, Va) + rl(vb,s) + Lmin{l(va,vlo'{t,.»),I(v/-,(t'.),w)})
;=1 J J

I

< 2c(rl(s, Va) + rl(vb's) + Lmin{l(va,vlo'{t,.»),I(v/-,(t'.), Vb)})'
. J J 3=1

Since u(tD, u(t~), . .. , u(tD is a subsequence of U(t1), U(t2),' .. , U(tfc) we have

fc

CR(U) < 2c(rl(s, va) + rl(vb's) + Lmin{l(va,v/-'(tj»),I(vlo'{tj)'Vb)}
;=1

2c· COPT(U)

and inequality (6) is proved. 0

15

Proof of TheoreIIl 4: We may assume without loss of generality that the circumfence of the
ring is 1. Let u = u(1), u(2), ... , u(m) be arequest sequence for the ring. As in the proof of
Theorem 3, let Va and Vb be the nodes farthest from s to which OPT replicates the page in
clockwise and counter-clockwise direction, respectively.

Let u(t1), U(t2),' .. , U(tl) be the requests in u which re quest anode that does not belong to
(s,va) or (Vb,S). For k = 1,2, .. . ,1, let vj.l(t,,) be the node requested by U(tk)' The cost incurred
by OPT in serving u equals

I

Co pT(u) = rl(s, va) + rl(Vb, S) + L: min{l(Va, VI-'{t,,)), I(Vj.l(t,,), Vb)}'
k=l

In the following we show that the expected cost incurred by RlNG(RANDOM), E[CRR(U)],
satisfies

E[CRR(U)] :$ 2c· COPT(U). (8)

This implies the theorem.

For the analysis of E[CRR(U)] we need some more notation. Let 1 = {1,2, .. . ,n} and

11 = {i E 11ei belong to the arc (Vb, Va)}.

Set 12 = 1 \ 11 • For i = 1, 2, ... , n, let Ti be the tree that is obtained if the random cutting point

Pis located on edge ei = {Vi,Vi+1} but P ::j:. Vi+1' Consider an arbitrary tree Ti, 1 :$ i :$ n.
Let j E {1,2, . .. ,n} and t E {1,2, . .. ,m} be arbitrary. We denote by vj.l(t) the node that is

requested at time t. We set a~(ej, t) = 1 if in the tree Ti, ej is on the path from vj.l(t) to the
root. Otherwise we set a~(ej,t) = O. If aO'(ej,t) = 1, we say that u(t) causes an access at the
edge ej in the tree Ti. We set a~(ej) = L:~1 a~(ej,t). If Pis located on the edge ei = {Vi,Vi+1}
but P::j:. Vi+1! then by inequality (5) R1NG(RAN DOM) incurs a total cost of

n

L: cmin{a~(ej), r }I(ej).
j=l

Since the circumfence of the circle is 1, with probability I(ei), Pis located on edge ei = {Vi, Vi+d
but P ::j:. Vi+!. Thus

n n

E[CRR(U)] = L:I(ei)L:cmin{a~(ej),r}l(ej).
i=l j=l

Taking into ac count that L:i=l I(ej) = 1 and L:jeIl I(ej) :$ 1, we can show by algebraic manip
ulations of the above formula

E[CRR(U)] :$ 2cr L: I(ei) + c L: I(ei) L: a~(ej)l(ej)
iEI1 iEI2 jEI2

2cr(l(s, va) + I(Vb, s)) + c L: I(ei) L: a~(ej)l(ej).
iEI2 jEI2

We show that

I

L: I(ei) L: a~(ej)I(ej) :$ 2 L: min{ I(Va, VI-'{t,,)), I(Vj.l(t,,), Vb)}'
iEI2 jEI2 k=l

16

This proves inequality (8).

Consider an edge ej with j E 12 • Note that if the randomly chosen cutting point Pis located

on the arc (va, Vb) and P :f; Vb, then only the requests O'(tl), 0'(t2)," ., O'(tZ) can cause an access
at edge ej. Rence

z
L l(ei) L a~(ej)l(ej) = L l(ei) L L a~(ej,tlc)l(ej)

z
= L(L l(ei) L a~(ej,tlc)l(ej) + L l(ei) L a~(ej,tlc)l(ej)).

1c=1 iE I2
i<,.(t.)

Consider a fixed k E {l, 2, ... , l}. If P is located on the arc (va, V~(t.)) and P :f; V~(t.), then
O'(tlc) cannot cause an access at an edge ej with j < J.L(tlc). Thus a~(ej, tlc) = 0 if i < J.L(tlc) and
j < J.L(tlc). Rence

L l(ei) L a~(ej, tlc)l(ej) = L l(ei) L a~(ej, tlc)l(ej) ~ L l(ei) L l(ej).
iE I2 jeI2 iE I2 iE I2 iE I 2 iE I2

i<I'{tJi) i<l'(t.) i~I'{tl:) i<I'{tl:) i~,.(tJi)

Similarly we can show

We obtain

z z
L l(ei) L a~(ej)l(ej) ~ 2 L L l(ei) L l(ej) ~ 2 L min{ L l(ei), L l(ej)}

1c=1 iE I2
i<I'{ tl:)

The last inequality follows because

Since

we conclude

L l(ei) ~ 1
iEI2

i<,.(tl:)

L l(eil = l(Va, V~(tl:))
iE I2

i<,.(tl:)

and

and

z

1c=1

L l(ej) ~ l.
iE I2

i~,.(tl:)

L l(ej) = l(v~(tl:),Vb)'
iE I2

j~I'{tl:)

L l(ei) L a~(ej)l(ej) ~ 2 Lmin{l(va,V~(tl:)),l(v~(tl:),Vb)}
ieI2 jeI2 1c=1

and ineqp.ality (8) is proved. 0

Acknowledgment

U seful discussions with Rudolf Fleischer are gratefully acknowledged.

17

References

[ABF93] B. Awerbuch, Y. Bartal and A. Fiat. Competitive distributed file allocation. In Proc.
25th Annual ACM Symposium on Theory of Computing, pages 164-173, 1993.

[BFR92] Y. Bartal, A. Fiat and Y. Rabani. Competitive algorithms for distributed data man
agement. In Proc. 24th Annual ACM Symposium on Theory of Computing, pages 39-50,
1992.

[BBKTW94] S. Ben-David, A. Borodin, R.M. Karp, G. Tardos and A. Wigderson. On the power
of randomization in on-line algorithms. Algorithmica, special issue on on-line algorithms,
11(1):2-14, 1994.

[BS89] D.L. Black and D.D. Sleator. Competitive algorithms for replication and migration
problems. Technical Report Carnegie Mellon University, CMU-CS-89-201, 1989.

[CLRW93] M. Chrobak, L.L. Larmore, N. Reingold and J. Westbrook. Page migration algo
rithms using work functions. In Proc. 4th International Annual Symposium on Algorithms
and Complexity, Springer Lecture Notes in Computer Science, Vol. 762 pages 406-415, 1993.

[DF82] D. Downey and D. Foster. Comparative models of the file assignment problem. Com
puting Surveys, 14(2):287-313, 1982.

[K93] H. Koga. Randomized on-line algorithms for the page replication problem. In Proc. 4th
International Annual Symposium on Algorithms and Complexity, Springer Lecture Notes
in Computer Science, Vol. 762, pages 436-445, 1993.

[RS89] P. Raghavan and M. Snir. Memory versus randomization in on-line algorithms. In Proc.
16th International Colloquium on Automata, Languages and Progamming, Springer Lecture
Notes in Computer Science, Vol. 372, pages 687-703, 1989.

[SD89] C. Scheurich and M. Dubois. Dynamic page migration in multiprocessors with distributed
global memory. IEEE Transactions on Computers, 38(8):1154-1163,1989.

[ST85] D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules.
Communication of the ACM, 28:202-208, 1985.

[W92] J. Westbrook. Randomized Algorithms for the multiprocessor page migration. In Proc.
of the DIMACS Workshop on On-Line Algorithms, American Mathematical Society, pages
135-149, 1992.

18

	94-1060001
	94-1060002
	94-1060003
	94-1060004
	94-1060005
	94-1060006
	94-1060007
	94-1060008
	94-1060009
	94-1060010
	94-1060011
	94-1060012
	94-1060013
	94-1060014
	94-1060015
	94-1060016
	94-1060017
	94-1060018
	94-1060019
	94-1060020
	cover-hinten_2099-2897-300dpi

