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Abstract 

We describe a new method for decomposing pla­
nar sets of segments and points. Using this method 
we obtain new efficient deterministic algorithms for 
counting pairs of intersecting segments, and for an­
swering off-line triangle rang'e queries. In particular 
we obtain the following results: 

(1) Given n segments in the plane, the number K of 
pairs of intersecting segments is computed in time 
O(nl+ f + K 1/3n2/3+ f

), where € > 0 an arbitrarily 
small constant. 

(2) Given n segments in the plane which are coloured 
with two colours, the number of pairs of bi-chromatic 
intersecting segments is computed in time o (nl+ f + 
K;,{3n2/ 3+f

) , where Km is the number of mono­
chromatic intersections, and € > 0 is an arbitrarily 
small constant. 

(3) Given n weighted points and n triangles on a 
plane, the sum of weights of points in each triangle 
is computed in time O( nl+ f + K}/3n2/3+~), where lC 
is the number of vertices in the arrangement of the 
triangles, and € > 0 an arbitrarily small constant. 

The above bounds depend sub-linearly on the 
number of intersections among segments K (resp. 
Km, lC), which is desirable since K (resp. Km, lC) 
can range from zero to O(n2

). All ofthe above algo­
rithms use optimal 0( n) storage. The constants of 
proportionality in the big-Oh notation increase as € 

decreases. These results are based on properties of 
the sparse nets introduced by Chazelle [8]. 
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1 Introduction 

Intersection counting and problems in man­
ufacturing. In geometrie models of two and three 
dimensional objects, intersections of objects are im­
portant features. Often intersections are related to 
(desirable or undesirable) facts in the situation that 
the model should represent. A typical example is in 
modelling pieces cut from a fiat panel, since the same 
material cannot belong to two pieces, an intersection 
of two polygons is amistake to be avoided in the de­
sign of the cutting procedure. The importance of 
detecting, counting and reporting intersections has 
been recognized in the early days of computationci.l 
geometry and a substantial research effort has pro­
duced several effi.cient algorithms for this class of 
problems in two-dimensional space. If we model the 
boundaries of objects in the plane using segments we 
have efficient algorithms for detecting intersections 
and reporting them [5, 10, 14, 26]. However, impor­
tant computations in manufacturing would benefi.t 
from efficient algorithms for counting intersections 
of segments rather than reporting them. Consider 
a decomposition of a three-dimensional polyhedral 
object (e.g. a car engine ) obtained by projecting the 
edges of this object onto a plane, by decomposing the 
two dimensional arrangement of segments, and by 
back-projecting the two dimensional decomposition 
in three-space. Since the direction of projection can 
be chosen arbitrarily, among several directions one 
resulting in fewer intersections is preferable. In order 
to select a good projection, counting intersections is 



sufficient. In the design ofVLSI and PCB boards the 
rules for minimum distance among wires (each wire 
is modelIed as several overlapping thin polygons 1 ) 

can be checked by expanding each polygon in every 
direction by half of the minimum distance. An in­
crease in the number of intersections is a symptom 
of a possible design error. We should notice that, in 
this example, detection of one intersection is not suf­
ficient since the overlap of polygons forming a single 
wire is not a design error, while on the other hand 
reporting all intersections is not necessary. Wires of 
two different types (e.g. polysilicon and diffusion in 
n-MOS technology) are used to fabricate integrated 
transistors. In this case we can check deign rules for 
transistors by counting only the number of intersec­
tions among wires of the two types. An interesting 
variation on the counting problem is finding the seg­
ments contributing the largest number of intersec­
tions or the mjnjmum number. 

In this paper we describe a new deterministic 
method for partitioning planar sets of segments and 
points. U sing this method and other tools we are 
able to obtain improved worst case time bounds for 
three basic problems. The first problem is that of 
counting pairs of intersecting segments. The second 
problem is an important variation of the first one, 
in which we have two sets of segments (coloured, 
say, yellow and blue) and we are interested in count­
ing only bi-chromatic pairs of intersecting segments. 
In this special case we obtain time bounds that im­
prove on those for counting all intersections. The 
third problem is that of solving off-line simplex range 
searching queries over sets ofpoints. We obtain are­
sult that holds in any dimension d, but the planar 
case (d =: 2) is the one where the benefit over pre­
vious methods is more evident. Consider the prob­
lem of integrating a sampled scalar function of two 
variables over aseries of possibly intersecting planar 
polygonal domains. The supersampling technique 
used for antialiasing is a case where such problem 
arises in the area of computer graphics [17]. If we 
model each domain as a disjoint union of triangles 
and the sampies as weighted points on the plane, 

1 Although it is common in VLSI to use axis-parallel rect­
angles to model wires during high levels of layout design, after 
the action of some optimization tools such as homotopic com­
pactation [22] the wires are unrestricted polygons. 
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we reduce the integration problem to a case of off­
line triangle range-searching for which our efficient 
algorithm can be used. 

Counting Intersections: Summary of re­
sults. Bentley and Ottman describe a classical algo­
rithm for reporting intersections of segments in time 
O((n+K) logn) and O(nlog2 n) storage, where K is 
the number of reported intersections and n the num­
ber of segments [5, 27]. Work on this problem cul­
minated with several optimal randomized and deter­
ministic algorithms [10, 14, 26] with O(nlogn + K) 
time bounds. 

At the moment it is not known how to count 
points of intersection more efficiently than by report­
ing them, if we allow degenerate sets of segments 2 

(see [16] for a lower bound argument applicable to 
quite a large family of algorithms). What we can 
do efficiently is counting pairs of intersecting seg­
ments. If the input set is in general position the 
two measures coincide. If the input set is degenerate 
then by counting pairs of intersecting segments we 
always estimate from above the number of intersec­
tions. The running time of our algorithms depends 
on the number of points of intersection. For most of 
the applications in manufacturing it is sufficient to 
count intersecting pairs and from now on we will not 
dweIl on the distinction and we will assume that the 
input set is in general position. 

Algorithms for reporting intersections can be used 
to count pairs of intersecting segments, but they are 
efficient only when there are few intersections (say 
K < n log n). When the number of intersections is 
high, algorithms based on plane partitioning have 
been proposed [6],[18, 3, 8]. Currently the best de­
terministic method uses O(n4 / 3 1og1

/
3 n) time and 

linear storage for a set of n segments [8] (see also 
[21]). Note that these methods improve on the re­
porting algorithms only when K > n4/ 3 • In this pa­
per we show a new method for counting intersections 
among segments whose time bound interpolates be­
tween those of previously known deterministic algo­
rithms. We obtain the following result: 

Theorem 1 Given a set of n segments forming 
an arrangement with K vertices we can count the 

2 A set of relatively open segments is in degenerate if there 
are three segm.ents sharing a point. 



pairs of intersecting segments in time O(nl+t: + 
n2/3+t: Kl/3), using linear storage, where € > 0 is 
an arbitrarily small constant. 

This result improves on previous deterministic 
methods in the range nl+t: < K < n2-t:. For 
K < nl+€ or K > n2-€, our algorithm is within 
an n€ factor from the previously known best al­
gorithms in those ranges. H we allow randomiza­
tion, then a method in [15] attains expected time 
O(nlognlogK + Kl/3n2/3Iog1/3n). 

In the bichromatic case we are given two coloured 
sets of segments, and we are interested in counting 
only the bichromatic intersections [11, 1, 3]. Agar­
wal [3] gives an algorithm with time and storage 
bounds O( n4/3Iog1.78 n) for any set of segments. By 
using the approach in [8] it is possible to reduce 
the running time to 0 ( n 4/31og1 /3 n) and the stor­
age to linear. For the special case when there are 
no monochromatic intersections an 0 ( n log n) algo­
rithm is described in [11]. In this paper we obtain 
the following result: 

Theorem 2 Given a set of n blue segments form­
ing an arrangement with Kb vertices, and a set of 
n yellow segments forming an arrangement with K y 

vertices, we can count the number of bi-chromatic 
pairs of intersecting segments in time O(nl+€ + 
n2/3+t:(Ky + Kb)1/3) and linear storage, where € > 0 
is an arbitrarily small constant. 

Note that the time bound depends only on the 
number of monochromatic intersections, and not on 
the reported number of bi-chromatic pairs of in­
tersecting segments. The bound of our algorithms 
again interpolates between the two best previous al­
gorithms and improves on both in the range nl+t: < 
(Ky + Kb) < n2

-t:. 

On-line versus Off-line simplex range 
searching. Simplex range searching has emerged in 
recent years as one of the basic problems in compu­
tational geometry [30, 13, 19, 31, 12, 24]. The prob­
lem in its on-line version is the following. We are 
given n points in d-dimensional real space Ed (here 
d is a constant and the multiplicative constants in 
the bounds depend on d). We wish to ans wer effi­
ciently the following dass of queries: given a query d-
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simplex3 q, count the number ofpoints in q. Usually 
the problem is stated in a slightly more general set­
ting for points with associated weights drawn from 
a semi-group. In this case the query asks for the cu­
mulative weight of the points in q. For simplicity of 
exposition we will concentrate on the counting prob­
lem, but all the results extend to weighted sets of 
points. In the off-line case, both the points and the 
query simplices are known at pre-processing time. 

Aremarkable result of Chazelle [7] is that, if m 
units of storage are allowed, than for every data or­
ganization scheme4, there exists a query that costs 
O(njm1/ 2 ) for d = 2, and O(njm1/dlogn) for d > 2. 
The final step of the proof of the lower bound rests 
on an adversary argument. Given any organization 
of partial sums in a pre-processed data structure, 
an adversary is going to choose the hardest pos­
sible query. Almost matching upper bounds have 
been found [12, 25] which are off the lower bound by 
small polynomial or polylogarithmic factors. Thus, 
for a sequence of queries on a set of points, the total 
cost of the sequence can be bounded by multiply­
ing the number of queries times the worst case cost 
of a query, plus the cost for preprocessing. A se­
quence of n queries over n points in E d has a worst 
cost O(n4/ 3) for d = 2 and O(n2d/(d+1)/lo~/(d+1)n) 
for d > 2. In the off-line case, when the queries 
are known in advance, Chazelle has recently proved 
a lower bound O(n2- 2/(d+1)(log n)-S/2) in the semi­
group model [9]. The best algorithms presented in 
literature for the off-line case [3] matches, up to small 
factors, the lower bound. In the planar case we 
could also solve the off-line problem in time, roughly 
O((n+ K)logn), by using a sweeping line approach 
and dynamic data structures, where K is the number 
of vertices in the arrangement of query triangles. 

The type of argument that leads to the lower 
bounds does not take into ac count the fact that some 
sequences might be easier than others, and there­
fore in many practical applications such bounds may 
be unduly pessimistic (see e.g. [20]). In this pa­
per we study the effect of sparsity on the simplex 
range searching problem as well as on the intersec-

3 A d-simplex is the convex hull of d + 1 linearly independent 
points in d-space. For d = 2 it is a triangle, for d = 3 a 
tetrahedron. 

4Such data structure satisfies very general conditions. 



tion counting problem. We consider the complexity 
of the arrangement of query simplices as a measure 
on the "sparsity"S of the sequence of queries. Our 
main contribution on this problem is that in the off­
line case we obtain abound on the total cost of a 
sequence that depends on the number of simplices n 

and on the sparsity parameter lC. In particular we 
prove: 

Theorem 3 Given n points and n simplices in 
d-dimensional space we count the number of 
points in each simplex deterministically in time 
O(lC1/(d+l)nd/(d+l)+f"+n!(d)+f"), where lC is the num-

ber of vertices in the arrangement of query sim­
plices, € an arbitrarily small constant, and f( d) = 
(2([2 - 4d + 1)/(d2 - d - 1). The storage used is 
O(n). 

For the case d = 2, as a corollary we obtain thus a 
bound o (n1+f" +lC1/3n 2/3+f"), which improves on the 
previous fastest algorithms in the range nl+f" < lC < 
n 2 -f". Our result leaves open the question whether in 
the on-line case we can obtain bounds on the cost of 
answering a sequence of queries S in time depending 
on the sparsity of S. 

The method used. We extend a method for par­
titioning of a set of simplices, developed in [29] which 
is based on the properties of sparse nets introduced 

attained using the sparse nets [8] to select the subset 
of S. The construction of the partition tree is car­
ried on up to a certain depth. At the leaves of the 
tree we use known methods that are not sensitive 
to the sparsity of the input (a similar approach is 
used in [4] to prove combinatorial bounds). In order 
to count pairs of intersecting segments we specialize 
the analysis for d = 2 and we add auxiliary computa­
tions specific to the intersection counting problem. 
In the second part of the paper we use the parti­
tion tree to solve a variation of Hopcroft's problem, 
which consists in detecting incidences of points and 
(d - 1 )-simplices 7 in E d • Once we have a solution 
to this problem we add auxiliary operations on the 
partition tree to obtain the main result on off-line 
simplex range searching (Theorem 3). 

The paper is organized as follows. In Section 2 
we recall the main properties of sparse nets. In 
Section 3 we discuss a method for obtaining a bal­
ance partition tree for simplices and points, which 
is used as a basis by the other algorithms. In sec­
tion 4 we discuss the algorithm to count the inter­
sections in a set of segments. In Section 5 we discuss 
how to count efficiently bichromatic intersections of 
coloured segments. In Section 6 we discuss a varia­
tion of Hopcroft's problem for points and simplices. 
In Section 7 we we extend the solution to Hopcroft's 
problem to solve the off-line simplex range searching 
problem. by Chazelle [8], to the case of simplices and points. 

The general strategy is a divide and conquer ap­
proach. We have an input set S of (d - 1 )-simplices6 

and an input set M of points. We select a subset of 2 
S that is used to partition E d into cells of constant 
descriptive complexity (also called elementary cells) 

Sparse Nets 

Let H be a set of n hyperplanes in Euclidean d­
dimensional Space Ed. We assume that His in gen­
eral position, meaning that exact1y d hyperplanes 
meet in a common point. Let R ~ H be a subset 
of p ~ n hyperplanes. For a segment e, let Re (resp 
He) be the number of hyperplanes in R (resp. H) 
intersecting e but not containing e. For a d-simplex 
s, let Rtf (resp H tf ) be the number of vertices of the 
arrangement created by R (resp. H) contained in s. 
Let r be a positive integer number. 

in such way as to balance the number of elements 
of S intersecting each elementary cell and the num­
ber of points in M inside each cello We apply the 
method recursively in each elementary cello The ele­
mentary cells are then organized in a partition tree. 
The gist of the method is to keep a tight control on 
the size of the partition tree. This tight counting is 

~Naturally one could prefer other ways to capture the in­
formal notion of sparsity. An advantage of choosing the com­
plexity of the arrangement is that this measure is invariant 
under projective transfonnations. 

6 A (d - 1 )-simplex is the convex hull of d linearly indepen­
dent points in d-space. It is segment for d = 2, a triangle for 
d = 3. 
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Definition 1 R is a (1/r)-approximation for H if, 
for any segment e: IRe / P - He/ni< 1/r. 

7 A randomized method for the planar case is given in [15]. 



Definition 2 R is a (1/ r ) -net for H if for any seg­
ment e, He > n/r implies Re > O. 

Definition 3 R is a sparse (l/r )-net for (H, s) if 
for any segment e , He > n / r implies Re > 0; and 
the following inequality holds: R$ S; 4(p / n)d H $. 

Definition 4 A (l/r )-cutting for H is a partition 
of Ed into interior-disjoint simplices such that any 
simplex meets at most n/r of the hyperplanes in H. 
The number of simplices in the partition is called the 
size of the cutting. 

Let s be any d-simplex in E d• We denote by 
H (s) the subset of hyperplanes of H intersecting s. 
Computing a sparse net for (H ( s ), s) directly can be 
time-consuming, therefore first an approximation A 
of H ( s) is generated, then a strong net for (A, s) is 
computed. Let ro be a constant and i an integer 
such that n/r~-l > IH(s)1 > n/r~. Moreover de­
fine Po = r~IH(s)l/n and p = Po log Po· The foilow­
ing lemma summarizes some important properties of 
this construction: 

Lemma 1 ([8]) (i) 
Let A be a (1/(2dpo))-approximation of Hand R 
a sparse (1/(2dpo))-net for (A, s), then the follow­
ing inequality holds: Ra S; 4(p/IH(s)l)dHa + 4pd / Po. 
(ii) A canonical triangulation of the sparse net R of 
Lemma 1 is a l/ro-cutting for H(s) in sand it has 
size O(pd-l + Ra). (iii) The approximation A and 
the sparse net R at (i) is computed in time O(IHI). 

We need two additional important concepts. We 
fix once and for all a vertical direction in E d • A 
(d - 1 )-simplex t partially covers a d-simplex s if 
t intersects s and some (d - 2)-face of t intersects 
s. If (d - 1 )-simplex t partially covers a d-simplex 
s then the vertical projection of some (d - 2)-face 
of t will intersect the vertical projection of s. A 
(d - 1 )-simplex t completely covers a d-simplex s if t 
intersects s and no (d - 2)-face of t intersects s. 

3 Partitioning points and (d - 1)­
sim plices in E d 

In this Section we describe a general algorithm for 
partitioning sets of points and (d - 1 )-simplices. The 
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objective is to maintain a tight control on the num­
ber of simplices and points incident to any ceil asso­
ciated with nodes of the partition tree, as weil as a 
tight control on the size of the partition tree. 

We are given a set M of m points in E d and a 
set S of n (d - 1 )-simplices in general position. We 
denote with K the number of d-tuples of simplices 
having a point in common. We build a sequence of 
sets Co, .. , Cl where I = log,.o r and ro is a suitable 
constant. The set Ci is a coilection of quadrupies 
(s, P( s), Q( s), M( s)) where s is d-simplex in Ed or a 
d-cylinder (Le. adegenerate d-simplex with a vertex 
at infinity), also called an elementary ceil. P( s) is 
the subset of simplices in S partially covering s, Q( s) 
is the subset of simplices in S covering s, M( s) is the 
set ofpoints of M in s. In each set Ci the union oft he 
elementary ceils is E d • The invariants maintained 
over the sets Ci are: IP(s)1 S; n/r~, IQ(s)1 S; nro/r~, 
and IM(s)1 S; m/r~(d-l). The algorithm to construct 
Ck from Ck-l works in three main phases. 

(1) Take s in Ck - 1 and build a sparse net ofLemma 
1 for the hyperplanes spanning simplices in Q(s), 
restricted to s. Triangulate the net thus obtain­
ing a set of simplices (0", 0, Q(O"),M(O")). By induc­
tion we assume that IQ(s)1 S; ron/r~-l. We choose 
the parameter p~ = r~-lIQ(s)l/n and thus obtain 
QI(O")I S; ron/r~ as foilows from Lemma 1. Also, 
p~ S; ro· 
(2) Take s in Ck-l and P(s). If P(s) is not empty 
project the simplices in P(s) and s in (d - 1)­
dimensional space obtaining a set PI(s) and a (d-1)­
simplex s'. Extend each (d - 2)-face of simplices in 
P' ( s ) into a full hyperplanes and make a sparse net of 
Lemma 1 for this set ofhyperplanes. Triangulate the 
net and obtain a set of ( d - 1 )-dimensional elemen­
tary ceils. Extend the elementary ceils vertically in 
d-space within s obtaining cylinders (TJ,P(TJ),Q(TJ)). 
Inductively IP(s)1 S; n/r~-l and we choose p~ = 
r~IP(s)l/n so as to obtain IP(TJ)I S; n/r~ and 
IQ(TJ)I S; IP(s)1 S; ron/r~. Also p~ < ro. We fur­
ther decompose the cylinder TJ into d-simplices. We 
have a constant number of them and they satisfy the 
two invariants. 

(3) We compute, for each ceil 0" built in phase (1) and 
(2), the points in M( 0"). If M( 0") does not satisfy 
the invariant we can split 0" into subceils with at 



most m/r~(d-l) points. For each eell s E CIe- l we 
introduee at most rg- l new eells in this phase. 

At the end of the three phases we eollect all the 
eells in the set Cle . The set Cle satisfies the three in­
variants. The simpliees produeed in are organized in 
a two-level search tree. The search trees on simpliees 
built in phase (1) (resp. (2)), with the refinement in 
phase (3), will be ealled Q-trees (resp. P-trees). The 
base ease Co eorresponds to the whole spaee E d and 
trivially satisfies the invariants. 

3.1 Analysis of the algorithm 

Let us denote by s' the vertical projeetion of a sim­
plex s onto (d - 1 )-dimensional subspaee, and by 
R' the sparse net for P'(s). We use Lemma 1 to 
bound the number of simpliees obtained at each it­
eration of the algorithm. We obtain the following 
inequalities in which we denote with CI, C2, ... ab­
solute multiplieative eonstants that depend on d. 

Let Po = p~ + p~. Notiee that I:sEC"_l P'(s)ß' = 
O( nd - l ). We denote with K the total number of 
points which are the intersection of d (d - 1) sim­
pliees in S. From the definition we have K :S (~). 

We defi.ne z( ro) = 10gO(l) ro. 

IClel:S L Cl[p~d-llogd-l p~ + Rs + rg-l ]+ 
SEC"_l 

L c2[p~d-2logd-2 p~ + R~, + rg- l ] 
SEC"_l 

< L c3 z(ro)[rg- 1 + (r~/n)dQ(s)ß + rg- l
] + 

ßEC"_l 

< 

Finally, we obtain the following reeursive inequal­
ity in the variable k: ICIe I :S C6Z( ro)[rg- 1 ICIe-l I + 
r~d(K/nd) + r~(d-l)]. A similar reeursive inequality 
is solved in [29](journal version) with the following 
bound: 
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Lemma 2 IClei :S Dr~(d-l+€) + F(K/nd)r~d, where 
Fand D are constants with respect to k, n and K_ 

We eontinue the eonstruction until k reaches the 
value 1 = 10&-0 r, where r is a value to speci­
fied later _ The total number of elementary eells is 
I:k=O ICIeI, which is bounded by I:i=o[Dr~(d-1+f) + 
F(K /nd)r~dl_ This is a summation of geometrie se­
ries of ratio rg-1+€ and rg, which is proportional to 
the last term of the series. Thus we have abound 
O(Dr~(d-1+€)+F(K/nd)r&d) = O(rd-1+€+(K/nd)rd) 
on the size of the search tree. The time spent on each 
d-simplex in the search tree is linear in the number of 
( d - 1 )-simpliees interseeting it by Lemma 1. So the 
eonstruction oft he nets in phases (1) and (2) has the 
following eost:I:i=o(nro/r~)ICIeI, which is bounded 
by I:i=o(nro/r~)[Dr~(d-1+€) + F(K/nd)r~dJ, which 
is equal to I:i=o(nro)[Dr~(d-2+f)+F(K/nd)r~(d-l)]. 

Sinee these are sums of geometrie series of ra­
tio greater than 1 they are proportional to the 
last element of the summation. We obtain bound: 
O(n[rd-2+€ + (K/nd)rd- l ]) for all the time used to 
eonstruet the hierarchy. The loeation of the points 
and the splitting of phase (3) is done in time propor­
tional to the number ofpoints IM(s)I. Phase (3) over 

the whole algorithm eosts: I:i=o(m/r~(d-l»)IClei 
which is bounded by I:i=o(m/r~(d-l»)[Dr~(d-1+€) + 
F(K/nd)r~d], which is equal to I:i=o m[Dr~€ + 
F( K / nd)r~]. Again we have sums of geometrie 
series of ratio ra and ro, so we obtain abound 
O(mr€ + m(K/nd)r). This analysis aeeounts for the 
eonstruction of a partition tree that is eommon to 
several algorithms in this paper. 

Counting interseetions of seg­
ments 

Given a set S of n segments in E 2 , let A( S) be 
the arrangement formed by the segments in S and 
let K be the number of vertiees in the arrange­
ment. We specialize the eonstruction of seetion 3 
for d = 2 and we use as the set M of input points 
the end-points of the segments in S. Thus, by us­
ing the algorithm of the previous seetion we obtain 
a partition tree with leaves associated with eells (T 

in Cl- The following eonditions hold at the leaves: 



IP(O")I ::; njr, IQ(O")I ::; nrojr, IM(O")I ::; njr, and ber of cells for each level of the Q-tree. Moreover, 
IGd = O(r(l+€) + (Kjn2)r2). for each level the associate segments cross all but at 

We build the search tree up to level 1 = most two of the cells to which it has been associated 
log..o n2 j K, corresponding to r = n2 j K . We con- at that level. N ow, we can count the intersections 
sider several types of intersections that can be ac- between Q-sets at a cell and crossing associated seg­
counted for using different techniques on the search ments again by using Lemma 3.1 in [2]. Thus ac­
tree. The main difficulty is in the fact that in the counting for these intersections will cost overall at 
construction ofthe partition tree we separate cover- most O((IP(O")I + IQ(O")I)log2n) over the whole Q­
ing segments from the partially covering ones. Thus tree rooted at 0". H an associated segment is short 
we will describe a scheme for merging back again at a level of the Q-tree, we deal with that segment 
those sets of segments. recursively on the next level of the Q-tree rooted at 

We discuss how to count intersections in a set that cello (5) When a segment from P(O") is asso­
P( s), for a generic cell S. The results follows by ciated to a leaf TI of the Q-tree and it is short for 
starting with the whole space, s = E d• Let P( s) be that leaf, then we use at that leaf a non-sensitive 
the set of simplices partially covering S. We then bi-chromatic method [3, 8] on the set Q(TI) and on 
apply phase (2) of the main algorithm obtaining a the set of segments in P(O") incident to points in 
set of elementary cells ~ whose union is S. For each M (TI). Prom the invariant we have that the input to 
cell 0" we obtain sets P(O") and Q(O"). We then have the non-sensitive method at aleafis ofsize at most 
to compute: The set QQ(O") ofintersections between 2njr. 
a segment in Q(O") and a segment in Q(O"), clipped The proof of correctness of this method derives 
in 0". The set PQ ( 0") of intersections between a seg- from the fact that all possible pair of intersecting 
ment in Q(O") and a segment in P(O"), clipped in 0". segments are accounted for. The details are routine 
The set PP ( 0"). of intersections between a segment and are left as an exercise. N ext we analyze the cost 
in P( 0") and one in P( 0"), clipped in 0". Clearly: of the algorithm. The total cost for setting up the 
IP P(s)1 = 2:uEl: IQQ(O")I + IPQ(O")I + IP P(O")I· Next search tree is: nr€+rn(Kjn2)+nr€ +n(Kjn2)r. For 
we describe how to compute each type of intersec- r = n 2 j K, we obtain a cost: O( nl+t:). The cost of 
tion: (1) The intersections in Q Q ( 0") can be com- the accounting on all levels of the search tree except 
puted in time O(IQ( 0")1 log IQ(O")I) by using a method the leaves is: 2:i=o[(nrojr~)1+t: + (njr~)l+€]IGIeI, 
in [2, Lemma 3.1], which is based on counting in- which is bounded by 2:i=o[(nrojr~)1+€1[Dr~(1+€) + 
versions in permutations. (2) The intersections in F(Kj d) 1e2] hich' ual "I ( )[D 0 n ro , w IS eq to LJIe=O nro ro + 
PP(O") are counted recursively using the method we F(Kjnd)r~(I-'-€)]. Since these are sums of geomet­
are describing for P P( s), unless 0" is a leaf of the up-

ric series of ratio grat er than 1 they are propor-
per search tree. (3) HO" is a leaf of the upper search tional to the last element of the summation. We 
tree, we apply directly the method in [8], which uses 
time O(IQ(0")14/3Iog1/ 3 IQ(0")1) and O(IQ(O")I) stor- obtain bound: O(n~ogr + (Kjn

2
)r

l
-€]) which, for 

age. (4) The intersections PQ(O") are computed in 
the following way. Let us consider the subtree rooted 
at 0" and built by repeated applications of phases 
(1) and (3) ofthe algorithm of Section 3, where the 
points M ( 0") that we have used in phase (3) are are 
the endpoints of segments in P( 0"). Each point in 
M ( 0") will appear in one cell for each level of the 
Q-tree rooted at 0". For each such cell and for each 
point, we find the sibling cells intersecting the seg­
ment in P( 0") incident to that point. Since the Q­
tree has degree bounded by a constant, each segment 
of P( 0") is associated with at most a constant num-
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r = n 2 j K is O(nl+t:). 

The cost incurred at the leaves of the partition 
tree is: 2:uEC" (nj r )4/3Iog1/3 n, which is bounded by 
(rl+€+(Kjn2)r2)(njr)4/3Iog1/3n. Again, substitut­
ing our choice of r we obtain abound O( n2/3+€ KI/3). 

We can reduce the working storage to linear in n 
by building the partition tree in a depth first man­
ner. The working storage is used to store one path 
from the root to one leaf of the partition tree, plus 
all siblings of the nodes on the path, together with 
the associated sets Q, P and M. The size of these 
sets decreases geometrically, therefore the sum of all 



the size of sets along the path is linear in n. The 
result claimed in the introduction is almost proved, 
except for the issue of how the algorithm guesses the 
correct value of the parameter r, which depends on 
the unknown value of K. We overcome this problem 
by using a well known trick of doubling. We start 
with guess K o = n and we run the algorithm until 
it exceeds the time bound. At this point we double 
the guess using the general rule Ki = 2K(i-l)' There 
are at most a logarithmic number of guesses before 
the algorithm terminates having counted all of the 
pairs of intersecting segments. The time bound is 
unchanged except for a slightly higher value of E. 

This trick will be used also for the other results in 
this article. The above discussion constitutes the 
proof of Theorem 1. 

5 Bi-chromatic interseetions 

In the bichromatic case we show an algorithm whose 
time bound depends only on the number of mono­
chromatic intersections, and thus it may be much 
faster than the general algorithm to count segment 
intersections, if the two coloured input sets are sep­
arately sparse. We are give two sets of n segments 
which we colour yellow and blue. The problem is to 
count the number K Yb of yellow-blue intersections. 
We give a method whose time bound does not de­
pend on the bichromatic intersections, but on the 
number of mono-chromatic intersections Ky + Kb. 
More in detail, for a cell s, we will consider the sets: 
Py( s) of yellow simplices partially covering s, Qy( s) 
of yellow simplices covering s, Mb (s) of end-points of 
blue segment in s, Pb( s) of blue simplices partially 
covering s, Qb(S) of blue simplices covering s, and 
My( s) of end-points of yellow segments in s. 

We have these types of intersections: (i) The set 
QyQb(S) ofintersections between a segment in Qb(S) 
and a segment in Qy(s), clipped in s. (ii) The set 
PyQb(S) of intersections between a segment in Qb(S) 
and a segment in Py(s), clipped in s. Symmetrically 
we have also a set PbQy(S) (iii) The set PyPb(S), of 
intersections between a segment in Py ( s) and one in 
Pb( s), clipped in s. 

Let us take a cell S and two sets of partially cover­
ing segments, Py( s) and Pb( s) we describe a method 

8 

for counting the set of intersections PyPb( s). The 
final bound will be derived by setting S = E 2

• We 
build a cell decomposition for Py( s) and one sep­
arate for Pb(S) by using phases (2) and (3) of the 
main algorithm. We obtains sets ~y and ~b which 
are sets of vertical strips. We merge the two decom­
positions obtaining a set ~ of cells. We then have the 
sets Py{O'), Qy(O'), Pb(O'b) and Qb(O'b) for all 0' E ~. 
We have that the number of bichromatic intersec­
tions P!,Py(s) is: !PyPb(S)! = L':crel; !PyQb(O')! + 
IQyPb(O')! + !QyQb(O')! + IPyPb(O')!. 

Since ~y and ~b are just back-projections of 1-
dimensional arrangement, their intersection has size 
at most 2ro. This fact helps in keeping the branch­
ing factor of the partition tree small. We build the 
search tree keeping the following invariants: Py( s) :S 
njr~, Qy(s) :S nrojr~, Mb(S) :S njr~, Pb(S) :S njr~, 
Qb(S) :S nrojr~, and My(s) :S njrb· 

Those invariants are satisfied by repeatedly ap­
plying phases (1), (2) and (3) ofthe mainalgorithm, 
where we process separately yellow points with blue 
segments on one side and and blue points with the 
yellow segments on the other side. It is easy to see 
that after phases (1), (2) and (3) all the six invari­
ants are satisfied. We denote with R y• (resp. Rb.) 
the number of vertices of a sparse net of yellow (resp. 
blue) segments in s. The number of cells produced 
in the thxee phases satisfies this inequality: 

lek!:S I: cl[p~logp~ + Rb. + rol+ 
.eGk - 1 

L Cl [p~ log p~ + Ry• + ro] + L C2rO 

We use reductions similar to those used in the previ­
ous section and we obtain the following recursive in­
equality in the variable k: lek! :S csz(rO)[rO!ek-ll + 
r5k((Ky + Kb)jn2

) + r~]. 
The solution the same as in Lemma 2 for d = 2, 

with the difference that K is now to be interpreted as 
Ky + Kb, i.e. the number of monochromatic intersec­
tions. Now we can augment the partition tree with 
the methods for accounting of the different inter­
sections. The intersections in QyQb(O') can be com­
puted in time O(IQ( 0')1 log !Q( 0')1) by using a method 
m [2, Lemma 3.1]. The intersections in PyPb(O') 



This concludes the proof of Theorem 2. are counted recursively using the method we are de­
scribing for PyPb( s), unless q is a leaf of the upper 
search tree. The method for counting intersections 
described in [8] can be easily changed in a method for 6 
counting bi-chromatic intersections within the same 
time and storage bounds. H q is a leaf of the upper 
search tree, we apply directly the variation of the 
method in in [8] in order to count pairs in PyPb( q). 

Incidence of points and (d - 1)­
simplices 

In the second part of this paper we derive a result 
for off-line simplex range searching. As a preliminary 
step we solve the problem of detecting an incidence 
between (d - 1 )-simplices and points in d-space. We 
assume d 2: 2. Let us consider the construction of 
the partition tree in the Section 3. We have a set 
of leaves associated with cells in Cl, where each leaf 
has the cell q has associated sets P(q), Q(q) and 
M(q), with the following invariants: IP(q)1 :::; n/r, 
IQ(q)1 :::; nro/r, and IM(q)1 :::; m/rCd-l). 

The intersections PyQ b( q) are computed in the fol­
lowing way. Let us consider the subtree rooted at q 

and buHt by repeated applications of phase (1) and 
(3) of the algorithm, where we have traced also the 
set of points M y ( q) (recall that these are the end­
points of segments in Py ( q)). Each point in M y ( q) 
will appear in one cell for each level of the Q-tree 
rooted at q. For each such cell and for each point, 
we find the sibling cel1s intersecting the segment in 
Py ( q) incident to that point. Since the Q-tree is of 
constant degree, each segment of Py ( q) is associated 
with a constant number of cel1s for each level of the 
Q-tree. Moreover, for each level the associate seg­
ments cross all but at most two ofthe cells to whichit 
has been associated at that level. As before, we can 
count the intersections between Q-sets at a cell and 
crossing associated segments. Thus this accounting 
will cost overall at most O((IPy( q)1 + IQb(q) I) lo~ n) 
over the whole Q-tree rooted at q. H an associated 
segment is short at a level of the Q-tree than we deal 
with that segment recursively on the next level of the 
Q-tree rooted at that cello 

When a segment from Py ( q) is associated to a leaf 
Tl of the Q-tree and it is short for that leaf, then we 
use at that leaf a non-sensitive bi-chromatic varia­
tion of the algorithm in [8] on the Qb( Tl) and on the 
set of segments in P( q) incident to points in My ( Tl). 
From the invariant we have that the input to the 
non-sensitive method at a leafis of size at most 2n/r. 

An analysis similar to the monochromatic case ac­
counts for all of cost associated to tracing the four 
types of intersections in the tree. With the caveat 
the K is now only the number of monochromatic 
intersections, the time analysis is exactly as in the 
case of non coloured segments. Again, by expand­
ing the partition tree in depth first manner and by 
storing at any given time only the data relative to 
one path from the root to a leaf, plus the siblings 
of nodes on the path, we can achieve linear storage. 
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Let us set q = rd-1+€ + (K / nd)rd, which is pro­
portional to the number of leaves of the tree. The 
number of simplices cutting each cell at a leaf is 
O(n/r). We take the points at each leaf and we 
divide them in groups of equal size m/q. This op­
eration takes time8 O(qm/rCd- 1)). For the remain­
der of this chapter, in order to keep the calculation 
simple we assume that m = n and we drop COIl­

stant, logarithmic and epsilon factors. We will take 
them into account in the statement of the final re­
sult. For each group of points and each group of 
simplices we extend the simplices into hyperplanes. 
The incidence of a (d - 1 )-simplex and points can be 
expressed as a conjunction of inequalities involving 
bilinear forms whose terms are functions of the co­
ordinates of the point and of the linear subspaces 
supporting faces of the (d - 1 )-simplices (see e.g 
[28] for a general treatment of these classes of prob­
lems). Using results in [28] and the deterministic 
cuttings in [23] it is possible to find whether in a 
point of a set of Pi points is incident to a (d - 1)­
simplex in a set of hi simplices deterministically 
in time O(p:/Cd+1)+€h:/Cd+l) + p~+€ + ~ 10gd+2 Pi). 
Also, by applying a depth-first strategy in the or­
der of executions of sub problems in the algorithm 
in [28], it is possible to use only O(n + m) stor­
age. The total cost for buHding the partition tree 
is: mr€ + rm(K/nd) + nrd-2+€ + n(K/nd)rd- 1• At 
the leaves of the :partition tree we spend time: 

8 A rough estimate hut sufficient for our purposes 



mqjrd- 1 + q[(mj q)d/(d+l)(njr )d/(d+l) + mj q + njr]. 

Thus modulo constant, logarithmic and €-factors 
we have a cost: nrd- 2 + n(K jnd)rd- 1 + nqjr + 
n 2d/(d+1)ql/(d+l) jrd/(d+l). We obtain the best per-

formance by finding the value for the parameter r 
that balances the several costs. To simplify theanal­
ysis we consider two cases. 
Case r d- 1 > (K j nd)rd. In this case q < 2rd- 1 , 

therefore nq j r = nrd- 2. Also, since r < n, we 
have. and r d- 1 < nrd - 2 • Therefore the cost 
is: nrd- 2 + n 2d/(d+1)ql/(d+l) jrd/(d+l). The optimal 
trade-off is for r = n(d-l)/(cP-d-l), and the cost is 
O( n(2cP -4d+1)/(d2 -d-l)). 

Case r d- 1 < (Kjnd)rd. In this case 
q = (Kjnd)r d, therefore nqjr = n(Kjnd)rd- 1 • 

Therefore the cost is: n + n(Kjnd)rd- 1 + 
n 2d/(d+l)ql/(d+1) jrd/(d+l). The optimumis given by: 
r d- 1 = n(d-l)/(d+l)(Kjnd)-d/(d+l). The total cost is 
thus: Kl/(d+l)nd/(d+1). We keep in memory at any 
given time only one path from root to a leaf and 
we explore the partition tree in depth-first manner. 
Thus the storage is only linear in n. Summarizing: 

Theorem 4 Given n points and n (d - 1)­
simpliees in E d, we ean determine whether any 
(d - 1 )-simple:c is in eide nt to any point in time 
O(K(l/(d+l)nd/(d+l)+t: + nf(d)+t:), where f(d) = 
(2d2 - 4d + 1)j(d2 - d - 1), and K is the number of 
vertiees in the arrangement of the (d - 1) -simpliees, 
€ > 0 an arbitrarily small eonstant. The storage is 
linear in n. 

The highest gain over the non-sensitive method is 
attained for low-dimensional spaces. For d = 2, we 
have 1(2) = 1; for d = 3 we have f(3) = 7 j5. 

7 Off-line simplex range search­
ing 

We present the algorithm for solving off-line simplex 
range searching queries as a modification of the al­
gorithm in the previous section. At the leaves of 
the partition tree we need a non-sensitive method. 
The inclusion of a point in a d-simplex can be ex­
pressed as a Boolean formula involving only bilinear 
expressions and inequalities. By applying the the­
ory in [28] and the deterministic cuttings in [23], we 
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can derive easily a method that uses for n simplices 
and m points time O(md/(d+l)+t:nd/(d+l) + m1+t: + 
nlot+2 m) and O(n + m) storage. 

We consider the algorithm in the previous sec­
tion using the facets of the input d-simplices as 
the set of (d - 1 )-simplices. Also, for each cell 
u E C/e we compute the list of d-simplices that 
contain the cell u, but do not contain the parent 
of u. It is easy to see that if s is the parent of 
u, then such set of d-simplices must have facets in 
Q(s) U P(s). Thus the totallength of such lists and 
the total time to compute them is asymptotically 
O(nrd-2+t: + n(Kjnd)rd- 1 ). In the data structure 
so modified we can collect for each d-simplex then 
number of points contained in it. By using a depth 
first strategy we can keep the storage linear. This 
concludes the proof of Theorem 3. 
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