MPI-I-2003-1-009
On the Bollob\'as -- Eldridge conjecture for bipartite graphs
Csaba, Bela
March 2003, 29 pages.
.
Status: available - back from printing
Let $G$ be a simple graph on $n$ vertices. A conjecture of
Bollob\'as and Eldridge~\cite{be78} asserts that if $\delta (G)\ge {kn-1 \over
k+1}$
then $G$ contains any $n$ vertex graph $H$ with $\Delta(H) = k$.
We strengthen this conjecture: we prove that if $H$ is bipartite,
$3 \le \Delta(H)$ is bounded and $n$ is sufficiently large , then there exists
$\beta >0$ such that if $\delta (G)\ge {\Delta \over {\Delta +1}}(1-\beta)n$,
then
$H \subset G$.
-
- Attachement: MPI-I-2003-1-009.ps (340 KBytes)
URL to this document: https://domino.mpi-inf.mpg.de/internet/reports.nsf/NumberView/2003-1-009
BibTeX
@TECHREPORT{Csaba2003,
AUTHOR = {Csaba, Bela},
TITLE = {On the Bollob\'as -- Eldridge conjecture for bipartite graphs},
TYPE = {Research Report},
INSTITUTION = {Max-Planck-Institut f{\"u}r Informatik},
ADDRESS = {Stuhlsatzenhausweg 85, 66123 Saarbr{\"u}cken, Germany},
NUMBER = {MPI-I-2003-1-009},
MONTH = {March},
YEAR = {2003},
ISSN = {0946-011X},
}