

New Deterministic Algorithms for

Counting Pairs of Intersecting Segments

and Off-Line Triangle Range Searching

Marco Pellegrini

MPI-I-95-1-022 July 1995

N ew Deterministic Algorithms for
Counting Pairs of Intersecting Segments

and Off-Line Triangle Range Searching
- extended abstract -

M. Pellegrini

August 22, 1995

Abstract

We describe a new method for decomposing pla­
nar sets of segments and points. Using this method
we obtain new efficient deterministic algorithms for
counting pairs of intersecting segments, and for an­
swering off-line triangle rang'e queries. In particular
we obtain the following results:

(1) Given n segments in the plane, the number K of
pairs of intersecting segments is computed in time
O(nl+ f + K 1/3n2/3+ f

), where € > 0 an arbitrarily
small constant.

(2) Given n segments in the plane which are coloured
with two colours, the number of pairs of bi-chromatic
intersecting segments is computed in time o (nl+ f +
K;,{3n2/ 3+f

) , where Km is the number of mono­
chromatic intersections, and € > 0 is an arbitrarily
small constant.

(3) Given n weighted points and n triangles on a
plane, the sum of weights of points in each triangle
is computed in time O(nl+ f + K}/3n2/3+~), where lC
is the number of vertices in the arrangement of the
triangles, and € > 0 an arbitrarily small constant.

The above bounds depend sub-linearly on the
number of intersections among segments K (resp.
Km, lC), which is desirable since K (resp. Km, lC)
can range from zero to O(n2

). All ofthe above algo­
rithms use optimal 0(n) storage. The constants of
proportionality in the big-Oh notation increase as €

decreases. These results are based on properties of
the sparse nets introduced by Chazelle [8].

1

1 Introduction

Intersection counting and problems in man­
ufacturing. In geometrie models of two and three
dimensional objects, intersections of objects are im­
portant features. Often intersections are related to
(desirable or undesirable) facts in the situation that
the model should represent. A typical example is in
modelling pieces cut from a fiat panel, since the same
material cannot belong to two pieces, an intersection
of two polygons is amistake to be avoided in the de­
sign of the cutting procedure. The importance of
detecting, counting and reporting intersections has
been recognized in the early days of computationci.l
geometry and a substantial research effort has pro­
duced several effi.cient algorithms for this class of
problems in two-dimensional space. If we model the
boundaries of objects in the plane using segments we
have efficient algorithms for detecting intersections
and reporting them [5, 10, 14, 26]. However, impor­
tant computations in manufacturing would benefi.t
from efficient algorithms for counting intersections
of segments rather than reporting them. Consider
a decomposition of a three-dimensional polyhedral
object (e.g. a car engine) obtained by projecting the
edges of this object onto a plane, by decomposing the
two dimensional arrangement of segments, and by
back-projecting the two dimensional decomposition
in three-space. Since the direction of projection can
be chosen arbitrarily, among several directions one
resulting in fewer intersections is preferable. In order
to select a good projection, counting intersections is

sufficient. In the design ofVLSI and PCB boards the
rules for minimum distance among wires (each wire
is modelIed as several overlapping thin polygons 1)

can be checked by expanding each polygon in every
direction by half of the minimum distance. An in­
crease in the number of intersections is a symptom
of a possible design error. We should notice that, in
this example, detection of one intersection is not suf­
ficient since the overlap of polygons forming a single
wire is not a design error, while on the other hand
reporting all intersections is not necessary. Wires of
two different types (e.g. polysilicon and diffusion in
n-MOS technology) are used to fabricate integrated
transistors. In this case we can check deign rules for
transistors by counting only the number of intersec­
tions among wires of the two types. An interesting
variation on the counting problem is finding the seg­
ments contributing the largest number of intersec­
tions or the mjnjmum number.

In this paper we describe a new deterministic
method for partitioning planar sets of segments and
points. U sing this method and other tools we are
able to obtain improved worst case time bounds for
three basic problems. The first problem is that of
counting pairs of intersecting segments. The second
problem is an important variation of the first one,
in which we have two sets of segments (coloured,
say, yellow and blue) and we are interested in count­
ing only bi-chromatic pairs of intersecting segments.
In this special case we obtain time bounds that im­
prove on those for counting all intersections. The
third problem is that of solving off-line simplex range
searching queries over sets ofpoints. We obtain are­
sult that holds in any dimension d, but the planar
case (d =: 2) is the one where the benefit over pre­
vious methods is more evident. Consider the prob­
lem of integrating a sampled scalar function of two
variables over aseries of possibly intersecting planar
polygonal domains. The supersampling technique
used for antialiasing is a case where such problem
arises in the area of computer graphics [17]. If we
model each domain as a disjoint union of triangles
and the sampies as weighted points on the plane,

1 Although it is common in VLSI to use axis-parallel rect­
angles to model wires during high levels of layout design, after
the action of some optimization tools such as homotopic com­
pactation [22] the wires are unrestricted polygons.

2

we reduce the integration problem to a case of off­
line triangle range-searching for which our efficient
algorithm can be used.

Counting Intersections: Summary of re­
sults. Bentley and Ottman describe a classical algo­
rithm for reporting intersections of segments in time
O((n+K) logn) and O(nlog2 n) storage, where K is
the number of reported intersections and n the num­
ber of segments [5, 27]. Work on this problem cul­
minated with several optimal randomized and deter­
ministic algorithms [10, 14, 26] with O(nlogn + K)
time bounds.

At the moment it is not known how to count
points of intersection more efficiently than by report­
ing them, if we allow degenerate sets of segments 2

(see [16] for a lower bound argument applicable to
quite a large family of algorithms). What we can
do efficiently is counting pairs of intersecting seg­
ments. If the input set is in general position the
two measures coincide. If the input set is degenerate
then by counting pairs of intersecting segments we
always estimate from above the number of intersec­
tions. The running time of our algorithms depends
on the number of points of intersection. For most of
the applications in manufacturing it is sufficient to
count intersecting pairs and from now on we will not
dweIl on the distinction and we will assume that the
input set is in general position.

Algorithms for reporting intersections can be used
to count pairs of intersecting segments, but they are
efficient only when there are few intersections (say
K < n log n). When the number of intersections is
high, algorithms based on plane partitioning have
been proposed [6],[18, 3, 8]. Currently the best de­
terministic method uses O(n4 / 3 1og1

/
3 n) time and

linear storage for a set of n segments [8] (see also
[21]). Note that these methods improve on the re­
porting algorithms only when K > n4/ 3 • In this pa­
per we show a new method for counting intersections
among segments whose time bound interpolates be­
tween those of previously known deterministic algo­
rithms. We obtain the following result:

Theorem 1 Given a set of n segments forming
an arrangement with K vertices we can count the

2 A set of relatively open segments is in degenerate if there
are three segm.ents sharing a point.

pairs of intersecting segments in time O(nl+t: +
n2/3+t: Kl/3), using linear storage, where € > 0 is
an arbitrarily small constant.

This result improves on previous deterministic
methods in the range nl+t: < K < n2-t:. For
K < nl+€ or K > n2-€, our algorithm is within
an n€ factor from the previously known best al­
gorithms in those ranges. H we allow randomiza­
tion, then a method in [15] attains expected time
O(nlognlogK + Kl/3n2/3Iog1/3n).

In the bichromatic case we are given two coloured
sets of segments, and we are interested in counting
only the bichromatic intersections [11, 1, 3]. Agar­
wal [3] gives an algorithm with time and storage
bounds O(n4/3Iog1.78 n) for any set of segments. By
using the approach in [8] it is possible to reduce
the running time to 0 (n 4/31og1 /3 n) and the stor­
age to linear. For the special case when there are
no monochromatic intersections an 0 (n log n) algo­
rithm is described in [11]. In this paper we obtain
the following result:

Theorem 2 Given a set of n blue segments form­
ing an arrangement with Kb vertices, and a set of
n yellow segments forming an arrangement with K y

vertices, we can count the number of bi-chromatic
pairs of intersecting segments in time O(nl+€ +
n2/3+t:(Ky + Kb)1/3) and linear storage, where € > 0
is an arbitrarily small constant.

Note that the time bound depends only on the
number of monochromatic intersections, and not on
the reported number of bi-chromatic pairs of in­
tersecting segments. The bound of our algorithms
again interpolates between the two best previous al­
gorithms and improves on both in the range nl+t: <
(Ky + Kb) < n2

-t:.

On-line versus Off-line simplex range
searching. Simplex range searching has emerged in
recent years as one of the basic problems in compu­
tational geometry [30, 13, 19, 31, 12, 24]. The prob­
lem in its on-line version is the following. We are
given n points in d-dimensional real space Ed (here
d is a constant and the multiplicative constants in
the bounds depend on d). We wish to ans wer effi­
ciently the following dass of queries: given a query d-

3

simplex3 q, count the number ofpoints in q. Usually
the problem is stated in a slightly more general set­
ting for points with associated weights drawn from
a semi-group. In this case the query asks for the cu­
mulative weight of the points in q. For simplicity of
exposition we will concentrate on the counting prob­
lem, but all the results extend to weighted sets of
points. In the off-line case, both the points and the
query simplices are known at pre-processing time.

Aremarkable result of Chazelle [7] is that, if m
units of storage are allowed, than for every data or­
ganization scheme4, there exists a query that costs
O(njm1/ 2) for d = 2, and O(njm1/dlogn) for d > 2.
The final step of the proof of the lower bound rests
on an adversary argument. Given any organization
of partial sums in a pre-processed data structure,
an adversary is going to choose the hardest pos­
sible query. Almost matching upper bounds have
been found [12, 25] which are off the lower bound by
small polynomial or polylogarithmic factors. Thus,
for a sequence of queries on a set of points, the total
cost of the sequence can be bounded by multiply­
ing the number of queries times the worst case cost
of a query, plus the cost for preprocessing. A se­
quence of n queries over n points in E d has a worst
cost O(n4/ 3) for d = 2 and O(n2d/(d+1)/lo~/(d+1)n)
for d > 2. In the off-line case, when the queries
are known in advance, Chazelle has recently proved
a lower bound O(n2- 2/(d+1)(log n)-S/2) in the semi­
group model [9]. The best algorithms presented in
literature for the off-line case [3] matches, up to small
factors, the lower bound. In the planar case we
could also solve the off-line problem in time, roughly
O((n+ K)logn), by using a sweeping line approach
and dynamic data structures, where K is the number
of vertices in the arrangement of query triangles.

The type of argument that leads to the lower
bounds does not take into ac count the fact that some
sequences might be easier than others, and there­
fore in many practical applications such bounds may
be unduly pessimistic (see e.g. [20]). In this pa­
per we study the effect of sparsity on the simplex
range searching problem as well as on the intersec-

3 A d-simplex is the convex hull of d + 1 linearly independent
points in d-space. For d = 2 it is a triangle, for d = 3 a
tetrahedron.

4Such data structure satisfies very general conditions.

tion counting problem. We consider the complexity
of the arrangement of query simplices as a measure
on the "sparsity"S of the sequence of queries. Our
main contribution on this problem is that in the off­
line case we obtain abound on the total cost of a
sequence that depends on the number of simplices n

and on the sparsity parameter lC. In particular we
prove:

Theorem 3 Given n points and n simplices in
d-dimensional space we count the number of
points in each simplex deterministically in time
O(lC1/(d+l)nd/(d+l)+f"+n!(d)+f"), where lC is the num-

ber of vertices in the arrangement of query sim­
plices, € an arbitrarily small constant, and f(d) =
(2([2 - 4d + 1)/(d2 - d - 1). The storage used is
O(n).

For the case d = 2, as a corollary we obtain thus a
bound o (n1+f" +lC1/3n 2/3+f"), which improves on the
previous fastest algorithms in the range nl+f" < lC <
n 2 -f". Our result leaves open the question whether in
the on-line case we can obtain bounds on the cost of
answering a sequence of queries S in time depending
on the sparsity of S.

The method used. We extend a method for par­
titioning of a set of simplices, developed in [29] which
is based on the properties of sparse nets introduced

attained using the sparse nets [8] to select the subset
of S. The construction of the partition tree is car­
ried on up to a certain depth. At the leaves of the
tree we use known methods that are not sensitive
to the sparsity of the input (a similar approach is
used in [4] to prove combinatorial bounds). In order
to count pairs of intersecting segments we specialize
the analysis for d = 2 and we add auxiliary computa­
tions specific to the intersection counting problem.
In the second part of the paper we use the parti­
tion tree to solve a variation of Hopcroft's problem,
which consists in detecting incidences of points and
(d - 1)-simplices 7 in E d • Once we have a solution
to this problem we add auxiliary operations on the
partition tree to obtain the main result on off-line
simplex range searching (Theorem 3).

The paper is organized as follows. In Section 2
we recall the main properties of sparse nets. In
Section 3 we discuss a method for obtaining a bal­
ance partition tree for simplices and points, which
is used as a basis by the other algorithms. In sec­
tion 4 we discuss the algorithm to count the inter­
sections in a set of segments. In Section 5 we discuss
how to count efficiently bichromatic intersections of
coloured segments. In Section 6 we discuss a varia­
tion of Hopcroft's problem for points and simplices.
In Section 7 we we extend the solution to Hopcroft's
problem to solve the off-line simplex range searching
problem. by Chazelle [8], to the case of simplices and points.

The general strategy is a divide and conquer ap­
proach. We have an input set S of (d - 1)-simplices6

and an input set M of points. We select a subset of 2
S that is used to partition E d into cells of constant
descriptive complexity (also called elementary cells)

Sparse Nets

Let H be a set of n hyperplanes in Euclidean d­
dimensional Space Ed. We assume that His in gen­
eral position, meaning that exact1y d hyperplanes
meet in a common point. Let R ~ H be a subset
of p ~ n hyperplanes. For a segment e, let Re (resp
He) be the number of hyperplanes in R (resp. H)
intersecting e but not containing e. For a d-simplex
s, let Rtf (resp H tf) be the number of vertices of the
arrangement created by R (resp. H) contained in s.
Let r be a positive integer number.

in such way as to balance the number of elements
of S intersecting each elementary cell and the num­
ber of points in M inside each cello We apply the
method recursively in each elementary cello The ele­
mentary cells are then organized in a partition tree.
The gist of the method is to keep a tight control on
the size of the partition tree. This tight counting is

~Naturally one could prefer other ways to capture the in­
formal notion of sparsity. An advantage of choosing the com­
plexity of the arrangement is that this measure is invariant
under projective transfonnations.

6 A (d - 1)-simplex is the convex hull of d linearly indepen­
dent points in d-space. It is segment for d = 2, a triangle for
d = 3.

4

Definition 1 R is a (1/r)-approximation for H if,
for any segment e: IRe / P - He/ni< 1/r.

7 A randomized method for the planar case is given in [15].

Definition 2 R is a (1/ r) -net for H if for any seg­
ment e, He > n/r implies Re > O.

Definition 3 R is a sparse (l/r)-net for (H, s) if
for any segment e , He > n / r implies Re > 0; and
the following inequality holds: R$ S; 4(p / n)d H $.

Definition 4 A (l/r)-cutting for H is a partition
of Ed into interior-disjoint simplices such that any
simplex meets at most n/r of the hyperplanes in H.
The number of simplices in the partition is called the
size of the cutting.

Let s be any d-simplex in E d• We denote by
H (s) the subset of hyperplanes of H intersecting s.
Computing a sparse net for (H (s), s) directly can be
time-consuming, therefore first an approximation A
of H (s) is generated, then a strong net for (A, s) is
computed. Let ro be a constant and i an integer
such that n/r~-l > IH(s)1 > n/r~. Moreover de­
fine Po = r~IH(s)l/n and p = Po log Po· The foilow­
ing lemma summarizes some important properties of
this construction:

Lemma 1 ([8]) (i)
Let A be a (1/(2dpo))-approximation of Hand R
a sparse (1/(2dpo))-net for (A, s), then the follow­
ing inequality holds: Ra S; 4(p/IH(s)l)dHa + 4pd / Po.
(ii) A canonical triangulation of the sparse net R of
Lemma 1 is a l/ro-cutting for H(s) in sand it has
size O(pd-l + Ra). (iii) The approximation A and
the sparse net R at (i) is computed in time O(IHI).

We need two additional important concepts. We
fix once and for all a vertical direction in E d • A
(d - 1)-simplex t partially covers a d-simplex s if
t intersects s and some (d - 2)-face of t intersects
s. If (d - 1)-simplex t partially covers a d-simplex
s then the vertical projection of some (d - 2)-face
of t will intersect the vertical projection of s. A
(d - 1)-simplex t completely covers a d-simplex s if t
intersects s and no (d - 2)-face of t intersects s.

3 Partitioning points and (d - 1)­
sim plices in E d

In this Section we describe a general algorithm for
partitioning sets of points and (d - 1)-simplices. The

5

objective is to maintain a tight control on the num­
ber of simplices and points incident to any ceil asso­
ciated with nodes of the partition tree, as weil as a
tight control on the size of the partition tree.

We are given a set M of m points in E d and a
set S of n (d - 1)-simplices in general position. We
denote with K the number of d-tuples of simplices
having a point in common. We build a sequence of
sets Co, .. , Cl where I = log,.o r and ro is a suitable
constant. The set Ci is a coilection of quadrupies
(s, P(s), Q(s), M(s)) where s is d-simplex in Ed or a
d-cylinder (Le. adegenerate d-simplex with a vertex
at infinity), also called an elementary ceil. P(s) is
the subset of simplices in S partially covering s, Q(s)
is the subset of simplices in S covering s, M(s) is the
set ofpoints of M in s. In each set Ci the union oft he
elementary ceils is E d • The invariants maintained
over the sets Ci are: IP(s)1 S; n/r~, IQ(s)1 S; nro/r~,
and IM(s)1 S; m/r~(d-l). The algorithm to construct
Ck from Ck-l works in three main phases.

(1) Take s in Ck - 1 and build a sparse net ofLemma
1 for the hyperplanes spanning simplices in Q(s),
restricted to s. Triangulate the net thus obtain­
ing a set of simplices (0", 0, Q(O"),M(O")). By induc­
tion we assume that IQ(s)1 S; ron/r~-l. We choose
the parameter p~ = r~-lIQ(s)l/n and thus obtain
QI(O")I S; ron/r~ as foilows from Lemma 1. Also,
p~ S; ro·
(2) Take s in Ck-l and P(s). If P(s) is not empty
project the simplices in P(s) and s in (d - 1)­
dimensional space obtaining a set PI(s) and a (d-1)­
simplex s'. Extend each (d - 2)-face of simplices in
P' (s) into a full hyperplanes and make a sparse net of
Lemma 1 for this set ofhyperplanes. Triangulate the
net and obtain a set of (d - 1)-dimensional elemen­
tary ceils. Extend the elementary ceils vertically in
d-space within s obtaining cylinders (TJ,P(TJ),Q(TJ)).
Inductively IP(s)1 S; n/r~-l and we choose p~ =
r~IP(s)l/n so as to obtain IP(TJ)I S; n/r~ and
IQ(TJ)I S; IP(s)1 S; ron/r~. Also p~ < ro. We fur­
ther decompose the cylinder TJ into d-simplices. We
have a constant number of them and they satisfy the
two invariants.

(3) We compute, for each ceil 0" built in phase (1) and
(2), the points in M(0"). If M(0") does not satisfy
the invariant we can split 0" into subceils with at

most m/r~(d-l) points. For each eell s E CIe- l we
introduee at most rg- l new eells in this phase.

At the end of the three phases we eollect all the
eells in the set Cle . The set Cle satisfies the three in­
variants. The simpliees produeed in are organized in
a two-level search tree. The search trees on simpliees
built in phase (1) (resp. (2)), with the refinement in
phase (3), will be ealled Q-trees (resp. P-trees). The
base ease Co eorresponds to the whole spaee E d and
trivially satisfies the invariants.

3.1 Analysis of the algorithm

Let us denote by s' the vertical projeetion of a sim­
plex s onto (d - 1)-dimensional subspaee, and by
R' the sparse net for P'(s). We use Lemma 1 to
bound the number of simpliees obtained at each it­
eration of the algorithm. We obtain the following
inequalities in which we denote with CI, C2, ... ab­
solute multiplieative eonstants that depend on d.

Let Po = p~ + p~. Notiee that I:sEC"_l P'(s)ß' =
O(nd - l). We denote with K the total number of
points which are the intersection of d (d - 1) sim­
pliees in S. From the definition we have K :S (~).

We defi.ne z(ro) = 10gO(l) ro.

IClel:S L Cl[p~d-llogd-l p~ + Rs + rg-l]+
SEC"_l

L c2[p~d-2logd-2 p~ + R~, + rg- l]
SEC"_l

< L c3 z(ro)[rg- 1 + (r~/n)dQ(s)ß + rg- l
] +

ßEC"_l

<

Finally, we obtain the following reeursive inequal­
ity in the variable k: ICIe I :S C6Z(ro)[rg- 1 ICIe-l I +
r~d(K/nd) + r~(d-l)]. A similar reeursive inequality
is solved in [29](journal version) with the following
bound:

6

Lemma 2 IClei :S Dr~(d-l+€) + F(K/nd)r~d, where
Fand D are constants with respect to k, n and K_

We eontinue the eonstruction until k reaches the
value 1 = 10&-0 r, where r is a value to speci­
fied later _ The total number of elementary eells is
I:k=O ICIeI, which is bounded by I:i=o[Dr~(d-1+f) +
F(K /nd)r~dl_ This is a summation of geometrie se­
ries of ratio rg-1+€ and rg, which is proportional to
the last term of the series. Thus we have abound
O(Dr~(d-1+€)+F(K/nd)r&d) = O(rd-1+€+(K/nd)rd)
on the size of the search tree. The time spent on each
d-simplex in the search tree is linear in the number of
(d - 1)-simpliees interseeting it by Lemma 1. So the
eonstruction oft he nets in phases (1) and (2) has the
following eost:I:i=o(nro/r~)ICIeI, which is bounded
by I:i=o(nro/r~)[Dr~(d-1+€) + F(K/nd)r~dJ, which
is equal to I:i=o(nro)[Dr~(d-2+f)+F(K/nd)r~(d-l)].

Sinee these are sums of geometrie series of ra­
tio greater than 1 they are proportional to the
last element of the summation. We obtain bound:
O(n[rd-2+€ + (K/nd)rd- l]) for all the time used to
eonstruet the hierarchy. The loeation of the points
and the splitting of phase (3) is done in time propor­
tional to the number ofpoints IM(s)I. Phase (3) over

the whole algorithm eosts: I:i=o(m/r~(d-l»)IClei
which is bounded by I:i=o(m/r~(d-l»)[Dr~(d-1+€) +
F(K/nd)r~d], which is equal to I:i=o m[Dr~€ +
F(K / nd)r~]. Again we have sums of geometrie
series of ratio ra and ro, so we obtain abound
O(mr€ + m(K/nd)r). This analysis aeeounts for the
eonstruction of a partition tree that is eommon to
several algorithms in this paper.

Counting interseetions of seg­
ments

Given a set S of n segments in E 2 , let A(S) be
the arrangement formed by the segments in S and
let K be the number of vertiees in the arrange­
ment. We specialize the eonstruction of seetion 3
for d = 2 and we use as the set M of input points
the end-points of the segments in S. Thus, by us­
ing the algorithm of the previous seetion we obtain
a partition tree with leaves associated with eells (T

in Cl- The following eonditions hold at the leaves:

IP(O")I ::; njr, IQ(O")I ::; nrojr, IM(O")I ::; njr, and ber of cells for each level of the Q-tree. Moreover,
IGd = O(r(l+€) + (Kjn2)r2). for each level the associate segments cross all but at

We build the search tree up to level 1 = most two of the cells to which it has been associated
log..o n2 j K, corresponding to r = n2 j K . We con- at that level. N ow, we can count the intersections
sider several types of intersections that can be ac- between Q-sets at a cell and crossing associated seg­
counted for using different techniques on the search ments again by using Lemma 3.1 in [2]. Thus ac­
tree. The main difficulty is in the fact that in the counting for these intersections will cost overall at
construction ofthe partition tree we separate cover- most O((IP(O")I + IQ(O")I)log2n) over the whole Q­
ing segments from the partially covering ones. Thus tree rooted at 0". H an associated segment is short
we will describe a scheme for merging back again at a level of the Q-tree, we deal with that segment
those sets of segments. recursively on the next level of the Q-tree rooted at

We discuss how to count intersections in a set that cello (5) When a segment from P(O") is asso­
P(s), for a generic cell S. The results follows by ciated to a leaf TI of the Q-tree and it is short for
starting with the whole space, s = E d• Let P(s) be that leaf, then we use at that leaf a non-sensitive
the set of simplices partially covering S. We then bi-chromatic method [3, 8] on the set Q(TI) and on
apply phase (2) of the main algorithm obtaining a the set of segments in P(O") incident to points in
set of elementary cells ~ whose union is S. For each M (TI). Prom the invariant we have that the input to
cell 0" we obtain sets P(O") and Q(O"). We then have the non-sensitive method at aleafis ofsize at most
to compute: The set QQ(O") ofintersections between 2njr.
a segment in Q(O") and a segment in Q(O"), clipped The proof of correctness of this method derives
in 0". The set PQ (0") of intersections between a seg- from the fact that all possible pair of intersecting
ment in Q(O") and a segment in P(O"), clipped in 0". segments are accounted for. The details are routine
The set PP (0"). of intersections between a segment and are left as an exercise. N ext we analyze the cost
in P(0") and one in P(0"), clipped in 0". Clearly: of the algorithm. The total cost for setting up the
IP P(s)1 = 2:uEl: IQQ(O")I + IPQ(O")I + IP P(O")I· Next search tree is: nr€+rn(Kjn2)+nr€ +n(Kjn2)r. For
we describe how to compute each type of intersec- r = n 2 j K, we obtain a cost: O(nl+t:). The cost of
tion: (1) The intersections in Q Q (0") can be com- the accounting on all levels of the search tree except
puted in time O(IQ(0")1 log IQ(O")I) by using a method the leaves is: 2:i=o[(nrojr~)1+t: + (njr~)l+€]IGIeI,
in [2, Lemma 3.1], which is based on counting in- which is bounded by 2:i=o[(nrojr~)1+€1[Dr~(1+€) +
versions in permutations. (2) The intersections in F(Kj d) 1e2] hich' ual "I ()[D 0 n ro , w IS eq to LJIe=O nro ro +
PP(O") are counted recursively using the method we F(Kjnd)r~(I-'-€)]. Since these are sums of geomet­
are describing for P P(s), unless 0" is a leaf of the up-

ric series of ratio grat er than 1 they are propor-
per search tree. (3) HO" is a leaf of the upper search tional to the last element of the summation. We
tree, we apply directly the method in [8], which uses
time O(IQ(0")14/3Iog1/ 3 IQ(0")1) and O(IQ(O")I) stor- obtain bound: O(n~ogr + (Kjn

2
)r

l
-€]) which, for

age. (4) The intersections PQ(O") are computed in
the following way. Let us consider the subtree rooted
at 0" and built by repeated applications of phases
(1) and (3) ofthe algorithm of Section 3, where the
points M (0") that we have used in phase (3) are are
the endpoints of segments in P(0"). Each point in
M (0") will appear in one cell for each level of the
Q-tree rooted at 0". For each such cell and for each
point, we find the sibling cells intersecting the seg­
ment in P(0") incident to that point. Since the Q­
tree has degree bounded by a constant, each segment
of P(0") is associated with at most a constant num-

7

r = n 2 j K is O(nl+t:).

The cost incurred at the leaves of the partition
tree is: 2:uEC" (nj r)4/3Iog1/3 n, which is bounded by
(rl+€+(Kjn2)r2)(njr)4/3Iog1/3n. Again, substitut­
ing our choice of r we obtain abound O(n2/3+€ KI/3).

We can reduce the working storage to linear in n
by building the partition tree in a depth first man­
ner. The working storage is used to store one path
from the root to one leaf of the partition tree, plus
all siblings of the nodes on the path, together with
the associated sets Q, P and M. The size of these
sets decreases geometrically, therefore the sum of all

the size of sets along the path is linear in n. The
result claimed in the introduction is almost proved,
except for the issue of how the algorithm guesses the
correct value of the parameter r, which depends on
the unknown value of K. We overcome this problem
by using a well known trick of doubling. We start
with guess K o = n and we run the algorithm until
it exceeds the time bound. At this point we double
the guess using the general rule Ki = 2K(i-l)' There
are at most a logarithmic number of guesses before
the algorithm terminates having counted all of the
pairs of intersecting segments. The time bound is
unchanged except for a slightly higher value of E.

This trick will be used also for the other results in
this article. The above discussion constitutes the
proof of Theorem 1.

5 Bi-chromatic interseetions

In the bichromatic case we show an algorithm whose
time bound depends only on the number of mono­
chromatic intersections, and thus it may be much
faster than the general algorithm to count segment
intersections, if the two coloured input sets are sep­
arately sparse. We are give two sets of n segments
which we colour yellow and blue. The problem is to
count the number K Yb of yellow-blue intersections.
We give a method whose time bound does not de­
pend on the bichromatic intersections, but on the
number of mono-chromatic intersections Ky + Kb.
More in detail, for a cell s, we will consider the sets:
Py(s) of yellow simplices partially covering s, Qy(s)
of yellow simplices covering s, Mb (s) of end-points of
blue segment in s, Pb(s) of blue simplices partially
covering s, Qb(S) of blue simplices covering s, and
My(s) of end-points of yellow segments in s.

We have these types of intersections: (i) The set
QyQb(S) ofintersections between a segment in Qb(S)
and a segment in Qy(s), clipped in s. (ii) The set
PyQb(S) of intersections between a segment in Qb(S)
and a segment in Py(s), clipped in s. Symmetrically
we have also a set PbQy(S) (iii) The set PyPb(S), of
intersections between a segment in Py (s) and one in
Pb(s), clipped in s.

Let us take a cell S and two sets of partially cover­
ing segments, Py(s) and Pb(s) we describe a method

8

for counting the set of intersections PyPb(s). The
final bound will be derived by setting S = E 2

• We
build a cell decomposition for Py(s) and one sep­
arate for Pb(S) by using phases (2) and (3) of the
main algorithm. We obtains sets ~y and ~b which
are sets of vertical strips. We merge the two decom­
positions obtaining a set ~ of cells. We then have the
sets Py{O'), Qy(O'), Pb(O'b) and Qb(O'b) for all 0' E ~.
We have that the number of bichromatic intersec­
tions P!,Py(s) is: !PyPb(S)! = L':crel; !PyQb(O')! +
IQyPb(O')! + !QyQb(O')! + IPyPb(O')!.

Since ~y and ~b are just back-projections of 1-
dimensional arrangement, their intersection has size
at most 2ro. This fact helps in keeping the branch­
ing factor of the partition tree small. We build the
search tree keeping the following invariants: Py(s) :S
njr~, Qy(s) :S nrojr~, Mb(S) :S njr~, Pb(S) :S njr~,
Qb(S) :S nrojr~, and My(s) :S njrb·

Those invariants are satisfied by repeatedly ap­
plying phases (1), (2) and (3) ofthe mainalgorithm,
where we process separately yellow points with blue
segments on one side and and blue points with the
yellow segments on the other side. It is easy to see
that after phases (1), (2) and (3) all the six invari­
ants are satisfied. We denote with R y• (resp. Rb.)
the number of vertices of a sparse net of yellow (resp.
blue) segments in s. The number of cells produced
in the thxee phases satisfies this inequality:

lek!:S I: cl[p~logp~ + Rb. + rol+
.eGk - 1

L Cl [p~ log p~ + Ry• + ro] + L C2rO

We use reductions similar to those used in the previ­
ous section and we obtain the following recursive in­
equality in the variable k: lek! :S csz(rO)[rO!ek-ll +
r5k((Ky + Kb)jn2

) + r~].
The solution the same as in Lemma 2 for d = 2,

with the difference that K is now to be interpreted as
Ky + Kb, i.e. the number of monochromatic intersec­
tions. Now we can augment the partition tree with
the methods for accounting of the different inter­
sections. The intersections in QyQb(O') can be com­
puted in time O(IQ(0')1 log !Q(0')1) by using a method
m [2, Lemma 3.1]. The intersections in PyPb(O')

This concludes the proof of Theorem 2. are counted recursively using the method we are de­
scribing for PyPb(s), unless q is a leaf of the upper
search tree. The method for counting intersections
described in [8] can be easily changed in a method for 6
counting bi-chromatic intersections within the same
time and storage bounds. H q is a leaf of the upper
search tree, we apply directly the variation of the
method in in [8] in order to count pairs in PyPb(q).

Incidence of points and (d - 1)­
simplices

In the second part of this paper we derive a result
for off-line simplex range searching. As a preliminary
step we solve the problem of detecting an incidence
between (d - 1)-simplices and points in d-space. We
assume d 2: 2. Let us consider the construction of
the partition tree in the Section 3. We have a set
of leaves associated with cells in Cl, where each leaf
has the cell q has associated sets P(q), Q(q) and
M(q), with the following invariants: IP(q)1 :::; n/r,
IQ(q)1 :::; nro/r, and IM(q)1 :::; m/rCd-l).

The intersections PyQ b(q) are computed in the fol­
lowing way. Let us consider the subtree rooted at q

and buHt by repeated applications of phase (1) and
(3) of the algorithm, where we have traced also the
set of points M y (q) (recall that these are the end­
points of segments in Py (q)). Each point in M y (q)
will appear in one cell for each level of the Q-tree
rooted at q. For each such cell and for each point,
we find the sibling cel1s intersecting the segment in
Py (q) incident to that point. Since the Q-tree is of
constant degree, each segment of Py (q) is associated
with a constant number of cel1s for each level of the
Q-tree. Moreover, for each level the associate seg­
ments cross all but at most two ofthe cells to whichit
has been associated at that level. As before, we can
count the intersections between Q-sets at a cell and
crossing associated segments. Thus this accounting
will cost overall at most O((IPy(q)1 + IQb(q) I) lo~ n)
over the whole Q-tree rooted at q. H an associated
segment is short at a level of the Q-tree than we deal
with that segment recursively on the next level of the
Q-tree rooted at that cello

When a segment from Py (q) is associated to a leaf
Tl of the Q-tree and it is short for that leaf, then we
use at that leaf a non-sensitive bi-chromatic varia­
tion of the algorithm in [8] on the Qb(Tl) and on the
set of segments in P(q) incident to points in My (Tl).
From the invariant we have that the input to the
non-sensitive method at a leafis of size at most 2n/r.

An analysis similar to the monochromatic case ac­
counts for all of cost associated to tracing the four
types of intersections in the tree. With the caveat
the K is now only the number of monochromatic
intersections, the time analysis is exactly as in the
case of non coloured segments. Again, by expand­
ing the partition tree in depth first manner and by
storing at any given time only the data relative to
one path from the root to a leaf, plus the siblings
of nodes on the path, we can achieve linear storage.

9

Let us set q = rd-1+€ + (K / nd)rd, which is pro­
portional to the number of leaves of the tree. The
number of simplices cutting each cell at a leaf is
O(n/r). We take the points at each leaf and we
divide them in groups of equal size m/q. This op­
eration takes time8 O(qm/rCd- 1)). For the remain­
der of this chapter, in order to keep the calculation
simple we assume that m = n and we drop COIl­

stant, logarithmic and epsilon factors. We will take
them into account in the statement of the final re­
sult. For each group of points and each group of
simplices we extend the simplices into hyperplanes.
The incidence of a (d - 1)-simplex and points can be
expressed as a conjunction of inequalities involving
bilinear forms whose terms are functions of the co­
ordinates of the point and of the linear subspaces
supporting faces of the (d - 1)-simplices (see e.g
[28] for a general treatment of these classes of prob­
lems). Using results in [28] and the deterministic
cuttings in [23] it is possible to find whether in a
point of a set of Pi points is incident to a (d - 1)­
simplex in a set of hi simplices deterministically
in time O(p:/Cd+1)+€h:/Cd+l) + p~+€ + ~ 10gd+2 Pi).
Also, by applying a depth-first strategy in the or­
der of executions of sub problems in the algorithm
in [28], it is possible to use only O(n + m) stor­
age. The total cost for buHding the partition tree
is: mr€ + rm(K/nd) + nrd-2+€ + n(K/nd)rd- 1• At
the leaves of the :partition tree we spend time:

8 A rough estimate hut sufficient for our purposes

mqjrd- 1 + q[(mj q)d/(d+l)(njr)d/(d+l) + mj q + njr].

Thus modulo constant, logarithmic and €-factors
we have a cost: nrd- 2 + n(K jnd)rd- 1 + nqjr +
n 2d/(d+1)ql/(d+l) jrd/(d+l). We obtain the best per-

formance by finding the value for the parameter r
that balances the several costs. To simplify theanal­
ysis we consider two cases.
Case r d- 1 > (K j nd)rd. In this case q < 2rd- 1 ,

therefore nq j r = nrd- 2. Also, since r < n, we
have. and r d- 1 < nrd - 2 • Therefore the cost
is: nrd- 2 + n 2d/(d+1)ql/(d+l) jrd/(d+l). The optimal
trade-off is for r = n(d-l)/(cP-d-l), and the cost is
O(n(2cP -4d+1)/(d2 -d-l)).

Case r d- 1 < (Kjnd)rd. In this case
q = (Kjnd)r d, therefore nqjr = n(Kjnd)rd- 1 •

Therefore the cost is: n + n(Kjnd)rd- 1 +
n 2d/(d+l)ql/(d+1) jrd/(d+l). The optimumis given by:
r d- 1 = n(d-l)/(d+l)(Kjnd)-d/(d+l). The total cost is
thus: Kl/(d+l)nd/(d+1). We keep in memory at any
given time only one path from root to a leaf and
we explore the partition tree in depth-first manner.
Thus the storage is only linear in n. Summarizing:

Theorem 4 Given n points and n (d - 1)­
simpliees in E d, we ean determine whether any
(d - 1)-simple:c is in eide nt to any point in time
O(K(l/(d+l)nd/(d+l)+t: + nf(d)+t:), where f(d) =
(2d2 - 4d + 1)j(d2 - d - 1), and K is the number of
vertiees in the arrangement of the (d - 1) -simpliees,
€ > 0 an arbitrarily small eonstant. The storage is
linear in n.

The highest gain over the non-sensitive method is
attained for low-dimensional spaces. For d = 2, we
have 1(2) = 1; for d = 3 we have f(3) = 7 j5.

7 Off-line simplex range search­
ing

We present the algorithm for solving off-line simplex
range searching queries as a modification of the al­
gorithm in the previous section. At the leaves of
the partition tree we need a non-sensitive method.
The inclusion of a point in a d-simplex can be ex­
pressed as a Boolean formula involving only bilinear
expressions and inequalities. By applying the the­
ory in [28] and the deterministic cuttings in [23], we

10

can derive easily a method that uses for n simplices
and m points time O(md/(d+l)+t:nd/(d+l) + m1+t: +
nlot+2 m) and O(n + m) storage.

We consider the algorithm in the previous sec­
tion using the facets of the input d-simplices as
the set of (d - 1)-simplices. Also, for each cell
u E C/e we compute the list of d-simplices that
contain the cell u, but do not contain the parent
of u. It is easy to see that if s is the parent of
u, then such set of d-simplices must have facets in
Q(s) U P(s). Thus the totallength of such lists and
the total time to compute them is asymptotically
O(nrd-2+t: + n(Kjnd)rd- 1). In the data structure
so modified we can collect for each d-simplex then
number of points contained in it. By using a depth
first strategy we can keep the storage linear. This
concludes the proof of Theorem 3.

References

[1] P. K. Agarwal and M. Sharir. Red-blue intersec­
tion detection algorithms, with applications to
motion planning and collision detection. SIAM
J. Comput., 19:297-321, 1990.

[2] P.K. Agarwal. Partitioning arrangements of
lines I: An eflicient deterministic algorithm.
Diserete (3 Computational Geometry, 5:449-
483, 1990.

[3] P.K. Agarwal. Partitioning arrangements of
lines TI: Applications. Diserete (3 Computa­
tional Geometry, 5:533-573, 1990.

[4] B. Aronov, H. Edelsbrunner, L.J. Guibas, and
M. Sharir. The number of edges of many facets
in a line segment arrangement. Combinatoriea,
(3):261-274, 1992.

[5] J.1. Bentley and T. Ottman. Algorithms
for reporting and counting geometric intersec­
tions. IEEE Trans. on Computers, C-28:643-
647, 1979.

[6] B. Chazelle. Reporting and counting segment
intersections. J. Comput. Syst. Sei., 32:156-
182, 1986.

[7] B. Chazelle. Lower bounds on the complexity of
polytope range searching. J. Amer. Math. Soe.,
2:637-666, 1989.

[8] B. Chazelle. Cutting hyperplanes for divide and
conquer. Diserete & Computational Geometry,
9:145-158, 1993.

[9] B. Chazelle. Lower Bound·s for Off-Line Range
Searching. Manuscript, March 1995.

[10] B. Chazelle and H. Edelsbrunner. An optimal
algorithm for intersecting line segments in the
plane. Journal 0/ the ACM, 39(1):1-54, 1992.

[11] B. Chazelle, H. Edelsbrunner, L. Guibas, and
M. Sharir. Algorithms for bichromatic line seg­
ment problems and polyhedral terrains. Re­
port UIUCDCS-R-90-1578, Dept. Comput. Sei.,
Univ. Dlinois, Urbana, 11, 1989.

[12] B. Chazelle, M. Sharir, and E. Welzl. Quasi­
Optimal Upper Bounds for Simplex Range
Searching and New Zone Theorems. Algorith­
miea, (8):407-429, 1992.

[13] B. Chazelle and E. Welzl. Quasi-optimal range
searching in spaces offinite VC-dimension. Dis­
erete Comput. Geom., 4:467-489, 1989.

[14] K. Clarkson and P. Shor. Applications of ran­
dom sampling in computational geometry II.
Diserete & Computational Geometry, 4:387-
422, 1989.

[15] M. de Berg and O. Schwarzkopf. Cuttings and
Applications. Tech. Report TR CS-92-26. Dept.
of Computer Seience, Utrecht University, 1992.

[16] J. Erickson and R. Seidel. Better lower bounds
on detecting affine and spherical degeneraeies.
In Proeeedings 0/ the 34th Symposium on Foun­
dations 0/ Computer Seienee, 1993. 528-536.

[17] J. D. Foley, A. Van Dam, S. K. Feiner, and J. F.
Hughes. Computer Graphies: Prineiples and
Praetiee. Addison-Wesley, Reading, MA, 1990.

[18] L. Guibas, M. Overmars, and M. Sharir. In­
tersecting line segments, ray shooting, and
other applications of geometrie partitioning

11

techniques. In Proe. 1st Seand. Workshop Al­
gorithm Theory, volume 318 of Lecture Notes
in Computer Seienee, pages 64-73. Springer­
Verlag, 1988.

[19] D. HaussIer and E. Welzel. € nets and sim­
plex range queries. Diserete Comput. Geom.,
(2):127-151, 1987.

[20] R. Karp. On-line algorithms versus off-line al­
gorithms: how much is it worth to know the
future? Technical Report TR-92-044, Interna­
tional Computer Science Institute, 1992.

[21] H. G. Mairson and J. Stolfi. Reporting and
counting interseetions between two sets of line
segments. In R. A. Earnshaw, editor, Theo­
retieal Foundations 0/ Computer Graphies and
CAD, volume F40 of NATO ASI, pages 307-
325. Springer-Verlag, Berlin, West Germany,
1988.

[22] F. M. Maley. A generic algorithm for one­
dimensional homotopic compactation. Algorith­
miea, 6:103-128,1991.

[23] J. Matousek. Cutting hyperplane arrangements.
Diserete Comput. Geom., 6:385-406, 1991.

[24] J. Matousek. Effieient partition trees. Diserete
& Computational Geometry, 8:315-334, 1992.

[25] J. Matousek. Range searching with effi.eient hi­
erarchical cuttings. In Proeeedings 0/ the 8th
A CM Symposium on Computational Geometry,
pages 276-285, 1992.

[26]K. Mulmuley. A fast planar partition algorithm,
I. In Proe. 29th A nnu. IEEE Sympos. Found.
Comput. Sei., pages 580-589, 1988.

[27] J. Pach and M. Sharir. On vertical visibility
in arrangements of segments and the queue size
in the Bentley-Ottman line sweeping algorithm.
SIAM J. Comput., 20:460-470,1991.

[28] M. Pellegrini. On collision-free placements of
simplices and the closest pair oflines in 3-space.
SIAM J. on Computing, 23(1):133-153, 1994.

[29] M. Pellegrini. On Point Location and Motion
Planning in Arrangements of Simpliees. In Pro­
ceedings 01 the 26th A CM Symposium on The­
ory 01 Computing, pages 95-104, 1994.

[30] D.E. Willard. Polygon retrieval. SIAM Journal
01 Computing, pages 149-165, 1982.

[31] A. C. Yao and F. F. Yao. A general approach to
D-dimensional geometrie queries. In Proc. 17th
Annu. ACM Sympos. Theory Comput., pages
163-168, 1985.

12

	95-1-0220001
	95-1-0020002
	95-1-0220003
	95-1-0220005
	95-1-0220007
	95-1-0220008
	95-1-0220009
	95-1-0220010
	95-1-0220011
	95-1-0220012
	95-1-0220013
	95-1-0220014
	95-1-0220015
	95-1-0220016
	95-1-0220017
	cover-hinten_2099-2897-300dpi

