

Coloring k-colorable graphs in constant

expected parallel time

Ludek Kueera

MPI-I-93-110 February 1993

Coloring k-colorable graphs in constant
expected parallel time

Ludek Kucera
Charles University,

Prague, Czechoslovakia *
and

Max Planck Institute for Computer Science,
Saar brücken, Germany

March 9, 1993

Abstract

A parallel (CRCW PRAM) algorithm is given to find a k-coloring
of a graph randomly drawn from the family of k-colorable graphs with
n vertices, where k = logO(l) n. The average running time of the
algorithm is constant, and the number of processors is equal to IVI +
lEI, where IVI, lEI, resp. is the number of vertices, edges, resp. of the
input graph.

Introduction

The graph coloring problem is NP-complete, and it has been proved
that finding a good approximationsolutionis as difficult as computing
of the optimal one [10]. The complexity classes R and BPP, repre­
senting practical use of randomization, do not seem to contain NP­
complete problems. Therefore the only way to cope with coloring-type

*This research was partially supported by EC Cooperative Action IC-IOOO (project
ALTEC: Algorithms for Future Technologies)

1

problems is presently a probabilistic analysis of behavior of (usually
deterministic) polynomial time algorithms, applied to random inputs.

The most common way of generating random input graphs is repre­
sented by the random graph gn, which gives all graphs with n vertices
equaly likely, or by a more general model gn,p, where p is a parameter
chosen usually so that sparser graphs are more likely, but all graphs
with the same number of edges are generated with the same probabil­
ity (the distribution gn is equaJ. to gn,l!2). Throughout the paper, we
will suppose for simplicity that p is a constant, but most results can
easily begeneralized. We will denote 1/(1- p) by b.

Random graphs gn,p do not represent an interesting tool for test­
ing heuristic coloring algorithms. It is known that X(gn,p) = (1 +
0(1))2kg"n almost surely (for the lower bound see [11], for the upper
bound [3, 18]). On the other hand, it is easy to show that perhaps
the simplest coloring algorithm; the greedy one, uses almost surely
(1 + o(l)ha:,n colors when applied to gn,p, Le. the "ratio of optimal­
ity" is almost surely 2 + 0(1). It is interesting that even the most so­
phisticated among known polynomial graph coloring algorithms seem
or are proved to behave in essentially the same way as the greedy
one, using almost surely about 2X(G) colors. (There is however an
indication that the problem of (near) optimal coloring of gn,p might
be ewer that NP-hard problems (or problems hard "on average" in
the sense of Levin [17]), because searching of all independent subsets
of size 0 (log n) finds a near optimal coloring almost surely in time
n°(1ogn»).

The greedy algorithm can also be parallelized so that it achieves
essentially the same results in polylogarithmic time [9, 7].

All this implies that all known polynomial time algorithms color
the random graphs gn,p using roughly the same number of colors.
Therefore this type of analysis, though giving interesting results about
random graphs, reveals nothing rea11y useful ab out algorithms and
their computational power. It is much more interesting to study an­
other simple random graph model gnilc, which consists in picking up
unlformly a random element of the class of all k-colorable graphs with
n vertices. It was shown in [22] for k < (l-e) 10g2 n, and generalized in
[15] for k = o(Jn/logn), that this distribution can be approximated
by the next procedure (using p = 1/2):

1. Generate a graph G using the distribution gn,p, (which means

2

that the prob ability that two vertices are connected by an edge
is p, and these probabilites are independent for different pairs of
vertices),

2. label vertices of G randomly by k colors,

3. remove all edges of G with endpoints labeled by the same label.

The graph distribution defi.ned by this procedure is denoted by (}n,p;Ic.

Let us recall that we will suppose that p is a constant, but the results
can be generalized (with some restrietions on p). Note that the first
two phases of the construction are independent and hence the labeling
of vertices can be performed first.

It is clear that the labeling constructed in the second step will
become a coloring of G, and it is possible to prove that for k =
o(Jn/logn) this labeling is a1most surely both the optimal coloring
and the unique (up to a permutation of colors) k-coloring of G.

No fast algorithm is known to give almost surely a good coloring of
(}n,p;1c for k = Oe y'ii). However the case of small k is quite appea1ing.
Though primitive algorithms behave badly unless k is extremely small
(e.g. the greedy algorithm uses a1most surely n(n/logn) colors to
color (}n,O.S;1c even if k = ne for arbitrarily small positive constant
e [16]), more sophisticated algorithms are able to find the optimal
solution almost surely (see [8) for k constant, [22) for k < (1-e)log2 n,
and [15) for k = o(Jn/logn)).

The algorithm of [15) is based on dividing pairs of vertices into two
classes using approximation of treshold functions with precision l/k.
Such an approximation can be done in constantworst case time on
CReW parallel RAM, provided k = logO(l) n [1, 12]. Based on this we
will give a processor efficient CReW PRAM algorithm coloring most
k-colorable graphs optimally in constant time.

Since the treshold approximation with precision 1/ k seems to be
closely connected to evaluation of treshold functions, known lower
bounds to depth of circuits computing symmetrie functions [4, 19)
suggest a conjecture that constant average time algorithms do not
eDst for coloring of k-colorable graphs if k grows faster than any
polylogarithmic function.

We first present a constant time CReW PRAM algorithm with a
superpolynomial number of processors in Section 1. Section 2 shows
how to find a coloring in constant time using small number of pro ces­
sors. However the algorithm is randpmized (its main idea is to apply

3

the aJ.gorithm of Section 1 to a small sampIe of logO(l) n vertices and
then to extent the solution to the whole graph). In Section 3 we show
how to derandomize it to behave in the same way on random input
graphs. This is based on the fact that the randomized aJ.gorithm does
not ask for the existence of a large number of edges, and therefore this
information can be used as a source of randomness.

1 Randomized algorithm with many
processors

Let 0< f} < 1/2 and k = O(n"). In this paragraph we show an algo­
rithm which finds almost surely a k-coloring of a random k-colorable
graph with n vertices. The underlying jdea of the algorithm comes
from [15].

Given a vertex 11, let us denote the dass of equilabeled vertices
obtained in the second step of the generating procedure gn,pjlc and
containing 11 by Cv •

We will first show how, given a graph generated by the procedure
gn,pjlc and its vertex 11, we can find aJ.most surely Cv :

Algorithm Ao.
Input: A k-colorable graph G with the vertex set X

and the edge set E,
a vertex 11 EX.

Output: A color dass C of a k-coloring of G containing 11.
Remark: Ao sometimes gives an incorrect answer .
begin
for all w E X - {11} pardo

d(w) := I{z E X I {11, z}, {w, z} E E }I;
for all t := 1 to n pardo

r t := {11} U { w E X - {11} I d(w) ~ t };
4 := min{ t I rt is an independent set };
C:= rt,,;
end.

First we will prove some properties of gn,pjlc.

Lemma 1.1 Let AC X. With probability 1- exp(-O(IAI/k)), .1ft <
ICv n AI < 3Jtl fOT each 11ertez 11.

4

Proof: The size of the set Cv n A is a random variable with binomial
distribution B(IAI,t). The Chernoffbound [5,2] implies that

Prob (11Cv n AI - 't'l ~ I~) = exp (-0 Ct l

)) .

Corrolary 1.2 With probability 1 - exp(-O(n/k)), 27c < ICvl < ~
for each l1ertez 11.

Lemma 1.3 The probability that for each 11 the set Cv is a proper
subset of no independent set of gftlPilc is at least 1 - nk(l _ p)ft/21c.

Proof: Given a ftxed set of the form Cv and a fixed z ~ Cv , the
prob ability that z has no neighbour in Cv is

(1- p)IC .. 1 ::; (1- p)ft/21c,

where we suppose 1c,,1 ~ n/2k, see the previous lemma

Let us now prove that the algorithm .Ao, applied to a vertex 11 of
g~ilc, returns almost surely Cv

Lemma 1.4 1fO< -D < 1/2 is a constant, k = O(n"), then the proba­
bilitythatr.,. =Cv, where-r= (n-ICvl-~)p2, is1-exp(-0(n/k2)).

Proof: Let w be a vertex. Possible neighbours of both 11 and w are
elements of X - (C" U Cu,), each with prob ability p2. Therefore it
follows from the Chernoff inequality [5, 2] that

Id(w) - p21X - (Cv U C",)II ~ ~p2

with prob ability at most

<2 ---(
p4 n)

- exp 32P'

(1)

Suppose that (1) holds for all w, which happens with prob ability
at least

1 - 2n exp (-;~ ~) = 1 - exp (-0 (~)) .

5

If C'O = Cw , then (1) implies

which implies r.,. = C'O' ..

Theorem 1.S The probability that the algorithm Ao returns C'O is
1 - exp(-n(njk2».
Proof: Lemma 1.4 implies that r t is likely to be Cv for some t. In view
of Lemma 1.3, Cv is unlikely to be contained in a larger independent
set, and therefore r t = C'O' ..

It is not surprising that the algorithmis likely to find the color c1ass
used in the construction Yn,p;1c, because it can be proved ([15,22]) that
the original coloring is almost surely the unique coloring of Yn.p;1c (up
to a permutation of colors).

The bounds to the resource requirements of the algorithm will. be
derived in the following paragraph. Let us just mention that compu­
tation of d(v) in constant time requires superpolynomial number of
processors. However the algorithms of the next paragraphs will. call
Ao to find an independent set of a graph of a polylogarithmic size.

Ao gives immediately an algorithm to color Yn,p;1c almost surely by
k colors:

Algorithm Al'
Input: A k-colorable graph G with the vertex set X

ordered by a relation < and the edge set E.
Output: A k-coloring of G.
Remark: Al sometimes falls without giving an answer .
begin
for all vertices v pardo begin

find the set C'O using Ao;
if v = minCv then label v as "selected"
else label v as "unselected" ;
end;

6

for all selected vertices v pardo begin
Cv := .the number of selected vertices w such that w < v;
color all vertices of C'f) by <:Vi
end;

for all edges e = {v, w} E E pardo
if 11 and w are colored by the same color then

the computation failed;
if there exists a selected vertex: 11 such that Cv ~ k then

the computation failed;
end .

. Note that the algoritbm.Al either reports a failure or gives a valid
k-coloring of the graph by colors 0, 1, ... ,k - 1. It is necessary to
check the correctness of the result of the computation, because the
algoritbm Ao might give an incorrect answer .

It follows from the analysis of Ao that

Theorem 1.6 The algorithm .Al finds a k-coloring of the input graph
with probability 1 - exp(-!l(n/k2».
Proof: Withprobability 1-nex:p(-!l(n/k2)) = 1-ex:p(-!l(n/k2)),

all sets C'f) are computed correctly by Ao. '"

2 Efficient · randomized algoritm

In this paragraph we suppose that k = IogO(l). Let m be a number
sufficiently larger than k 2 • It will be quite sufficient to put m =
k2logtJ n for some constant a ~ 2. For reasons that will be dear in
the nex:t paragraph, we also choose a fixed setQ of, say, n/2 vertices
X.

We will show that a solution of the coloring problem for a random
sub set of m vertices of X - Q gives almost surely a solution of the
global problem.

Graph coloring algorithm .A2 •

Input: A k-colorable graph G with vertex: set X of size n
and edge set E, k = logO(l) n,
random bits riJ, i = 1, ... , s, j = 1, ... , rIOg2 n 1
a set Q of Ln/2J vertices of G,

7

a constant a.
Output: A coloring of G.
Remark: A2 sometimes fails to find a k-coloring.
begin
choose a number m s'Q.ch that m ~ k210gCl nj

for i = 1 to m pardo
Wi := the number with binary representation ri,l ... ri,t,
where t = [log2 nl j

Y := {Wi 11 ~ i ~ m, Wi EX - Q}j
use Al to find a k coloring of the graph induced by G on Y j
jf Al fails then halt;
for each vertex v choose an integer 0 ~ A(v) < k such that

there is no W E Y such that
{v,w} is an edge of G and W is colored by A(V);

jf such A(v) does not exit for some vertex v then halt j
jf A is not a coloring of G then halt j
color each vertex v of G by A(V)j
end.

Note that jf v, W E Q, the algorithm never asks whether v and W

are connected by an edge of G.
Randomized algorithms are usuallyanalyzed on assumption that

a source of randomness provides independent random bits such that
Prob(ri = 1) = 1/2 for each i. The random bits constructed in the
next paragraph are independent,but it could only be proved that the
prob ability of being equal to 1 is closed to 1/2.

We first prove that the size of any set Cv nY is sufficiently large:

Lemma 2.1 Let us suppose that random bits ri,j, given as an input
to A 2 , are independent and Prob(ri,j = 1) = (1 + O(log-l n))/2
for all i, j. There ezists a constant c > 0 such that, with probability
1- exp(-O(m/k)), ICv n YI ~ cm/k for each vertez v.

Proof: Let K, = O(log-l n) be such that Prob(ri,j = 1), Prob(ri,j =
0) ~ (1 - K,) /2 for all i, j. There is a constant 1 > 0 such that

(
1 - K,) [1og;znl 1

Prob(wj = z) ~ -2- ~ ~ .

for each vertex z and j ~ m.

8

Let v be a fixed vertex of X - Q. It follows from Lemma 1.1 that
we can suppose that IC" - QI ~ IX - QI/2k ~ n/4k, and therefore

. (n) ii Prob(w; E (ClI - Q - {wlil < j})) ~ 4k - m ;; ~ 5k·

In view of the Chernoff bound

Prob (lc" n YI < ~;) $ exp (-0 (;)) ,
and the prob ability that this is true for all k color classes is not more
that k times greater. ..

Note that the Lemma implies that IY - QI ~ cm with large prob­
ability.

Theorem 2.2 Under the same assumptions on bits ri.; as in the pre­
ceeding Lemma, if k = logO(l) n, then the probability that the algo­
rithm A 2 finds a k-coloring of Qn,p;1e is at lea.st 1- exp(-0(m/k2» =
1 - exp(-O(logG n)).

Proof: Since the algorithm constructs the set Y before it asks for any
edge, Y can be determined before the construction Qn,pjle is applied.
It follows that the probabilistic distribution of the graph induced on
Y is the same as Qm,p;Ie, and therefore Al finds the solution given by
classes Cl n Y, ... , Cle n Y with prob ability at least

1 - exp(-0(m/k2» ~ 1 - exp(-0 (logG n),

see Theorem 1.6. If this is the case, the choice of).(v) is possible for
each v as the color used for C" n Y. N ow, it is sufficient to prove
that no other choice of).(v) is likely for any vertex v. In view of the
preceeding lemma, the prob ability that a vertex v is connected to no
w E Cz; n Y, v ~ Cz;, is at most

(1 - p)cm/lc = exp(-O(logG n).

We are interested in three resources used by the algorithmAo: the
worst case parallel time, the number of processors and the amount of
randomness. We will. need the following technical.lemma, that says
that it is possible to add a polylogarithmic number of bits in constant

9

time with small nllmber of processors. It is known that there are fami­
lies of constant depth circuits that compute the sum of n bits, provided
the number of 1 's among them is bounded by a polylogarithmic func­
tion [1, 12]. Unfortunately the proofs are either nonconstructive ([1]),
or possess a certain degree of uniformness, but they are complicated.
However in our special case there is an easy direct proof, since the
most diflicult part of the general proof is a compaction of 1 's into an
array of a polylogarithmic size, wbich is already done here.

Lemma. 2.3 Let ° < e, l be constants. 11 i ::; Llot nJ, then the sum
01 i integers bb . .. , bi E {O,l} can be computed in constant time on
CRCW PRAM with O(ne) processors.

Proof: In constant time and using O(AC-l BC) processors, we Can
reduce computing of the sum of A integers ° ::; bb ... , bA < B to
computing the sum of at most AIC integers less or equal to BC:

Partition numbers into AI C groups of at most C elements each.
There are at most BC different sequences (T of C numbers from the
interval [0, B). For each of AICgroups ofnumbers, use B C families of
processors, such that for each sequence (T there is exactly one family
that checks whether the numbers in the group form a sequence (T and,
in the affirmative case, outputs the predefined result.

Now put C = logl/2 n. H B ::; A = logO(l) n, then

AC- l B C ::; ACH = exp((C + l)logA) = exp(O(logl/2nloglogn» =

= o (exp(elog n» = O(ne
).

Repeating the reduction 2l times, we can compute the sum of logl n
nembers from {O, 1} in constant time with O(ne) processors

Theorem 2.4 Let k = logO(l) n. There is an implementation 01 A 2

on CRCW PRAM with O(IVI + lEI) processors that runs in constant
parallel time and needs logO(l) n random bits.

Proof: A 2 cal1s Al (and through it Ao) on a subgraph of polylog­
arithmic size. It follows from the preceeding lemma that, given a
constant e > 0, all sums computed by Ao and Al in such a case can
be computed in constant parallel time using O(ne) processors.

It is known that the minimum of m bits can be computed in con­
stant parallel time on CRCW PRAM with O(m2) processors [15].

10

The algorithm Ao checks if d(w) ~ t for each t, w. This can be done
using n 2 computations based on the preceeding Lemma. Remaining
part of the computation can easily be done in constant time on CRCW
PRAM with polynomially many processors

3 Derandomization
The algorithms given in the previous two paragraphs are randomized.
We will now show a way of derandomizing the coloring algorithm A 2 •

Choose a fixed vertex: ·u E Q (for the set Q, see Algorithm A 2).

Given a vertex: v E Q - {u}, put b" = 1 if {u, v} is an ecige, b" = 0
otherwise. The key observation is that A 2 checks the value of b" fot
no v E Q - {u}. If the input graph is generated by Qn,1';1c, we can use

. boolean variables b", v E Q - {u} as a somce of random bits. The
probabilities Prob(b" = 1) are independent, but the problem is that
they are not equal to 1/2.

Therefore we will group bits b" into groups of polylogarithmic size,
and we will use the parities of groups instead of the single bits. The
parity oflogO(l) n bits can be computed in constant time using O(nC

)

processors, see Lemma 2.3, bits obtained in this way are independent,
and they are almost unbiased:

Lemma 3.1 Let Vl, .. . ,Vl are different elements 0/ Q - {u}. Then

1
Prob(b"l e ... e b"l = 1) = "2(1 + exp(-n(l/k))).

Proof: The prob ability that b" = 1 is either 0 if v E Cu or p if v ~ Cu.
In view of Lemma 1.1, the probability that Cu contains more than
3l/2k $l/2 vertices Vi, 1 $ i $ l is exp(-n(l/k}.

Suppose now that wl, ... , Wl/2 is a subsequence of Vl, ... , Vl that
does not contain points of Cu. Then

. 1
Prob(bwi = 1) = "2(1 + (2p - 1)),

1
Prob(bU/l e ... e bwtl2 = 1) = "2(1 + (2p - l)l/2),

and therefore given any fixed values of b"j for Vi that do not belong
to the sequence Wi,

1 1
Prob(b"l e ... e b"l = 1) = "2(1 ± (2p - l)l/2) = "2(1 + exp(-n(l))).

11

Theorem 2.4 and the preceeding lemma give

Theorem 3.2 Let k = logO(l) n, a be a constant. There is a deter­
ministic CRCW PRAM algorithm that runs in constant parallel time
and, with probability 1-nO(log<- 71), colors the random graph Q71,pjlc with
k colors.

Proof: Choose l = klogCl+2 n. It follows from Lemma 3.1 that, with
prob ability at le~t

1- (logO(l)n)exp(-n(l/k)) = 1_nO(log"71),

a fixed polylogarithmic number of groups of l bits b'l1 give a sequence
of random bits .that verifies assumption of Theorem 2.4 ...

4 Conclusions
We have proved that Qn,pjlc, k = logO(l) n, can be colored almost surely
with k colors using a constant time CRCW PRAM with O(/V/+/EI) =
O(n2) processors. This means that both time and processor bounds
are optimal. Using methods of [8J, it is easy to obtain a CRCW
PRAM algorithm, which colors Q71,pjlc always with k colors, such that
its average running time is constant, and, the number of processors
equal to the number of vertices and edges of the graphs (it is sufficient
to use an npolylog71 expected time algorithm to color the input graph
~hen A2 failS). In view of [22, 15J, the same results are true for a
graph drawn randomly (with uniform prob ability) from the c1ass of
all k-colorable graphs with n vertices, k = logO(l) n.

Our result are closely connected to the existence of uniform con­
stant - depth probabilistic circuits, approximating the treshold func­
tions. H treshold functions with n inputs can be approximated with
multiplicative precision l/k, where k = o(Jn/logn), then k-colorable
graphs can be colored almost surely with k colors in constant average
time, see Lemma 1.4.

Several problems are left open

• Is it possible to find a constant average time algorithm color­
ing Q71,pjlc by k colors if k is not bounded by a polylogarithmic
function?

12

• What is the best precision bound to eonstant-depth probabilistie
cireuits, approximating ~eneral treshold functions, and what is
the optimal size of such. circuits ?

The results show that methods based on taking small random sam.­
pIes of the input information can give very efficient probabilistic ap­
proximation algorithms and deterministie algorithms with good be­
havior on randomly generated inputs. It is likely that this paradigm
ean be used to solve other problems.

References

[1] M. Ajtai, and M. Ben-Or, A theorem on probabilistie eonstant
depth computation, Proceedings of the 16th Symposium on The­
ory of Computing, (1984),471-474.

[2] N. Alon, J. Speneer, and P. Erdös, The probabilistic Method, J.
Wiley and Sons, New York, 1992.

[3] B. Bollobas, The chromatie number ofrandom graphs, Combina­
torica 8, 49-56~

[4] B. Brustmann., and I. Wegener, The eomplexity of symmetrie
functions in bounded depth cireuits, Information Processing Let­
ters 25 (1987),217-219.

[5] H. Chernoff, A me&$ure of asymptotie efficieney for tests based on
the sum of observations, Ann. Math. Statist. 23 (1952),493-509.

[6] B. Chlebus, K. Diks, T. Hagerup, and T. Radzik, Efficient simu­
lations between CRCW PRAMs, Proc. 13th Symp. on the Math­
ematical Foundations of Computer Science, 1988, 230-239.

[7] D. Coppersmith, P. Raghavan, and M. Tompa, Parallel graph
algorithms that are effi.cient . on average, Proceedings of the 28th
Annual IEEE Conference on Foundations of Computer Science,
(1987),260-269.

[8] M. Dyer, and A. Frieze, The solution of some random NP-hard
problems in polynomial expeeted time, J.Algorithms 10 (1989),
451-489.

[9] 'A. Frieze, and L. Kucera, Parallel eolouring of random graphs, in
Random Graphs 81, M. Karonski, J. Jaworski, A. Rucinski, eds,
J. Wiley 1990, 41-52

13

	93-1100001 copy
	93-1100002
	93-1100003
	93-1100004
	93-1100005
	93-1100006
	93-1100007
	93-1100008
	93-1100009
	93-1100010
	93-1100011
	93-1100012
	93-1100013
	93-1100014
	93-1100015
	cover-hinten_2099-2897-300dpi

