Max-Planck-Institut für Informatik
max planck institut
informatik
mpii logo Minerva of the Max Planck Society
 

MPI-I-2003-1-009

On the Bollob\'as -- Eldridge conjecture for bipartite graphs

Csaba, Bela

MPI-I-2003-1-009. March 2003, 29 pages. | Status: available - back from printing | Next --> Entry | Previous <-- Entry

Abstract in LaTeX format:
Let $G$ be a simple graph on $n$ vertices. A conjecture of
Bollob\'as and Eldridge~\cite{be78} asserts that if $\delta (G)\ge {kn-1 \over
k+1}$
then $G$ contains any $n$ vertex graph $H$ with $\Delta(H) = k$.
We strengthen this conjecture: we prove that if $H$ is bipartite,
$3 \le \Delta(H)$ is bounded and $n$ is sufficiently large , then there exists
$\beta >0$ such that if $\delta (G)\ge {\Delta \over {\Delta +1}}(1-\beta)n$,
then
$H \subset G$.
Acknowledgement:
References to related material:

To download this research report, please select the type of document that fits best your needs.Attachement Size(s):
MPI-I-2003-1-009.ps340 KBytes
Please note: If you don't have a viewer for PostScript on your platform, try to install GhostScript and GhostView
URL to this document: http://domino.mpi-inf.mpg.de/internet/reports.nsf/NumberView/2003-1-009
Hide details for BibTeXBibTeX
@TECHREPORT{Csaba2003,
  AUTHOR = {Csaba, Bela},
  TITLE = {On the Bollob\'as -- Eldridge conjecture for bipartite graphs},
  TYPE = {Research Report},
  INSTITUTION = {Max-Planck-Institut f{\"u}r Informatik},
  ADDRESS = {Stuhlsatzenhausweg 85, 66123 Saarbr{\"u}cken, Germany},
  NUMBER = {MPI-I-2003-1-009},
  MONTH = {March},
  YEAR = {2003},
  ISSN = {0946-011X},
}