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Abstract

This thesis investigates terminological representation languages, as used in

kl-one-type knowledge representation systems, from an algebraic point

of view. Terminological representation languages are based on two prim-

itive syntactic types, called concepts and roles, which are usually inter-

preted model-theoretically as sets and relations, respectively. I propose

an algebraic rather than a model-theoretic approach. I show that termi-

nological representations can be naturally accommodated in equational

algebras of sets interacting with relations, and I use equational logic as a

vehicle for reasoning about concepts interacting with roles.
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Introduction

The aim of this thesis is to present an algebraic perspective of that branch of Know-

ledge Representation concerned with terminological representation languages. These

languages originate from a system called kl-one, which arose in the late seventies

from the debate on the role of logic in Artificial Intelligence, and in particular the clash

between semantic networks and frames. Terminological representation languages have

two primitive syntactic types, called concepts and roles. In the prevalent model-theoretic

semantics concepts are interpreted as sets and roles as binary relations. The approach

I propose is based on the fact that sets and relations have simple calculi which can be

presented algebraically. The calculus of sets can be presented in the context of Boolean

algebras and the calculus of relations in the context of relation algebras. Concepts and

roles also interact in certain ways, and these can be modelled as interactions between

sets and relations. For such interactions there also exist algebraic presentations, called

Boolean modules and Peirce algebras. The representation of knowledge then becomes

the formulation of certain equations in an algebraic context. But knowledge represen-

tation deals not only with representing given knowledge, it also deals with inferring

knowledge which is implicit in the representation. In terminological representation in-

ference amounts to calculation concerning interactions between sets and relations. This

is formalised in the algebraic framework by the arithmetic of the respective algebras.

In summary, my work is motivated by the following observations: (i) Terminological

representation and reasoning is modelled in calculi of sets and relations. (ii) For these

calculi algebraic formalisations exist. In this thesis I combine these two facts and

show that the algebraic framework provides a natural setting for both terminological

representation and reasoning.
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The thesis contains four chapters. The following summarises their contents:

Chapter 1: By way of a core example which I refer back to throughout the thesis I

give a preview of terminological representation and of my proposal.

Chapter 2: This chapter is devoted to terminological representation. I present an ex-

tensive overview of its evolution from kl-one-based formalisms up to current develop-

ments. I formally define the syntax and model-theoretic semantics of two terminological

languages, chosen to illustrate the expressiveness attained by such formalisms.

Chapter 3: This chapter is devoted to algebra. To start with I briefly outline the

general algebraic notions and results relevant in subsequent sections and Chapter 4.

There are five sections, presenting in turn Boolean algebras, relation algebras, Boolean

modules, Peirce algebras and, finally, some other applications of the calculus of relations.

In each of the first four sections I discuss the algebra in relation to the appropriate

calculus and concentrate on the arithmetic required in Chapter 4. For background each

section also contains a brief overview of the algebraic theory.

Chapter 4: In this chapter I motivate the proposed algebraic approach. I show how the

semantics of a terminological language such as those of Chapter 2 can be accommodated

in the algebraic framework presented in Chapter 3. I illustrate by means of the core

example of Chapter 1 an algebraic method for generating terminological inferences. To

substantiate my claims I present a number of case studies.

The thesis concludes with a List of Figures, an Index of Notation and a Bibliography.

Throughout it is assumed that the reader is familiar with the standard terminology

and notation of set theory and first-order logic.

The numbering in each chapter is consecutive. For example, (2.12) refers to the 12th

entity in Chapter 2, whether this be a definition, a theorem, a lemma or an example.

Figures are numbered separately. Also, the axioms and arithmetical properties of the

algebras in Chapter 3 are numbered separately within each section. For example, B7,

R7, M7 and P7 refer to the seventh axiom or property of Boolean algebras, relation

algebras, Boolean modules and Peirce algebras, respectively.

Citation of references is generally by author and year of publication, as for example

in ‘Tarski [1941]’. If an author has published more than one work in the same year I

iv



annotate the year with a letter (in no particular order), e.g., ‘Patel-Schneider [1989a]’

and ‘Patel-Schneider [1989b]’. Secondary references (i.e. those I did not consult myself

but concerning which I found some information in a primary reference) are marked with

an asterisk.

A shorter and earlier version of this thesis is due to be published (Brink and Schmidt

[1991]).
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Chapter 1

Preview

In this chapter I introduce that field of knowledge representation which deals with

terminological representation languages (also called term subsumption languages or ter-

minological logic). I begin with a sample representation of a small knowledge domain,

represented as a semantic network. My later exposition of terminological representation

refers back where necessary to this standard example. I give a preview of the standard

model-theoretic semantics for typical terminological languages, and I suggest that an

algebraic approach may for certain purposes be more appropriate.

Consider the diagram of Figure 1.1, which I will call a semantic network. It rep-

resents some knowledge about a universe of people. The nodes represent concepts like

‘Females’, ‘Princes’ or ‘Heirs’ (= ‘Heirs to the throne’). The directed edges marked

with squares represent roles, like ‘mother-of’ or ‘sister-of’. I will interpret concepts as

sets and roles as binary relations. The double-line arrows between concepts indicate

a subsumption relation, which is a partial order and forms a concept taxonomy. Anal-

ogously, the broken-line arrows between roles indicate a subsumption ordering under

which roles form a poset, called a role taxonomy. For example, the diagram shows that

‘Princes’ is subsumed by ‘Males’, which is read as saying ‘All princes are male’ and inter-

preted to mean that the set of all princes is contained in the set of all males. Similarly

the role ‘mother-of’ is subsumed by the role ‘parent-of’, in other words, ‘mother-of’

is a subrole of ‘parent-of’. Concepts indentified with proper names, like ‘Charles’, are

atoms in the concept taxonomy and are interpreted as singleton sets. The appearance

1



Figure 1.1: Sample semantic network
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of a labelled arrow representing a role indicates a non-empty relation between concepts

with the arrow head determining the direction of the relation. For example, the arrow

labelled ‘admirer-of’ and directed from ‘Females’ to ‘Princes’ indicates that ‘some fe-

males are admirers of some princes’. The double-headed arrow of roles like ‘sibling-of’

and ‘relative-of’ indicates a symmetric relation.

The semantic network thus represents some explicit facts which can be read off

directly. For example:

(1.1) Elizabeth is female.

(1.2) All females are human.

(1.3) All mothers of someone are parents of that person.

(1.4) Charles is a father of William.

(1.5) Some females are siblings of some males.

In addition to such surface knowledge, the semantic network also contains some implicit

facts, such as:

(1.6) Elizabeth is human.

(1.7) All sisters of someone are relatives of that person.

(1.8) Charles is a father of some prince.

(1.9) William is a child of Charles.

(1.10) Anne is an aunt of some prince.

(1.11) Some vegetarian is a parent of William.

Extracting this implicit information from the representation may seem straightfor-

ward to humans. But can this process be formalised? And if so, can it be mechanised?

Research in knowledge representation is concerned with such questions. The aim in

knowledge representation is to develop ‘intelligent’ systems for representing knowledge

and reasoning about it. Included in such a system, called a knowledge representation

system, is a knowledge base, that stores the explicit knowledge suitably expressed with

a representation scheme or language. To extract the implicit information from the

knowledge base, a knowledge representation system also has an inference mechanism.

Terminological representation systems are descendants of a knowledge representation

system called kl-one. In terminological representation systems only definitional (or

3



terminological) domain knowledge is represented. Definitional knowledge is knowledge

that defines general notions and relationships, i.e. general interrelationships between

concepts and roles. This excludes knowledge that, for example, contains assertions

about the existence of individuals, as in

(1.12) There is someone called Charles who is a father of some prince.

This is said to be an assertional claim. The semantic network above contains only

definitional information. Because the emphasis in many systems has been more on

concepts than on roles, and because concepts are also referred to as ‘terms’, definitional

information has become known as ‘terminological’ information.

The representation scheme of a terminological representation system is called a

terminological (representation) language and uses a lexical notation rather than the

graphic notation of semantic networks. Like any other formal language, a termino-

logical language is defined in terms of its syntactic primitives and the operators on

them. The syntactic primitives are concepts and roles; and the operators can be

concept-forming or role-forming. Common concept-forming operators on concepts are

‘and’ (conjunction), ‘or’ (disjunction) and ‘not’ (negation). For example, the set of

male heirs to the throne could be represented as (and Males Heirs), the set of males

and females (that is, the union!) as (or Males Females), and the set of individuals

who are not vegetarian as (not Vegetarians). These operators can also be applied

to roles. In addition, there are role-forming operators like inversion and composi-

tion, which would respectively represent ‘child-of’ as (inverse parent-of) and ‘aunt-of’ as

(compose sister-of parent-of). Most terminological languages also have operators which

take both concepts and roles as arguments. For example, ‘some’ is a concept-forming

operator on roles as in (some father-of Princes), which is interpreted as the set of fathers

of (some) princes. The application to ‘father-of’ and an atomic concept like ‘William’

in (some father-of William) then represents the set of fathers of William. (I call the

atoms in the concept taxonomy atomic concepts.) Subsumption relationships between

concepts and also between roles are denoted by ‘ ⊑ ’. Mutual subsumption is called

equivalence, for which the symbol ‘
.
= ’ is used.

Consider the explicit facts (1.1)–(1.4) of the sample representation in Figure 1.1. In

4



a terminological language this information can be respectively represented by:

(1.13) Elizabeth ⊑ Females

(1.14) Females ⊑ Humans

(1.15) mother-of ⊑ parent-of

(1.16) Charles ⊑ (some father-of William).

Now consider the sentence (1.5). It means, that the intersection of the set of females

with a set of siblings of some males is non-empty and can hence be represented by

(1.17) (and Females (some sibling-of Males)) ̸ .= ⊥,

where ‘⊥’ denotes the empty concept, that is, the bottom concept in the concept tax-

onomy.

Representing explicit knowledge thus essentially amounts to writing down subsump-

tions, and inference amounts to computing further subsumptions from the explicitly

given ones. Hence we would like to be able to compute the formal representations of

(1.6)–(1.11), namely:

(1.18) Elizabeth ⊑ Humans

(1.19) sister-of ⊑ relative-of

(1.20) Charles ⊑ (some father-of Princes)

(1.21) William ⊑ (some (inverse parent-of) Charles)

(1.22) Anne ⊑ (some (compose sister-of parent-of) Princes)

(1.23) (and Vegetarians (some parent-of William)) ̸ .= ⊥.

A common inference mechanism in terminological systems is the classifier which is

based on an algorithm, called the subsumption algorithm, that computes subsumption

relationships. The classifier’s task is to order (or ‘classify’) concepts and roles with

respect to subsumption, the intention being to insert new concepts or roles in the

correct position inside the appropriate taxonomy.

The common approach to specifying the semantics of terminological and kl-one-

based representation languages is to do so model-theoretically, by formally associating

concepts and roles respectively with sets and binary relations. In the semantics reason-

ing with concepts and roles then amounts to reasoning with sets and relations. In the

model-theoretic paradigm such reasoning takes place in first-order logic, using the full

5



resources of a first-order language for set theory.

In this thesis I propose another approach: the algebraic approach. I will interpret

terminological representations of knowledge concerning the concept taxonomy by using

equations from Boolean algebra. I will interpret terminological representations concern-

ing the role taxonomy by using equations from relation algebra. And I will interpret

terminological representations of the interactions between roles and concepts by using

equations from a suitable algebra such as Boolean Modules. In this interpretation of ter-

minological representation drawing inferences amounts to computing further equations

from given ones. A natural vehicle of inference, therefore, is equational logic.

6



Chapter 2

Terminological Representation

In this chapter I give an overview of the development of knowledge representation in the

kl-one system and its descendants, including terminological representation systems. I

formally define two representative terminological representation languages. As a final

section I append a Note on Sources.

2.1 Background

The main progenitors of terminological representation systems are semantic networks

and frames. There is no universally accepted definition of a semantic network, and

various styles exist. (The semantic network presented in the Preview does not adhere

to any particular one of these styles, but it has some features common to all semantic

network formalisms.) A semantic network is a graphic representation of some domain

of knowledge. It can be viewed as a directed graph consisting of a collection of nodes

connected by links. These nodes and links form a taxonomy, also called a hierarchy.

Many semantic network formalisms contain only one taxonomy, usually the concept

taxonomy. The semantic network of Figure 1.1 contains a concept taxonomy and a role

taxonomy. The information implicitly contained in a semantic network representation

can be viewed as the information which nodes inherit from other nodes (higher-up or

lower-down) in the hierarchy.

Semantic networks were first introduced and named by Quillian [1968] as part of

his attempt to model what he termed the human ‘semantic memory’. His idea was to

7



devise a formal representation scheme encoding the meaning of English words. Other

early semantic network formalisms include the ‘conceptual dependency’ representations

of Schank (Schank and Rieger III [1974]) and the ‘structural descriptions’ of Winston

[1975].

In an influential paper Woods [1975] critically scrutinised the shortcomings of these

early semantic networks. He pointed out that semantic networks are not well-defined.

The descriptions are informal and fail to specify precisely the types of nodes and links

that can be used, how the nodes and links can be combined to form a representation and

the intended meanings of the nodes and links. In short, the descriptions fail to define

unambiguously the syntax and semantics of a semantic network. Woods discussed

the resulting confusions that arise when it is not specified whether the represented

information has ‘structural’ (p. 58) (that is, definitional or terminological) or assertional

import.

The failure to define carefully the syntax and semantics of semantic networks and

other representation formalisms was also critised by Hayes [1974, 1977] and McDer-

mott [1978]. One formalism that has a well-defined syntax and semantics is first-order

logic. Since it has a precise mathematical language and inference structure with a well-

defined semantic theory, Hayes [1977] proposed that logic be utilised in representation

formalisms. He emphasised however that what is important is not so much the logical

syntax but the notion of meaning (i.e. semantics) associated with first-order logic.

As a result of these studies, more attention was subsequently given to the ‘semantics

of semantic networks’, and a number of formalisms evolved closely linked to logic. Patel-

Schneider [1987a, p. 64] appropriately refers to these systems as ‘logic-based semantic

networks’, which include among others the partitioned networks of Hendrix [1979], the

propositional system of Schubert et al [1979∗] and the SNePS semantic network of

Shapiro [1979∗] (see also Kumar [1990∗]).

Research tended to concentrate on the adequacy of representation schemes, and

gave little attention to formalising inference in semantic networks. In an effort to

formalise inference (which amounts to computing the inherited information) Deliyanni

and Kowalski [1979] proposed to extend semantic networks with explicitly specified

deduction rules. These ‘extended semantic networks’ would do inference by resolution,

8



in the logic programming paradigm. Such networks could then be regarded as syntactic

variants of the language of first-order logic (p. 184).

For a more comprehensive account of semantic networks the interested reader could

refer to Patel-Schneider [1987a, Section 4.1], Rich [1983, Chapter 7] and Nilsson [1980,

Chapter 9]. In addition Findler [1979], Sowa [1990∗] and Computers and Mathematics

with Applications [1991∗] contain collections of papers on semantic networks.

In another development, opposed to both semantic networks and logic, Minsky

[1975] proposed a frame-based approach, which would support default specification

and exception handling. With this approach knowledge is stored in data structures

called frames, attached to which are some data manipulation routines, referred to as

‘attached procedures’. Frames are intended to describe a prototypical object or situation

of the domain of knowledge. Properties (or attributes) of such a prototypical entity are

represented in components called slots. These slots may contain data values (e.g.,

numbers, Boolean values or strings), different kinds of pointers to other frames (e.g.,

‘is a’ or ‘a kind of’ pointers) or attached procedures. The attached procedures enable

the user to override the built-in inheritance procedures (i.e. inference procedures) and

alter the default values, thus facilitating exception handling. Examples of frame-based

representation systems are KRL (Winograd [1975], Bobrow and Winograd [1977] and

FRL (Roberts and Goldstein [1977∗]).

Less than fifteen years ago, R.J. Brachman and his co-workers at Bolt Beranek and

Newman Inc. in Cambridge, Massachusetts started developing the kl-one knowledge

representation system. kl-one is an attempt to combine the useful features of (logic-

based) semantic networks and frames. The standard reference to kl-one is Brachman

and Schmolze [1985]. In a forthcoming paper [1991] Woods and Schmolze give a broader

account of knowledge representation in kl-one and its descendants including termino-

logical systems.

In his PhD thesis and a series of papers [1977, 1979] Brachman had already addressed

the foundational issues raised by Woods [1975], elaborated on the underlying confusions

and inadequacies of contemporary semantic network formalisms and formulated his own

theory of semantic networks, called ‘structured inheritance networks’ [1979, p. 34]. A

node in a structured inheritance network was referred to as a concept. Brachman

9



described a concept as a ‘structured’ representation of the ‘abstraction of the common-

alities’ [1977, p. 130] from some set of objects in terms of their attributes (or relations)

with respect to other concepts. A concept was also described as an ‘intensional’ [1977,

p. 139] entity which is determined by its relationship to other concepts. The idea is

that the concept ‘Princes’ in Figure 1.1, for example, represents more than just a set

of objects. It represents a set of humans who are also related (by subsumption) to

the concepts ‘Males’, ‘Heirs to the throne’, ‘Charles’ and ‘William’. Consider also the

concept ‘Charles’ as defined in the Figure 1.1. It represents the singleton set that is not

only related by subsumption to other concepts like ‘Princes’, but that is also related by

roles such as ‘sister-of’ and ‘father-of’ to concepts ‘Anne’ and ‘William’, respectively. In

structured inheritance networks the relationships between concepts are represented by

a variety of ‘structural’ links, also referred to as the ‘epistemological primitives’ [1977,

p. 132]. They determine the roles and so-called structural descriptions of concepts. The

structural description of a concept is intended to define the concepts in terms of roles

and other concepts.

kl-one is essentially a frame-based system that incorporates the ideas of struc-

tured inheritance networks. In kl-one concepts and roles are analogous to frames

and slots, respectively. Since its basic ‘structural’ units are concepts, Brachman and

Schmolze [1985] describe kl-one as a concept-oriented formalism. Unlike frames, kl-

one concepts allow neither defaults nor user intervention through attached procedures.

Brachman [1985] shows why defaults and attached procedures are not compatible with

kl-one-based knowledge representation. (Note that the earliest versions of kl-one

did in fact allow attached procedures—see Woods and Schmolze [1991].) Brachman

and Schmolze [1985, p. 179] described concepts as (frame-like) structures with three

kinds of components that interrelate concepts. These specify

(i) the superconcepts (i.e. the subsuming concepts),

(ii) the roles and

(iii) the structural description of a concept.

In terminological representation schemes this view of concepts has changed. Con-

cepts are not regarded as structures with components but as a syntactic types to which
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operations (like conjunction or disjunction) can be applied to form composite terms. In

this view the three kinds of components of a concept can be represented by three kinds

of relations between concepts. These are

(i) the subsumption relations that relate a concept to its superconcept,

(ii) the roles interpreted as binary relations and

(iii) an association with a composite concept description in terms of other concepts

and roles,

respectively. In terminological languages the third component becomes an operation,

called structural description, on concepts. I formally define this operation in Section 2.2

as part of the definition of the terminological language U . Woods and Schmolze [1991]

also adopt this refined view of concepts.

kl-one already has many of the operations for representing complex concept and

role descriptions that are also available in terminological languages (e.g., conjunction,

disjunction, negation, universal restriction (= ‘value restriction’) and role restriction).

There are then two kinds of concepts in kl-one: primitive and defined (Brachman

and Schmolze [1985, Section 2.2], Woods and Schmolze [1991, p. 11–12]). In the se-

mantic diagram of the Preview all the concepts are primitive. In terminological lan-

guages primitive concepts are undefined concepts and the defined concepts are the com-

pound ones like ‘male heirs to the throne’ and ‘fathers of princes’ which are represented

in terms of other (primitive or defined) concepts and roles as (and Males Heirs) and

(some father-of Princes), respectively. In other words, defined concepts are constructed

with the operators of the representation language using other concepts and roles. In

Vilain’s [1985, p. 549] words, ‘assigning a name to a complex term is tantamount to

giving a definition to that name’. (Similarly one can distinguish between primitive and

defined roles.)

Although Brachman and Schmolze [1985] has become the standard reference with

regards to kl-one, in my experience this paper is difficult to read. The exposition

does not provide a formal approach, even though such an approach is precisely what

Hayes [1974, 1977], McDermott [1976, 1978] and also Israel [1983a] had been advocating.

Despite the many elaborate examples presented in Brachman and Schmolze’s graphic
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notation of semantic inheritance networks, many aspects of kl-one appear vague and

confusing. For example, the meaning of ‘the structural description of a concept’ is

inadequately specified.

According to Woods and Schmolze [1991], experience with kl-one revealed some

shortcomings. For example, ‘although the goals of kl-one included a well-defined

semantics, a sufficient formal semantics was not provided’. Also ‘some of the classi-

fier’s operations were not semantically justified’ (p. 22). The 1981 kl-one Workshop

(Schmolze and Brachman [1982∗]) focussed on ways of improving kl-one. One promi-

nent idea was to have separate representation schemes for terminological and assertional

information, thus avoiding the confusion that Woods [1975] already addressed for se-

mantic networks. Terminological information is also referred to as definitional, descrip-

tional, structural or analytic. Assertional information is also referred to as synthetic or

factual. The problem with distinguishing between these two kinds of information is that

their exact meaning is not immediate. For one, ‘there does not appear to be a commonly

accepted meaning for “assertion”’ (Woods and Schmolze [1991, p. 31]). In addition, ‘it

is problematic to establish a clear demarkation between analytic [i.e. terminological]

statements and factual [i.e. assertional] statements’ (Spinelli et al [1988, p. 33]). The

difference between terminological and assertional information, as I understand it, is

best explained with examples. Terminological statements can be viewed as expressing

simple interrelationships, such as subsumption relationships, between concept and role

descriptions. An example of a terminological statement is

(2.1) Charles is a father of some prince.

It can be expressed (in a suitable terminological language) in terms of subsumption as

follows:

(2.2) Charles ⊑ (some father-of Prince).

Assertional statements contain more information. As mentioned in the Preview they

make assertions about the world and need to be expressed in a language with quantifi-

cation. An example of an assertional statement that cannot be expressed in a termino-

logical language is the statement (1.12) (on page 3 of the Preview). I essentially regard

terminological information as information that can be expressed in a terminological
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language and assertional information as information that can only be expressed in a

more powerful language such as that of first-order logic.

Brachman and Levesque [1982] argue that a knowledge representation system should

be adequate in two respects: terminological and assertional. According to them (p. 190),

‘terminological adequacy involves the ability to form the appropriate kind of technical

vocabulary and understand the dependencies among the terms’ and ‘assertional ade-

quacy involves the ability to form the kind of theory appropriate to the world knowledge

of a system and understand the implications of the theory’. The formal distinction be-

tween terminological knowledge and assertional knowledge is fundamental to work on

the systems nikl (Schmolze [1989b]) and krypton (Brachman et al [1983, 1985]. This

work started in 1982. The main goal of the nikl project was to develop an enhanced

terminological representation formalism, while the main goal of the krypton project

was to incorporate a terminological representation formalism and a separate assertional

representation formalism in one unifying system.

nikl is the new implementation of kl-one that was developed in an effort to im-

prove the representation scheme as well as the performance of the classifier of kl-one.

In [1989b] Schmolze gives a comprehensive formal description of the language and the

model-theoretic semantics of this new implementation. The language of nikl is a termi-

nological language, in which roles are treated on a par with concepts, and the operators

are concept- and role-forming. Concepts and roles are perceived as being ordered with

respect to subsumption in two separate taxonomies. This new ‘enlightened’ view of

concepts and roles (discussed in Kaczmarek et al [1986, p. 979]) refines the perspective

of kl-one where concepts are the principal syntactic types. Since roles are interpreted

as binary relations, the ‘RoleSet differentiation’ operation of kl-one (Brachman and

Schmolze [1985, p. 185], also known as role differentiation operation), which is used

to represent the interrelationship between roles and their subroles, is in nikl (and

subsequent terminological formalisms) viewed as a relation, namely the subsumption

relation.

In an early attempt to formalise the syntax and semantics of nikl Schmolze and

Israel [1983] also describe part of its classifier and in particular the subsumption algo-

rithm. To my knowledge this is the earliest formal account of a kl-one-based formal-
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ism. Schmolze and Lipkis [1983] present a more informal account of nikl. (It should

be noted that the papers Schmolze and Israel [1983] and Schmolze and Lipkis [1983]

actually deal with nikl, the new version of kl-one—see Schmolze [1989b, p. 12].) A

term frequently used in the literature but hardly ever explained is ‘(role) fillers’. A

definition is given in Schmolze and Israel [1983, p. 34]: the filler of a role is interpreted

as an element in the range of the relation associated with the role. For example in the

semantic net of Chapter 1, the role fillers of ‘admirer-of’ are elements contained in the

set of princes, and the role filler of ‘father-of’ is ‘William’. (The term ‘range’ should

not be confused with the ‘range’ operation available in some terminological languages,

including nikl as described in Schmolze [1989b]. In Section 2.2 I will define role fillers

along with the common terminological operators, including ‘range’.) Schmolze and Is-

rael’s formal treatment revealed that classification in nikl is sound but not complete.

This means that although every subsumption relation determined by the classifier is

valid in the semantics, not every valid subsumption relation can be determined by the

classifier.

In another attempt to clean up kl-one, the ‘unifying approach’ (Brachman and

Levesque [1982]), that combines a terminological representation formalism with an as-

sertional representation formalism, was adopted in a host of so-called hybrid knowledge

representation systems. These include krypton (Brachman et al [1983, 1985]), kl-

two (Vilain [1985]), kandor (Patel-Schneider [1984]), meson (Edelmann and Ows-

nicki [1986]) and back (Nebel and von Luck [1988]). Nebel and von Luck [1988] define

a hybrid knowledge representation formalism to consist of two or more different subfor-

malisms for representing different kinds of knowledge or knowledge in different kinds of

representation formalisms.

The terminological component of krypton, called the TBox, is similar to nikl and

includes a terminological language and a classifier. The assertional component, called

the ABox, includes the language of standard first-order predicate logic and a suit-

able theorem prover (namely a connection-graph resolution theorem prover; see Stickel

[1985∗]). Naturally these two components need to interact in some way. In kryp-

ton the interaction is accomplished with a mapping that translates TBox expressions

into ABox expressions (Brachman et al [1983], Patel-Schneider [1987b]). In particular,
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concepts and roles are translated as unary and binary predicates, respectively. (This

is analogous to the formalisation of frames and slots as unary and binary predicates

in the semantics proposed by Hayes [1979].) Subsumption relations are translated as

universally quantified closed implications. For example, the terminological relations

(2.3) Princes ⊑ Males

(2.4) father-of ⊑ parent-of

(2.5) Charles ⊑ (some parent-of Princes)

would respectively be mapped to the assertional expressions

(2.6) (∀x)[Princes(x) ⇒ Males(x)]

(2.7) (∀x)(∀y)[father-of(x, y) ⇒ parent-of(x, y)]

(2.8) (∀x)[Charles(x) ⇒ (∃y)[parent-of(x, y)∧Princes(x)]].

Although every terminological statement is expressible in the more powerful assertional

language, the advantage of having a terminological formalism is that its syntax is free of

variables and quantifiers, therefore providing a more natural representation language.

In addition it was hoped that since the language of the TBox is less expressive than the

first-order language of the ABox, inference in the TBox would be computationally more

efficient than first-order inference, which is undecidable. The terminological component

can be thought of as a special-purpose formalism. Patel-Schneider [1987b, p. 66] views

the terminological formalism as an ‘auxiliary logic’ of the assertional formalism which

is the ‘base logic’ of the ‘hybrid logic’ (or hybrid formalism).

The approach to terminological representation in krypton, kl-two, kandor,

meson and back is essentially the same. What varies is the expressiveness of the

terminological languages. However, as Nebel and von Luck [1988, Section 3] note, the

approaches to assertional representation differ significantly. Like krypton, kl-two

combines nikl’s language and classifier with a predicate logic theorem prover. The

difference is that the terminological language of kl-two is more powerful and its as-

sertional language is a propositional language which is a subset of the full first-order

language of krypton. The ABoxes of kandor and meson in contrast are based on

approaches used in databases. The ABox of back (the Berlin Advanced Computational

Knowledge representation system) uses a combination of these two approaches (predi-
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cate logic and databases).

Besides the ones I mentioned, other hybrid formalisms exist. An example is omega;

see Saffiotti and Sebastiani [1989], Attardi and Simi [1986] and Attardi et al [1986]. I

won’t elaborate more on such systems and suggest that the interested reader consult

also a recent publication by Nebel [1990b∗].

In accordance with Woods [1975], Hayes [1977] and McDermott [1978], increasing at-

tention has been given to formalisation in the description of representation formalisms.

Terminological (and assertional) representation languages are being formally defined

in terms of a fixed syntax with a well-defined model-theoretic semantics. kl-one is

formally defined in Woods and Schmolze [1991], nikl in Schmolze [1989b], kandor in

Patel-Schneider [1984] and back in Nebel and von Luck [1988]. By precisely specifying

the syntax and its intended meaning in a representation formalism, one is able to de-

termine and analyse the expressive and deductive capabilities of the representation for-

malism. Is the formalism expressively adequate for a particular field of application? Is

it deductively adequate? Is it efficient? These are questions that are important to users

and that can be answered by formal investigations. Formal specification also allows one

to compare different formalisms with respect to expressiveness and computational crite-

ria. (Baader [1990] provides a definition of expressive power of kl-one-based knowledge

representation languages that enables one to compare different representation languages

formally.) By formally defining the language and classifier of nikl, Schmolze and Israel

[1983] made the unexpected discovery that inference in nikl is incomplete. Naturally

this discovery cast doubt on whether other terminological reasoners are in fact complete

and efficient as had been believed.

There is a tradeoff between expressive power and computational tractability. The

greater the expressive power of a language for representing knowledge, the harder it

becomes to compute the needed inference in reasonable time (Brachman and Levesque

[1984]). One of the advantages of using first-order logic as a representation formalism

is that its language is very expressive. Unfortunately this expressiveness comes with

a price: first-order reasoning is undecidable and hence intractable. Since terminologi-

cal representation formalisms are expressively weaker than full first-order logic, it was

hoped that terminological inference is tractable. This is unfortunately not so. Brach-
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man and Levesque [1984] present a formal analysis of the computational cost in two

simple terminological languages, called FL and FL−. FL is a concept-description lan-

guage without negation and disjunction operators. (A concept-description language is

a terminological language that can be used to construct complex concept descriptions

which are ordered with respect to subsumption. No provision is made for role sub-

sumption.) FL is a subset of the language in the terminological component of the early

version (Brachman et al [1983]) of krypton, as well as the more expressive terminolo-

gical languages of nikl and kl-one. Brachman and Levesque show that subsumption

in FL is co-NP-complete, thus believed to be unsolvable in polynomial time. However,

subsumption in FL−, a variant of FL that includes all the operators of FL but one

(the role restriction operator), has quadratic time complexity and is tractable. (As a

consequence the role restriction operator was omitted in the later version (Brachman et

al [1985]) of krypton.) A small increase in the expressiveness in FL− to FL, there-

fore, results in a dramatic increase of the computational complexity, from tractable

to intractable. (The reader interested in the theory of computational complexity and

undecidability is advised to refer to an excellent introduction by Harel [1987, Part 3].

The standard reference on intractable and NP-complete problems is the book by Garey

and Johnson [1979].)

In an augmented version of [1984], Levesque and Brachman [1987] show that the

tradeoff between expressive power and computational tractability is an underlying prob-

lem in a number of representation formalisms including first-order logic, databases,

semantic networks and kl-one-based description formalisms. They argue that a know-

ledge representation system should be dependable, that is, inference should be sound

and complete and should normally stop in a reasonable amount of time. Thus (p. 81):

As responsible computer scientists, we should not be providing a general

inferential service if all that we can say about it is that by and large it will

probably work satisfactorily.

In view of the tradeoff there are (at least) two ways of developing dependable termino-

logical representation formalisms:

(i) Limit the expressive power of the representation language, by omitting constructs
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that would lead to non-polynomial response time for correct inference.

(ii) Limit the inference capabilities of the formalism.

Levesque and Brachman are in favour of the former option, which Doyle and Patil [1989,

p. 3] refer to as the ‘restricted language thesis’. Since the computational complexity

of the terminological languages such as FL and FL− is very sensitive to the term-

forming operators in their vocabulary, they suggest that further work should focus on

establishing and analysing tractable and intractable languages. This view became very

influential in shaping subsequent work. (Only recently has it been opposed, by Doyle

and Patil [1989], who refer to it as one of two ‘dogmas of knowledge representation’.)

As a consequence existing terminological formalisms were analysed for computa-

tional efficiency and a number were found to be not only intractable but undecidable.

Schild [1988] showed that inference in U , a very expressive terminological language in-

troduced by Patel-Schneider [1987a] that includes most term-forming constructs from

kl-one and nikl, is undecidable. By analysing the computational tractability of a

subformalism of nikl and U , Patel-Schneider [1989b] showed that subsumption in nikl

is undecidable. Schmidt-Schauß [1988] analysed an even smaller subset of the for-

malism investigated by Patel-Schneider [1989b], which turns out to be undecidable as

well. Schmidt-Schauß thereby established that subsumption in kl-one is undecidable.

In [1988] Nebel shows that subsumption in the terminological components of back and

kandor is intractable. In order to guarantee timely responses knowledge representa-

tion systems such as kl-one, nikl and back therefore have incomplete subsumption

algorithms (Patel-Schneider [1989a], Schmidt-Schauß and Smolka [1988a], Nebel [1988]).

The paper by Levesque and Brachman [1987] also initiated the analysis of a fam-

ily of attributive concept-description languages (so called because they aim to describe

concepts by specifying restrictions on their attributes, i.e. roles), also known as AL-

languages. This analysis casts some light on the precise effect that including differ-

ent syntactic operators in a language has on the computational cost of subsumption.

The first AL-language, called ALC, was introduced and analysed by Schmidt-Schauß

and Smolka [1988a, 1988b]. ALC extends the language FL with concept descriptions

that are formed with the negation and disjunction operators. Subsumption in ALC is
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hence at most as efficient as subsumption in FL, that is, it is at least co-NP-complete.

Schmidt-Schauß and Smolka devise a ‘constraint system’ for deciding subsumption be-

tween concept descriptions that is based on an algorithm for checking satisfiability and

show subsumption in ALC is in fact PSPACE-complete. Donini et al [1990] summarise

the computational complexity of checking subsumption in the AL-languages of which

some were introduced and investigated earlier in the series of papers Hollunder [1989]

and Hollunder et al [1990]. According to Donini et al [1990], except in two of the

weakest languages (called AL and ALN ) checking satisfiability and subsumption in

AL-languages is of non-polynomial complexity. Nebel [1990a] shows that with respect

to a given set (called a terminology) of subsumption and equivalence relations comput-

ing subsumption is co-NP-complete even for a minimal terminological representation

language that is a subset of every other existing terminological language. Nebel charac-

terises his work by the slogan: Terminological reasoning is inherently intractable. This

suggests that limiting the expressiveness of terminological languages does not lead to

useful and tractable (hence dependable) terminological formalisms.

Rather than choosing the first option for realising Levesque and Brachman’s goal

of developing a dependable formalism and avoiding the tradeoff between the expressive

power and computational tractability, Patel-Schneider [1987a, 1987b, 1989a, 1989b,

1990] investigates the second option. So rather than limiting the number of syntactic

constructs in a representation formalism, Patel-Schneider proposes to limit the inference

capability. He uses a four-valued semantics instead of the standard two-valued semantics

for specifying a terminological language, which he refers to as a terminological logic.

The idea is that inference in a terminological logic with such a weakened semantics

will support fewer subsumption relationships and promises to be more efficient. Patel-

Schneider’s aim is to find a suitably weak semantics such that inference is complete

and tractable. His semantics is based on the relevance logic of Belnap [1975, 1977] and

Anderson and Belnap [1975] which has four truth assignments: true, false, neither true

nor false and both true and false. In [1987a, 1987b, 1990] Patel-Schneider also presents a

hybrid formalism, called a ‘hybrid logic’, that incorporates a four-valued terminological

logic and an assertional logic. Unfortunately Patel-Schneider’s solution to devising a

dependable inference scheme also has its problems. As he observes in [1989a, p. 333], the
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four-valued semantics is not as intuitive as the two-valued semantics and subsumption

in the alternative semantics is limited to finding only the very easy inferences.

So it seems that neither limiting the expressive power nor limiting the inference ca-

pabilities of a terminological language are satisfactory options for finding sound, com-

plete and tractable terminological reasoners. Nebel [1990a], Nebel and Smolka [1989],

Schmidt-Schauß and Smolka[1988b] and Doyle and Patil [1989] thus support the argu-

ment for relaxing the requirements for dependable terminological reasoning by putting

some more emphasis on a useful product, and less on being a ‘responsible computer

scientist’. Nebel and Smolka [1989] observe that despite the worst-case inherent in-

tractability of all terminological reasoning, in practice ‘it may well be the case that it

is possible to find algorithms that are well-behaved in all “normal cases”’(p. 16). Espe-

cially Doyle and Patil [1989] oppose the viewpoint of Levesque and Brachman [1987] for

computational tractability and instead argue in favour of expressiveness of language.

Experience with representing medical knowledge in nikl has led them to criticise the

‘restricted language thesis’ supported by Levesque and Brachman to ensure tractability.

Thus (p. 5):

The terminological facilities of such [restricted] systems are so expressively

impoverished that the very purpose set out for general purpose representa-

tional utilities is defeated.

Doyle and Patil argue that rather than providing tractable inference knowledge repre-

sentation systems should provide fully expressive languages, tolerate incomplete infer-

ence and provide a ‘useful inference service through rational management of inference

tools’ (p. 7, 44).

This overview of terminological representation is by no means complete. A re-

cent development worth mentioning is the study of the overlap between terminological

representation and feature-based unification grammars (see Nebel and Smolka [1989],

Schmidt-Schauß and Smolka [1988a], Smolka [1989]). Also notable is Schmolze’s [1989a]

proposal for generalising terminological representation by allowing n-ary role descrip-

tions. In other developments data base models and techniques are being used in kl-

one-type knowledge representation (see, e.g., Devanbu et al [1989], Borgida et al [1989]
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and Etherington et al [1989]).
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2.2 Terminological Languages

In this section I define the syntax and the model-theoretic semantics of the languages

ALC of Schmidt-Schauß and Smolka [1988a, 1988b] and U of Patel-Schneider [1987a].

For continuity I adapt the original definitions of ALC and U . I base my definitions

on the expositions of Schmidt-Schauß and Smolka [1988a, 1988b] and of Nebel and

Smolka [1989] in particular. The syntax used for the languages is largely that used by

Patel-Schneider [1987a] for U . In order for the notation of ALC to resemble that of U , I

changed much of its original notation. I adopt the convention of starting concept names

with a capital letter and role names with a small letter. Like Schild [1988] I prefer to

distinguish notationally between a role and its converse. For example, I will denote

the role representing the relation ‘has as child’ by ‘has-child’ and the role representing

the relation ‘is a child of’ by ‘child-of’. This contrasts with the prevelant tendency to

use just ‘child’ for either. (It seems that ‘child’ is most often assumed to mean ‘has

as child’, see, e.g., Patel-Schneider [1987a, 1989a], Nebel and Smolka [1989], Schmolze

[1989b] and Levesque and Brachman [1987]).

As a consequence of the ‘restricted language thesis’ of Levesque and Brachman

[1987], Schmidt-Schauß and Smolka [1988a, 1988b] introduced the language ALC, which

is less expressive than languages such as kl-one, nikl and U . ALC belongs to the

class of attributive concept description languages or AL-languages (Donini et al [1990]).

It is ‘fairly expressive and enjoys pleasant mathematical properties’ (Schmidt-Schauß

and Smolka [1988b, p. 4]) and also fits in well with the algebraic semantic specification

of terminological languages which I will propose in Chapter 4.

The vocabulary of ALC consists of three disjoint sets of symbols: the alphabet of

primitive concepts, the alphabet of primitive roles and the set of structural symbols.

(In the literature primitive concepts and roles are also said to be ‘atomic’ or ‘generic’.)

There are two designated primitive concept symbols, called top concept ‘⊤’ and bottom

concept ‘⊥’. The set of structural symbols includes ‘and’ (conjunction), ‘or’ (disjunc-

tion), ‘not’ (negation), ‘some’ (existential restriction) and ‘all’ (universal restriction).

All these are referred to as operators.

In the Preview (on page 3) I gave examples of how these operators (with the excep-
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tion of all) can be used to describe compound concept expressions such as ‘male heirs

to the throne’, ‘males and females’, ‘not vegetarian’ and ‘fathers of some princes’. The

operator all represents, for example, the set of ‘individuals who are admirers only of

princes’ as the expression (all admirer-of Princes) (provided we assume everyone admires

someone). These expressions are examples of concept descriptions, which are composed

from roles and other concepts. Since the standard example in Chapter 1 has a domain

consisting entirely of human beings the designated top and bottom concepts can be

used respectively to represent ‘Humans’ (the set of all humans) as ⊤ and the set of no

humans, i.e. the empty set, as ⊥.

More formally, if ‘A’ is any primitive concept symbol then the concept descriptions,

denoted by ‘C’ and ‘D’, can be constructed in terms of other concepts according to the

following rule (in Backus Naur form):

(2.9) C,D −→ A | (and C D) | (or C D) | (not C).

Let ‘Q’ be a primitive role symbol. Extending the rule (2.9) the existential and universal

restriction constructs are specified by:

(2.10) C,D −→ . . . | (some Q C) | (all Q C).

Rules (2.9) and (2.10) recursively define every concept description C or D. (In the

notation of Schmidt-Schauß and Smolka [1988a, 1988b], Nebel and Smolka [1989], Nebel

[1990a], Hollunder [1989], Hollunder et al [1990] and Donini et al [1990] the concept

descriptions in (2.9) and (2.10) are respectively denoted by A, C ⊓ D, C ⊔ D, ¬C,

∃R :C (or ∃R .C) and ∀R :C (or ∀R .C).)

The model-theoretic semantics of concept descriptions in ALC is given by an inter-

pretation I which is defined as a pair (DI , ·I). DI is a set thought of as the domain (or

universe) of interpretation and ·I is an interpretation function which assigns to every

concept description C some subset CI of DI and to every role Q some binary relation

QI over the set DI (i.e. QI ⊆ DI ×DI). The interpretation function assigns meaning

to the designated and complex concepts as specified by the following constraints:
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(2.11) ⊤I = DI

⊥I = ∅

(and C D)I = CI ∩ DI

(or C D)I = CI ∪ DI

(not C)I = (CI)′ (= DI − CI)

(some Q C)I =
{
x | (∃y)[(x, y) ∈ QI & y ∈ CI ]

}
(all Q C)I =

{
x | (∀y)[(x, y) ∈ QI ⇒ y ∈ CI ]

}
.

Besides containing the operator symbols the set of structural symbols contains two

more: the specialisation ‘ ⊑ ’ and equivalence ‘
.
= ’ symbols. These are used to represent

relationships between concept descriptions. In (1.13)–(1.16) of Chapter 1 I gave exam-

ples of specialisation relationships expressing the explicit information in the semantic

network of Figure 1.1 given in (1.1)–(1.4). (Note: in Chapter 1 I referred to these as

subsumption relationships, but strictly speaking subsumption (which I define in (2.14)

below) is a semantic notion). With equivalence we can for example define ‘females’ as

‘humans who are not male’ by specifying that Females
.
= (and Humans (not Males)).

Specialisation and equivalence relations which represent the explicitly given informa-

tion in a knowledge base are called terminological axioms, because they are used as

axioms when computing the implicitly represented information. Let ‘σ’ and ‘τ ’ denote

terminological axioms. Their syntax is formally defined by:

(2.12) σ, τ −→ C ⊑ D | C .
= D.

A set of terminological axioms is referred to as a terminology and is denoted by T. A

terminology can be viewed as a representation of a knowledge base.

An interpretation I of ALC is said to satisfy (or model) a terminological axiom σ,

written |=I σ, iff the interpretations of the concepts are related to each other in certain

ways. Namely:

(2.13) |=I C ⊑ D iff CI ⊆ DI

|=I C
.
= D iff CI = DI .

More generally, an interpretation I is a model for the terminology T, written |=I T , iff

every terminological axiom in T is satisfied by I. A terminological axiom σ is entailed

by (or the consequence of) a terminology T, written T |= σ, iff σ is satisfied by every
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model of T. In the case where T is empty, we write |= σ and the axiom σ is said to be

valid.

Now, define subsumption and equivalence with respect to a terminology T as fol-

lows:

(2.14) C ≼T D iff T |= C ⊑ D

C ≈T D iff T |= C
.
= D.

If C ≼T D then the concept C is said to be subsumed by the concept D in the terminology

T, or equivalently, D is said to subsume C in T. The descriptions C and D are said to

be semantically equivalent in the terminology T if C ≈T D. In case the terminology is

empty, we may write C ≼ D and C ≈ D instead of C ≼∅ D and C ≈∅ D, respectively.

Note the following:

(2.15) C ≼ D iff C ≼T D for every terminology T

C ≈ D iff C ≈T D for every terminology T.

A concept description C is called inconsistent (or incoherent) in a terminology T iff

C ≈T ⊥, and consistent (or coherent) otherwise.

The subsumption relation ≼T is a preorder, that is, it is a reflexive and transitive

relation.

(2.16) Lemma For any terminology T, ≼T is a preorder.

Proof. To show that ≼T is reflexive, note that by (2.14) C ≼T C is equivalent to

T |= C ⊑ C, which in turn is equivalent to saying that |=I C ⊑ C for every model I

of T. By (2.13) this is equivalent to CI ⊆ CI for every model I of T, which is true,

since ⊆ is reflexive.

Next, suppose C ≼T B and B ≼T D. Then T |= C ⊑ B and T |= B ⊑ D. Let I

be any interpretation of T. Hence, |=I C ⊑ B and |=I B ⊑ D, and using (2.13) this

becomes CI ⊆ BI and BI ⊆ DI . Since ⊆ is transitive it follows that CI ⊆ DI ,

hence |=I C ⊑ D. Therefore, since I was arbitrary, T |= C ⊑ D or equivalently

C ≼T D. 2

When two expressions subsume each other (C ≼T D and D ≼T C), they can be shown

to be equivalent (C ≈T D). (The proof is similar to the one above.) Since the terms C
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and D need not be identical, ≼T is not an antisymmetric relation. Hence ≼T is not a

partial order. However, quotienting ≼T with respect to the equivalence relation ≈T

yields the partial order (≼T /≈T ), associated with which is the poset of equivalence

classes of the concepts, namely (C/≈T , ≼T /≈T ), where C denotes the set of concept

descriptions. In this poset the equivalent concepts are not distinguishable since they

are associated to one particular equivalence class. Nebel and Smolka [1989] refer to this

poset as the concept taxonomy in the terminology T. This completes the definition of

the terminological language ALC.

Since ALC is a concept-description language its treatment of concepts and roles is

rather uneven. Concepts and roles can be combined to form new concepts, but not

to form new roles. While the concepts are related to each other by the subsumption

ordering, roles are not related in any way. Hollunder [1989], Hollunder et al [1990] and

Donini et al [1990] introduce role conjunction and role subsumption to ALC, obtaining

the more expressive AL-languages called ALCR and ALCNR. Various other termi-

nological languages including kl-one (Woods and Schmolze [1991]), nikl (Schmolze

[1989b]), and the terminological components of krypton (Brachman et al [1983, 1985]),

kandor (Patel-Schneider [1984]) and back (Nebel and von Luck [1988]) are equipped

with both concept- and role-forming operators, as well as concept and role subsump-

tion. Combining the different syntactic operators of these languages, Patel-Schneider

[1987a] introduced a very expressive terminological language, called U , which has the

terminological languages of many systems as sublanguages. Since I aim to analyse the

semantics of terminological languages in an algebraic framework, I am particularly in-

terested in the different kinds of operators used in various languages and find U suitable

for analysis.

As for ALC, the vocabulary of U consists of the alphabet of primitive concepts and

the alphabet of primitive roles as well as the set of structural symbols, which contains

the operators of U and the symbols ‘ ⊑ ’ and ‘
.
= ’. Like ALC, U has two designated

primitive concepts: the top concept ‘⊤’ and the bottom concept ‘⊥’. It has one desig-

nated primitive role ‘self’, called the identity role. As before ‘A’ denotes any primitive

concept, ‘C’, ‘D’ any concept descriptions and ‘Q’ any primitive role. In addition, ‘R’

and ‘S’ denote any role descriptions. Concept description can be formed according to
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the following rule which specifies conjunctions, disjunctions and negations:

(2.17) C,D −→ A | (and C D) | (or C D) | (not C).

Other concept-forming operators are used to express existential and universal restric-

tions as specified by the extension:

(2.18) C,D −→ . . . | (some R C) | (all R C).

Number restrictions are defined by:

(2.19) C,D −→ . . . | (atleast n R) | (atmost n R),

where n is a non-negative integer. Role value maps and structural descriptions are

respectively defined by the rule:

(2.20) C,D −→ . . . | (rvm R S) | (sd C Rb1 . . .Rbk),

where k is a positive integer. The ‘Rbi’ denote the so-called role bindings and have one

of two forms. Namely:

(2.21) Rbi −→ (⊆ R S) | (⊇ R S).

Rules (2.17)–(2.21) thus recursively define the set of concept descriptions.

The set of role descriptions is defined by rules (2.22)–(2.24) below. Role conjunc-

tions, disjunctions and negations are defined by:

(2.22) R, S −→ Q | (and R S) | (or R S) | (not R).

Role inversions, role compositions and transitive closures are respectively defined by

the extension:

(2.23) R, S −→ . . . | (inverse R) | (compose R S) | (trans R).

And role restrictions are defined according to:

(2.24) R, S −→ . . . | (restrict R C).

U can be viewed as an extension of ALC. It has the same designated concepts ⊤ and

⊥ as ALC, and its operators and, or, not, some and all are defined as in ALC, except

that the some and all operators can be applied to any role description R, not just to

primitive roles Q (compare (2.10) and (2.18)). As for ALC an interpretation I of U

is defined in terms of a domain DI and an interpretation function ·I . Every concept

description C is mapped by ·I to a subset CI of DI , and every role R is mapped to a
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binary relation RI over the set DI . The semantics of the designated concepts and the

concept-forming operators that U has in common with ALC is defined by (2.11) above,

with the primitive role symbol ‘Q’ in the definition of some and all replaced by the more

general role symbol ‘R’. The semantics of the other concept-forming operators in U are

given by the following conditions:

(2.25) (atleast n R)I =
{
x | card({y | (x, y) ∈ RI}) ≥ n

}
(atmost n R)I =

{
x | card({y | (x, y) ∈ RI}) ≤ n

}
(rvm R S)I =

{
x | (∀y)[(x, y) ∈ RI ⇒ (x, y) ∈ SI ]

}
(sd C Rb1 . . .Rbk)

I =
{
x | (∃y)[(x, y) ∈ ∩k

i=1 Rbi
I & y ∈ CI ]

}
.

(For any set A, card(A) returns the cardinality of A.) Each role bindings construct Rbi

can have one of two forms and their respective interpretations are given by:

(2.26) (⊆ R S)I =
{
(x, y) | (∀z)[(x, z) ∈ RI ⇒ (y, z) ∈ SI ]

}
(⊇ R S)I =

{
(x, y) | (∀z)[(y, z) ∈ SI ⇒ (x, z) ∈ RI ]

}
.

In addition the semantics of the designated role and the role-forming operators are given

by:

(2.27) selfI =
{
(x, x) |x ∈ DI

}
(and R S)I = RI ∩ SI

(or R S)I = RI ∪ SI

(not R)I = (RI)′ (= (DI ×DI)− RI)

(inverse R)I =
{
(x, y) | (y, x) ∈ RI

}
(compose R S)I =

{
(x, y) | (∃z)[(x, z) ∈ RI & (z, y) ∈ SI ]

}
(trans R)I = RI ∪

∪
k≥1

{
(x, y) | (∃z1) . . . (∃zk)[(x, z1) ∈ RI

& ∀(1 ≤ i < k)[(zi, zi+1) ∈ RI ] & (zk, y) ∈ RI ]
}

(restrict R C)I =
{
(x, y) | [(x, y) ∈ RI & y ∈ CI ]

}
.

Thus the interpretations of the role forming operators are the usual set-theoretic opera-

tions: identity, intersection, union, complementation, converse, composition, transitive

closure and range restriction. The set-theoretic definition of trans is rather unwieldy.

However it can also be characterised by a recursive definition which I give in (4.6) of

Section 4.1.

A role filler of some R is interpreted to be an element y in the domain DI , such
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that there is an element x ∈ DI and (x, y) ∈ RI . In other words, the set of role fillers

is identical to the range of the relation RI .

Examples of concept descriptions represented in terms of the and, or, not and some

can be found in the Preview (on page 3). Above (on page 17) I gave an example of

a concept description formed with the all operator. In the Preview I also represented

the relation ‘child-of’ (or ‘has-parent’) as (inverse parent-of) and the relation ‘aunt-of’

in terms of the relations ‘sister-of’ and ‘parent-of’ as (compose sister-of parent-of). Here

is a list of examples illustrating the other operators to concepts and roles from the

standard example in Figure 1.1:

(2.28) (atleast 2 parent-of) represents the set of parents of at least two humans.

(2.29) (atmost 1 parent-of) represents the set of parents of at most one human.

(2.30) (rvm aunt-of relative-of) represents the set of humans who are relatives of all those

of whom they are an aunt. (This should coincide with the set of all humans.)

(2.31) (and parent-of teacher-of) represents the relation of simultaneously being a parent

and a teacher.

(2.32) (or sister-of admirer-of) represents the relation of being either a sister or being

an admirer.

(2.33) (not father-of) represents the relation of not being a father.

(2.34) (trans parent-of) represents the relation ‘is a parent or ancestor of’ as the tran-

sitive closure of the ‘parent-of’ relation.

(2.35) (restrict sibling-of Males) represents the relation of being a sibling of males, in

other words it represents the relation ‘has as brother’.

The most complex and least obvious construct is the structural description, sd. The

best descriptions I could find are those of Patel-Schneider [1987a] and Schild [1988].

Patel-Schneider [1987a, p. 88] describes structural description as ‘a way of inter-relating

role fillers by means of roles of some other object’. As an example he represents the

concept ‘project-broadcast message’ or ‘a message for which some project exists such

that each sender of the message is a project-member of the project, and each project-

member of the project is a recipient of the message’ as

(and message (sd project (⊆ sender project-member) (⊇ recipient project-member))).
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In his example Schild [1988, p. 3] defines the concept ‘faithful husband’ by

(and man (sd woman (⊆ has-child has-child))),

since ‘a faithful husband should be a man for which there exists a woman who is the

mother of all the man’s children’. But even these examples seem unclear. So, I tried

to come up with more intuitive examples that fit in with the sample knowledge of the

semantic network in Figure 1.1. Consider the following role binding expression:

(2.36) (⊆ child-of child-of).

According to the definition in (2.26) it represents a relation by which an individual x

is related to an individual y iff all individuals z who have x as a child also have y as a

child. I.e., x is related to y iff all individuals z who are parents of x are also parents

of y. In other words, the set of all parents of x coincides with the set of all parents of

y. That is, x and y are siblings (half-brothers and -sisters excluded), provided we take

anybody to be a sibling of him/herself. The expression

(2.37) (sd Males (⊆ child-of child-of))

thus represents (according to its definition in (2.25)) the set of individuals x who have

a male sibling. That is, (2.37) represents the set of all those people who are either male

(and hence qualify as their own male sibling) or have a brother. If one were opposed

to this definition of ‘sibling-of’ and not want individuals to be their own siblings, one

would have to provide for this and amend (2.37) as follows:

(2.38) (sd Males (⊆ self (not self)) (⊆ child-of child-of)).

In this representation no male is related to himself, since the role binding construct

(⊆ self (not self)) is equivalent to (not self). (I will prove this in (4.27) of Section 4.3.)

Observe that the syntactic definition of sd in (2.20) and (2.21) forces us to encode the

role (not self) as a more complex and less intuitive expression. These examples illustrate

that, first, it is not easy to find adequate English formulations for even small constructs

such as (2.36) and (2.37). And second, as (2.38) illustrates it is also not easy to find

adequate terminological representations for information formulated in English.

To complete the definition of U we need to extend the definition of subsumption

and equivalence for concepts in ALC to subsumption and equivalence for roles. The

rule
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(2.39) σ, τ −→ . . . | R ⊑ S | R .
= S

extends the definition (2.12) of terminological axioms with role specialisations and role

equivalences. Their semantics is as for the terminological axioms (2.13) that express

relationships between concepts: specialisation is interpreted by the subset relation and

equivalence by equality. I will not explicitly define the notions of models of terminologi-

cal axioms, entailment by a terminology, valid terminological axioms, role subsumption

and role equivalence in a terminology, inconsistent and consistent roles for U . These

are straightforward generalisations of the corresponding notions for ALC. Just as the

concept taxonomy is a poset of concept equivalence classes, the role taxonomy is defined

to be the poset (R/≈T , ≼T /≈T ) of role equivalence classes ordered with respect to

the quotient of role subsumption, where R denotes the set of all role descriptions in the

language.

I have slightly adapted the vocabulary of the language U as defined by Patel-

Schneider [1987a] and Schild [1988]. They denote the ‘inverse’, ‘compose’ and ‘restrict’

operators by ‘inv’, ‘comp’ and ‘vr’, respectively. Rather than defining conjunction, dis-

junction and role composition as n-ary operators, without loss of generality they are here

defined as binary operators. Instead of using Patel-Schneider’s version of the existential

rectriction operator some, I use the more general definition given by Schmidt-Schauß

and Smolka [1988a, 1988b] and include the designated concepts ⊤ and ⊥ in the voca-

bulary of U . The some operator of Patel-Schneider is applied to a role R yielding the

concept description (some R) which has the following interpretation:

(2.40) (some R)I =
{
x | (∃y)[(x, y) ∈ RI ]

}
.

It is easy to show that the two versions of some can be defined in terms of each other

as follows:

(2.41) (some R C)
.
= (some (restrict R C))

(some R)
.
= (some R ⊤).

Also, in U as defined by Patel-Schneider the concepts ⊤ and ⊥ can be thought as

abbreviating (some self) and (not ⊤), respectively. Hence my version of U is essentially

equivalent to that of Patel-Schneider.

Suppose we use the symbol ‘∇’ to abbreviate the expression (or self (not self)) and
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‘Λ’ to abbreviate the expression (not ∇), then the following holds:

(2.42) ∇I = DI ×DI

ΛI = ∅.
Hence ∇ and Λ can be regarded as the top role and the bottom role, respectively.

The language of nikl (Schmolze [1989b]) and the language KL (defined in Woods and

Schmolze [1991]) have two interesting role-forming operators ‘domain’ and ‘range’. The

construct (domain C) represents the largest relation with the set represented by C as

domain, while (range C) represents the largest relation with the set represented by C as

range. Formally, their semantics is given by:

(2.43) (domain C)I =
{
(x, y) |x ∈ CI

}
(range C)I =

{
(x, y) | y ∈ CI

}
.

These constructs can be defined in U by:

(2.44) (domain C)
.
= (inverse (restrict ∇ C))

(range C)
.
= (restrict ∇ C),

which can be shown to be valid.

Although one can express most of the syntactic operators used in kl-one-type

representation languages in U , there are operators which, it seems, one cannot. One

such operator is ‘fillers’ (not to be confused with role fillers). It yields the concept

description (fillers R C1 . . .Ck), for k any positive integer, which Patel-Schneider [1989a,

p. 323] interprets to contain all those elements related by the role R to an element

of each concept Ci, such that these elements in the Ci are all distinct. Formally this

translates to:

(2.45) (fillers R C1 . . .Ck)
I = {x | (∃y1) . . . (∃yk)(∀i)[(∀j ̸= i)[yj ̸= yi] &

(x, yi) ∈ RI & yi ∈ CI
i ]
}
.

This construct can be regarded as a generalised version of the operator atleast, since

(2.46) (atleast n R) ≈ (fillers R ⊤ . . .⊤︸ ︷︷ ︸
n copies

).
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2.3 A Note on Sources

Standard textbooks on Artificial Intelligence like Charniak and McDermott [1985], Rich

[1983] and Nilsson [1980] contain general introductions and overviews to knowledge re-

presentation. Knowledge representation is also surveyed in the papers of Delgrande and

Mylopoulos [1986], Levesque [1986] and Mylopoulos and Levesque [1983]. A variety of

research material deals with the ‘philosophical’ foundations of knowledge representa-

tion. For example, in [1983a] Israel discusses the semantics of semantic networks, and

in [1983b] and [1985] he debates the role of (classical and nonmonotonic) logic in know-

ledge representation and the contrasting viewpoint of Minsky. Israel and Brachman

[1981, 1984] discuss the merits of logic and some of the confusions in semantic networks.

Brachman [1983] deals with the interpretations of links, specifically the ‘is a’ link in se-

mantic networks and addresses the confusions that arise from the uniform treatment of

links (e.g., the uniform treatment of subsumption and role links). In [1983, 1986] Woods

identifies and discusses general issues that in his view are fundamental in knowledge

representation.

Most of the work conducted in Artificial Intelligence and knowledge representation

is published in journals, conference proceedings and technical reports. A rich source

of references is the Springer-Verlag series Lecture Notes in Computer Science and its

subseries Lecture Notes in Artificial Intelligence. Some of the most interesting papers

in knowledge representation have appeared in special collections published as books.

Brachman and Levesque [1985] is such a collection of the early important papers, and

Findler [1979] contains a collection of the early papers on semantic networks. A collec-

tion on the ‘principles of semantic networks’ will appear in Sowa [1990∗].

The most important source of material on knowledge representation are the major

AI journals, which include Artificial Intelligence and The AI Magazine. In addition

Cognitive Science and Computational Intelligence regularly publish contributions to

research in knowledge representation. Papers also sporadically appear in the general

Computer Science literature, e.g., Proceedings of the IEEE and the various ACM publi-

cations (e.g., the SIGART Newsletter). Special issues on knowledge representation and

semantic networks include IEEE Computer [1983], Proceedings of the IEEE [1986] and
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Computers and Mathematics with Applications [1991∗].

Artificial Intelligence conferences are organised on a regular basis and usually have

special sessions on knowledge representation. The major AI conferences, which are usu-

ally held annually or biannually, are the International Joint Conference on Artificial

Intelligence (IJCAI), the National Conference on Artificial Intelligence (AAAI), the

European Conference on Artificial Intelligence (ECAI) and the German Workshop on

Artificial Intelligence (GWAI). Other conferences include the Conference on Artificial

Intelligence Applications (organised by the IEEE Computer Society), the International

Symposium of Artificial Intelligence and the Conference of the Society for the Study of

Artificial Intelligence and Simulation of Behaviour (AISB). From time to time specialist

conferences and workshops are held. Relevant ones include the 1981 kl-one Workshop

(Schmolze and Brachman [1982∗]), the Knowledge Representation Workshop [1983∗],

the IEEE Workshop on Principles of Knowledge-Based Systems [1984∗] and the nikl

Workshop (Moore [1986∗]). More recent conferences include the Workshop on Inher-

itance Hierarchies in Knowledge Representation and Programming Languages [1989∗],

the First International Conference on Principles of Knowledge Representation and Rea-

soning (Brachman et al [1989∗]) and the Workshop on Term Subsumption Languages

in Knowledge Representation (Patel-Schneider et al [1989]).

Almost all material initially appear as Technical Reports at the authors’ home insti-

tution. These can be very difficult to get hold of, especially to workers in remote parts

of the world. Fortunately (and on a personal note) AI workers are very approachable,

and email works wonders.
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Chapter 3

Algebras of Sets and Relations

The purpose of this chapter is to introduce algebraic structures which formalise rea-

soning with sets and relations. Since reasoning with concepts and roles is modelled

as reasoning with sets and relations, these algebras form the basis for the equational

approach to terminological inference which I propose in Chapter 4. The structures I

consider are Boolean algebras, relation algebras, Boolean modules and a new class of

algebras, called Peirce algebras. These algebras can be studied in the context of Uni-

versal Algebra. Standard expositions of one-sorted or homogeneous algebras can be

found in, e.g., Burris and Sankappanavar [1981], Grätzer [1968, 1979] and Cohn [1981].

An exposition of many-sorted or heterogeneous algebras appears in Birkhoff and Lipson

[1970].

For later reference I define some general algebraic notions.

(3.1) Definition A (homogeneous) algebra A is an ordered pair (A,F ) with A any non-

empty set and F a set of finitary operations on A. An n-ary (or finitary) operation on

A is any function f from An to A. (In this chapter no operation has arity greater than

two.) When F is finite, say F = {f0, . . . , fn−1}, the algebra (A,F ) is also denoted by

(A, f0, . . . , fn−1). A is called the base set of the algebra and is assumed to be closed

under each operation in F . (In general, F is not necessarily finite and may be empty.)

The operations in F are called the fundamental operations of the algebra. The set F of

operations and their arities determine the type (or similarity) of an algebra.

I focus on algebras which are equationally definable, that is, those which are completely
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defined by equations (or identities). A class K of (similar) algebras is called an equa-

tionally definable class (or equational class), if there is a set of equations Σ such that

K is the class of all algebras in which each equation in Σ is satisfied. Let Σ denote a

set of equations and let e denote an equation. We write Σ |= e if, given any algebra A

in which each equation of Σ is satisfied, e is also satisfied in A. The set of equations Σ

satisfied in every algebra of a class K is called the equational theory of K.

Fundamental to the study of the equational theory of algebras are two important re-

sults, both due to Birkhoff [1935∗]. The first provides a purely algebraic characterisation

of equationally definable algebras.

(3.2) Theorem A non-empty class K of algebras is an equationally definable class iff

it is closed under subalgebras, homomorphic images and direct products (i.e., it is a

variety).

An equational class is thus synonymous with a variety. The second result (given in

Theorem (3.3) below) establishes a correspondence between the equational theory of a

class of algebras and equational logic.

Equational logic is a restricted form of first-order logic. Sentences in the language

of equational logic come only in one form, namely as equations. (That is, the symbol

‘ = ’ is the only predicate symbol in the language.) An equation is a pair of terms p and

q, written ‘p = q’. The terms are recursively constructed as combinations of variables

and operations on variables. The standard set of inference rules are the following:

Reflexivity: Given any term p, infer p = p.

Symmetry: Given any equation p = q, infer q = p.

Transitivity: Given any equations p = q and q = r, infer p = r.

Replacement: Given any equation p = q and any term r with p as subterm, infer r = s,

where s is the term r in which p is replaced by q.

Substitution: Given any equation p = q and any term r, for any given variable x oc-

curring in p = q, infer p[x/r] = q[x/r] (that is, the equation p = q with every

occurrence of x replaced by r).

The rule of reflexivity generates equations referred to as the tautologies. An equation

e is derivable from the set of equational axioms Σ, written Σ ⊢ e, if there is a finite
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proof, that is, a finite sequence of equations (e1, . . . , en = e) such that each equation ei is

either an axiom in Σ or is inferred from earlier equations using the above rules. Birkhoff

[1935∗] gave the first proof that (as in first-order logic) derivability in equational logic

is both sound and complete.

(3.3) Theorem (Completeness Theorem for Equational Logic) Σ |= e iff Σ ⊢ e.

This result gives us (as Burris and Sankappanavar [1981, p. 96] appropriately say) a

‘two-edged sword’ for studying the consequences from a set of equations. On the one

hand, we can study derivability in equational logic (i.e. ⊢), and on the other hand, we

can study satisfaction of equations in a class of algebras (i.e. |=). It is therefore not

surprising that equational logic is treated in many standard references on Universal

algebra, including Burris and Sankappanavar [1981, Chapter II §14]. Refer also to

Henkin [1977]. For a survey of equational logic the reader is advised to refer to Tarski

[1968∗] and Taylor (in Appendix 4 of Grätzer [1979]).

One of the useful properties of varieties is that they possess free algebras (a result also

due to Birkhoff [1935∗], see also Burris and Sankappanavar [1981, §10]). In Section 4.2

I will exploit this fact to construct algebras from given sets of elements.

(3.4) Definition (Grätzer [1968]) Let K be a class of algebras and let A ∈ K. Let A

be generated by a set X, i.e. A is the smallest algebra in K containing X. A is said to

be a free algebra over K if, for any algebra A′ ∈ K, and for any mapping f : X −→ A′,

there is a homomorphism g of A into A′ such that f(x) = g(x) for all x ∈ X.

Free algebras are commonly constructed in two stages. First, a term algebra over a

class K from the set X is constructed. This involves combining the elements in X

through the fundamental operations in K in all possible ways, yielding ‘absolutely

freely generated’ terms. An example of a term algebra (from the theory of formal

languages) is the word algebra in which elements are combined by concatenation. In

the second stage term algebras are transformed into K-algebras, by forming equivalence

classes of equivalent terms. This involves quotienting the term algebra with respect to

the congruence relation (operation preserving equivalence relation) determined by the

axioms of K. The resulting algebra is a free K-algebra freely generated by X. The
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reader interested in the technical details could refer to Grätzer [1968, Chapter 4] and

Burris and Sankappanavar [1981, Chapter II §10 & §11].
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3.1 Boolean Algebras

There is more than one way of reasoning with sets and relations. One approach is to do

so within the elementary theory of sets and relations. In this context reasoning takes

place in first-order logic. The other approach is to do so in the calculus of sets and

relations. In this framework, which I adopt here, one uses equational reasoning rather

than first-order reasoning.

In this section I present the standard algebraic formalisation of the calculus of

sets. I adopt the usual set-theoretic terminology and notation. Sets are denoted by

A, B, C . . . and the operations of union, intersection and complement by ∪ , ∩

and ′, respectively. These operations have some fundamental properties which can be

formulated as equations. For example:

(3.5) A ∪ B = B ∪ A

(3.6) A ∩ B = B ∩ A

(3.7) A ∪ (A ∩ B) = A

(3.8) A ⊆ B iff A ∪ B = B.

To illustrate the difference between reasoning in the elementary theory of sets and

the calculus of sets I give a small example. Suppose we want to prove the following

theorem:

(3.9) A ∩ B ⊆ B.

Proving this fact in the elementary theory of sets involves ‘element-wise’ reasoning. A

proof would look something like this:

If either A or B is empty then A ∩ B is empty and hence (3.9) is trivially

satisfied. In case neither A nor B is empty, consider any element x ∈ A ∩ B.

By definition of intersection x ∈ A ∩ B iff x ∈ A and x ∈ B. Hence

x ∈ A ∩ B implies x ∈ A and in particular x ∈ B. This completes the

proof.

On the other hand, in the context of the calculus of sets the proposition (3.9) follows

as an equational consequence of the properties (3.5)–(3.8) as in the following proof:

By (3.8) it suffices to prove that (A ∩ B) ∪ B = B. By commutativity, (3.5)
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and (3.6), and by absorption (3.7), we have:

(A ∩ B) ∪ B = B ∪ (A ∩ B) = B ∪ (B ∩ A) = B.

While the first approach involves ‘local’ reasoning (since we use the set-theoretic defi-

nitions of intersection and inclusion) this approach involves ‘global’ reasoning (since we

use some fundamental properties). The point of the second approach is its conceptual

simplicity: we do not need to talk about sets and elements, we only need to talk about

sets.

The classic presentation of equational reasoning about sets involves the notion of a

Boolean algebra. Boolean algebra, named after the G. Boole [1847∗, 1854∗], is presented

in many textbooks such as Burris and Sankappanavar [1981], Grätzer [1968], Birkhoff

[1973], Bell and Slomson [1971], Sikorski [1964], Halmos [1974] and Mendelson [1970].

Equational reasoning in Boolean algebra is also known as the arithmetic of Boolean

algebra, to distinguish it from the universal-algebraic study of Boolean algebras.

(3.10) Definition A Boolean algebra is an algebra B = (B,+, · ,′ , 0, 1) such that for

each a, b, c ∈ B the following hold:

B1 a+ a = a, a · a = a

B2 a+ b = b+ a, a · b = b · a

B3 a+ (b+ c) = (a+ b) + c, a · (b · c) = (a · b) · c

B4 a · (a+ b) = a, a+ a · b = a

B5 a+ b · c = (a+ b) · (a+ c), a · (b+ c) = a · b+ a · c

B6 a+ 0 = a, a · 1 = a

B7 a+ a′ = 1, a · a′ = 0.

The two binary operations + and · are respectively referred to as join (or sum) andmeet

(or product), the unary operation ′ as complement and the constants (i.e. the nullary

operations) 0 and 1 as zero and unit, respectively. Unless guided by the parentheses the

association for the operations is left to right with ′ binding tightest, then · and finally

+. (Note that here ‘B’ denotes the base set of a Boolean algebra B.)

The above axiomatisation of Boolean algebra is neither independent nor minimal,

and many other axiomatisations exist (as shown by Huntington [1904∗, 1933∗]). A Boo-
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lean algebra can alternatively be defined as a bounded, complemented and distributive

lattice (B, ≤ ), where ≤ is a partial order defined on B such that for each a, b ∈ B:

B8 a ≤ b iff a+ b = b (or a · b = a).

A lattice is a partially ordered set in which each pair of elements has a least upper

bound (a join) and an greatest lower bound (a meet). Lattices are characterised by

axioms B1 to B4.

The next result lists some elementary arithmetical properties of Boolean algebra

which follow from the axioms.

(3.11) Theorem In any Boolean algebra the following properties hold:

B9 a+ 1 = 1, a · 0 = 0

B10 a′′ = a

B11 (a+ b)′ = a′ · b′, (a · b)′ = a′ + b′

B12 a ≤ b iff b′ ≤ a′ iff a′ + b = 1 iff a · b′ = 0

B13 0′ = 1, 1′ = 0.

The paradigm example of a Boolean algebra is a full Boolean algebra (also called a

power set algebra) B(U) = (2U , ∪ , ∩ ,′ , ∅, U) over some non-empty set U , called the

universe. 2U denotes the set of all subsets of U and is partially ordered by ⊆ . We also

write B(U) = (2U , ⊆ ). Let F be a set of subsets of some set U , i.e. F ⊆ 2U , such that

F is closed under ∪ , ∩ and ′. (F, ⊆ ) is called a field of sets on U (also referred to

as a proper Boolean algebra). Any field of sets is a subalgebra of a full Boolean algebra.

A Boolean algebra B is said to be atomic iff for each non-zero element b ∈ B there

is some atom a ∈ B such that a ≤ b, where a is a minimal non-zero element in B with

respect to the ordering ≤ . For example, every full Boolean algebra B(U) is atomic,

its atoms being the singleton sets. Also, every finite Boolean algebra is atomic. In

fact, any finite Boolean algebra must have 2n elements (for some non-negative integer

n). These elements correspond to the 2n subsets of some set of n atoms. Any finite

Boolean algebra is thus isomorphic to some full Boolean algebra. More generally, the

following very important theorem due to Stone [1936∗] asserts that any Boolean algebra

is isomorphic to a subalgebra of a full Boolean algebra.
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(3.12) Theorem (Representation Theorem for Boolean Algebras) Every Boo-

lean algebra is representable, i.e. isomorphic to some field of sets.

This theorem implicitly states that reasoning about sets is successfully captured by the

arithmetic of Boolean algebra. This means that for the calculus of sets ‘element-wise’

reasoning is unnecessary.

A Boolean algebra B may be closed under arbitrary joins and meets. That is, it

may happen that for any subset A of B, the least upper bound (written
∑
a∈A

a) and the

greatest lower bound (written
∏
a∈A

a) exist. Then B is called complete. Tarski [1935∗]

shows that any complete and atomic Boolean algebra is isomorphic to a full Boolean

algebra. This generalises Theorem (3.12).

The class of Boolean algebras is a standard example of an equationally definable

class (i.e. a variety). Free Boolean algebras exist and have been extensively studied.

See, for example, Sikorski [1964] and Halmos [1974].
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3.2 Relation Algebras

In this section I consider the algebra of binary relations. A binary relation over some

non-empty set is a subset of the Cartesian product U2 ( = U × U = {(x, y) |x ∈ U & y ∈

U}). The set U is called the universe. All relations considered in this thesis are binary

and are denoted by R, S, T . . .. New relations can be formed using the set-theoretic

(or Boolean) operations union, intersection and complement. In addition, relations are

endowed with relational operations and constants, such as:

(3.13) Composition: R ;S = {(x, y) | (∃z)[(x, z) ∈ R & (z, y) ∈ S]}

(3.14) Converse: R⌣ = {(x, y) | (y, x) ∈ R}

(3.15) Identity: Id = {(x, x) | x ∈ U} .

(Composition is also referred to as relational (or relative) product and the identity

relation as the diagonal relation. Many authors denote the identity relation by Id U or

Id ⌈U to indicate the universe explicitly.) For example, if R is the relation ‘is a brother

of’ and S is the relation ‘is a parent of’ then R ;S is the relation ‘is an uncle of’ and

R⌣ is the relation ‘has as brother’. Just as the Boolean operations are governed by

equational laws so are the relational operations and constants. For example:

(3.16) Composition is associative: (R ;S) ;T = R ; (S ;T )

(3.17) Converse is an involution: R⌣⌣ = R

(3.18) Converse distributes over ; and reverses the order: (R ;S)⌣ = S⌣ ;R⌣

(3.19) Id is an identity of composition: R ; Id = R = Id ;R.

As with sets there is more than one way of reasoning with relations: First, within

the elementary theory of relations, and second, within the calculus of relations. Our

interest lies with the equational approach, which avoids ‘element-wise’ reasoning. The

calculus of relations originated in the nineteenth century with A. De Morgan [1847∗],

C.S. Peirce [1870∗, 1931–1935∗] and E. Schröder [1890–1895∗]. Peirce and Schröder

recognised that many familiar properties of relations can be formulated equationally.

For example:

(3.20) Theorem Let R be any binary relation over some non-empty universe U . Then:
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(i) R is reflexive iff Id ⊆ R

(ii) R is symmetric iff R = R⌣

(iii) R is anti-symmetric iff R ∩ R⌣ ⊆ Id

(iv) R is transitive iff R ;R ⊆ R

(v) R is single-valued iff R⌣ ;R ⊆ Id .

Proof. I only prove (iv). The other proofs are similar. R ;R ⊆ R iff (∀x)(∀y)[(x, y) ∈

R ;R ⇒ (x, y) ∈ R] iff (∀x)(∀y)[(∃z)[(x, z) ∈ R & (z, y) ∈ R] ⇒ (x, y) ∈ R] iff

(∀x)(∀y)[(∀z)¬[(x, z) ∈ R & (z, y) ∈ R] or (x, y) ∈ R] iff (∀x)(∀y)(∀z)[¬[(x, z) ∈

R & (z, y) ∈ R] or (x, y) ∈ R] iff (∀x)(∀y)(∀z)[[(x, z) ∈ R & (z, y) ∈ R] ⇒ (x, y) ∈ R]

iff R is transitive. 2

(Note that by (3.8), for example, the inclusions can be rewritten as equations.) A

reflexive, symmetric and transitive relation is also known as an equivalence relation and

a single-valued relation as a partial function. The identity relation Id and the universal

relation U2 are (extreme) examples of equivalence relations.

In a seminal paper [1941] Tarski distinguished the calculus of relations from the ‘ele-

mentary theory’ of relations, and proposed a set of equations (including those of (3.16)–

(3.19)) as axioms for the formalisation of the calculus of relations. (These appear in

Definition (3.21) below.) His work gave rise to relation algebras, the first definition

of which appeared in Jónsson and Tarski [1948∗]. I use the definition from Chin and

Tarski [1951], as adapted in Tarski [1955∗]. (The reader interested in a historic account

of relation algebras could refer to, e.g., Maddux [1990a] and Brink [1988].)

(3.21) Definition A relation algebra is an algebra R = (R,+, · , ′, 0, 1, ; ,⌣, e) satisfy-

ing the following axioms for each r, s, t ∈ R:

R1 (R,+, · , ′, 0, 1) is a Boolean algebra

R2 r ; (s ; t) = (r ; s) ; t

R3 r ; e = r = e ; r

R4 r⌣⌣ = r

R5 (r + s) ; t = r ; t+ s ; t

R6 (r + s)⌣ = r⌣ + s⌣
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R7 (r ; s)⌣ = s⌣ ; r⌣

R8 r⌣ ; (r ; s)′ ≤ s′.

For convenience parentheses are omitted according to the convention that ⌣ and ′ bind

tightest, then ; and · and subsequently +. As in Boolean algebra +, · , ′, 0, 1 are

known as join, meet, complement, zero and unit respectively. The operations ; and

⌣ are known respectively as relative product (or composition) and conversion. The

designated element e in R is called the identity element. (Although my use of the

symbol ‘R’ is overloaded, it will be clear from the context whether it denotes a binary

relation or the base set of a relation algebra R.)

Observe that most of the axioms specify familiar properties. Axioms R2, R3 and

R4 define an involutive monoid (R, ; ,⌣, e). Axioms R5, R6 and R7 define ; and ⌣

(essentially) as distributive operations. R8 implicitly deals with residuation (to which I

will return). Observe also that relation algebras are defined purely in terms of equational

axioms (since R8 can be rewritten as an equation, using B8). In fact, the class of relation

algebras forms a variety (that is, the class is equationally definable).

The standard example of relation algebras are proper relation algebras. A proper re-

lation algebra over some non-empty universe U is defined by (F, ∪ , ∩ , ′, ∅, U2, ; ,⌣, Id )

where F is a non-empty family of binary relations between elements in U (that is,

F ⊆ 2U2
). The operations ; and ⌣ correspond to the relation-theoretic operations of

composition and converse defined by (3.13) and (3.14). In the case where F is the set

of all subsets of U2, i.e. F = 2U2
, the algebra is called the full relation algebra over

the set U which I denote by R(U). In general, an algebra of binary relations need not

have the universal relation U2 as its unit. Such an algebra is referred to merely as a

proper relation algebra (with the definition of complementation appropriately adapted).

A definition of proper relation algebras can be found in Jónsson and Tarski [1952] and

Tarski and Givant [1987, p. 239].

Since proper relation algebras are relation algebras every property derivable from

the axioms of relation algebras is satisfied in the elementary theory of relations. The

question is: does the arithmetic of relation algebras capture the elementary theory of

relations, in the same sense as Boolean algebras capture the elementary theory of sets?
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More technically, is there a representation theorem of the same strength as Stone’s

theorem (Theorem (3.12))—i.e. to the effect that every relation algebra is isomorphic

to some proper relation algebra? Lyndon [1950∗] showed that the answer is negative:

there are non-representable relation algebras. This means there are properties in the

elementary theory of binary relations which cannot be proved in the framework of rela-

tion algebra. The class of relation algebras which are representable has been extensively

studied. Early references are Jónsson and Tarski [1951, 1952], Tarski [1955∗] and Monk

[1964∗]; later work include McKenzie [1970∗], Maddux [1978a] and Maddux [1989] (in

which further references can be found). We know from Tarski [1955∗] that the class of

representable relation algebras forms a variety (an equational class of algebras). But

from Monk [1964∗] we know the class of representable relation algebras is not finitely

axiomatisable (it is not a finitely based variety), which means that neither is the set of

true equations in the calculus of relations.

Another problem with a negative solution is the decidabilty problem of relation

algebra. The elementary theory of relations, being a form of first-order logic in which

binary predicates appear, is certainly undecidable. As Tarski [1941] noted, there is

also no decision method for deciding whether a statement (free of variables) is true

in the calculus of relations. Tarski also proved that the equational theory of relation

algebra is undecidable. (This result was already announced in Chin and Tarski [1951]

but his proof appears only in Tarski and Givant [1987, §8.5]. Maddux [1978b∗] presents

a different proof.) According to Maddux [1990b] some restricted classes of equations

yield more tractable problems; see, e.g., Schönfeld [1982∗]. For further references see

also Tarski and Givant [1987, §8.7].

Another natural question is whether there is a systematic procedure for transforming

every property of binary relations formulated as a first order sentence into an equivalent

sentence formulated in relation algebras. Again, the answer is negative. This result is

attributed by Tarski [1941] to Korselt (published in Löwenheim [1915∗]).

Despite all these negative results relation algebra is still surprisingly powerful. Its

arithmetic is very rich, and although it may not be possible to express and derive every

property of relations a lot can be achieved. Namely, Tarski (see Chin and Tarski [1951,

p. 341]) made the astounding claim that every problem concerning the derivability of
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a mathematical statement from a set of axioms reduces to the problem of whether an

equation is derivable from a set of equations in the calculus of relations. Therefore in

principle the whole of mathematical research can be carried out within the framework

of this calculus. This claim is fully explained and motivated in a major publication by

Tarski and Givant [1987].

Chin and Tarski [1951] give the most extensive treatment of the arithmetic of rela-

tion algebras. Additional properties are proved in (among others) Jónsson and Tarski

[1952], Henkin et al [1985, p. 212–214] and Jónsson [1988]. In [1982] Jónsson gives a

concise survey of relation algebra and lists (without proof) some of the more impor-

tant properties in the arithmetic of relation algebra. The following theorem lists some

properties I will need for later work.

(3.22) Theorem (Chin and Tarski [1951]) In any relation algebraR the following prop-

erties are satisfied for each r, s, t, u ∈ R:

R9 e⌣ = e, 0⌣ = 0, 1⌣ = 1

R10 r ≤ s iff r⌣ ≤ s⌣

R11 (r · s)⌣ = r⌣ · s⌣, r′⌣ = r⌣′

R12 r ; 0 = 0 = 0 ; r, 1 ; 1 = 1

R13 r ; (s+ t) = r ; s+ r ; t

R14 if r ≤ s then t ; r ≤ t ; s and r ; t ≤ s ; t

R15 (r ; s) · t = 0 iff (r⌣ ; t) · s = 0 iff (t ; s⌣) · r = 0

R16 (r ; s) · (t ;u) ≤ r ; [(r⌣ ; t) · (s ;u⌣)] ; u.

Relation algebras contain some special elements, which I define for later reference.

(3.23) Definition Let r be an element in a relation algebra.

(i) r is a reflexive element iff e ≤ r

(ii) r is a symmetric element iff r = r⌣

(iii) r is a transitive element iff r ; r ≤ r

(iv) r is a equivalence element iff r = r⌣ and r ; r ≤ r

(v) r is a functional element iff r⌣ ; r ≤ e
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It follows directly from Theorem (3.20) that reflexive, symmetric and transitive elements

in a proper relation algebra are relations with the corresponding properties. Also,

every functional element is single-valued and every reflexive equivalence element is an

equivalence relation. In Section 3.4 I need the following property, proved in Chin and

Tarski [1951].

R17 If r ≤ e then r is an equivalence element.

Special elements which I will use in Chapter 4 to interpret the two role binding

constructs (⊆ R S) and (⊇ R S) in terminological languages are the residual elements.

Residuation has been extensively studied and plays an important role in lattice theory

and algebra. Residual elements in algebraic systems are defined in, e.g., Birkhoff [1973]

and Blyth and Janowitz [1972].

(3.24) Definition (Jónsson [1982]) The right (respectively left) residual of an element

r over an element s in a relation algebra is the largest element u (respectively v) such

that

s ;u ≤ r (respectively v ; s ≤ r).

The right residual u of r over s is denoted by s\r and the left residual v by r/s.

(3.25) Theorem Let R be any relation algebra with r, s, t ∈ R. Then:

R18 s ; t ≤ r iff t ≤ s\r

R19 t ; s ≤ r iff t ≤ r/s

R20 s\r = (s⌣ ; r′)′ and r/s = (r′ ; s⌣)′

R21 r⌣ = r′\e′ = e′/r′

R22 r = r⌣′\e′ = e′/r⌣′

R23 r\r and r/r are both reflexive and transitive.

Proof. R18 and R19 are standard definitions for right and left residuation. See Blyth

and Janowitz [1972].

R20: I only show the first equality, but the second equality can be proved similarly. For

any t ∈ R, s ; t ≤ r iff (s ; t) · r′ = 0 iff (s⌣ ; r′) · t = 0 iff t ≤ (s⌣ ; r′)′ by B12 and R15.

Hence by definition s\r = (s⌣ ; r′)′.

To prove R21 use R20, B10, R3 and R11: r′\e′ = (r′⌣ ; e′′)′ = (r′⌣ ; e)′ = r′⌣′ =
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r′′
⌣

= r⌣. Similarly e′/r′ = r⌣.

R22 is immediate by R21 and R4.

For a proof of R23, see Pratt [1990a, Proposition 3]. (This result is originally due to

Peirce (1893); see Maddux [1990a, p. 13, (A34)].) 2

Observe that the residuals (as given by R20) are characterised by axiom R8. R20

implies that both right and left residuals exist in every relation algebra. By R22 every

element r in a relation algebra is in fact a residual. (R20 was used by Brink [1979] to

give alternative axiomatisations for relation algebras.) R21 implies that the residuation

operations could be taken as fundamental operations for relation algebras in place of

conversion.

(3.26) Theorem In any proper relation algebra the right and left residuals of a relation

R over a relation S are respectively given by:

(i) (x, y) ∈ S\R iff (∀z)[(z, x) ∈ S ⇒ (z, y) ∈ R]

(ii) (x, y) ∈ R/S iff (∀z)[(y, z) ∈ S ⇒ (x, z) ∈ R].

Proof. (i) By R20, (3.13), (3.14) and using first-order logic (x, y) ∈ S\R iff (x, y) ∈

(S⌣ ;R′)′ iff ¬(∃z)[(x, z) ∈ S⌣ & (z, y) ∈ R′] iff (∀z)[(x, z) ̸∈ S⌣ or (z, y) ∈ R] iff

(∀z)[(z, x) ∈ S ⇒ (z, y) ∈ R].

(ii) Analogously (x, y) ∈ R/S iff (x, y) ∈ (R′ ;S⌣)′ iff ¬(∃z)[(x, z) ∈ R′ & (z, y) ∈ S⌣]

iff (∀z)[(x, z) ∈ R or (z, y) ̸∈ S⌣] iff (∀z)[(y, z) ∈ S ⇒ (x, z) ∈ R]. 2

To model the transitive closure operator in terminological languages I require re-

lation algebras to have arbitrary joins. This is given in complete relation algebras in

which the underlying Boolean algebra is complete. If the underlying Boolean algebra

is atomic the relation algebra is said to be atomic, its atoms being the atoms in the

underlying Boolean algebra.

(3.27) Definition Let r be an element in a relation algebra.

(i) r is a right-ideal element iff r ; 1 = r

(ii) r is a left-ideal element iff 1 ; r = r

(iii) r is an ideal element iff 1 ; r ; 1 = r.
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In a proper relation algebra over a set U with unit U2, a right-ideal element is a relation

R = dom(R)× U , a left-ideal element a relation R = U × ran(R) and the only ideal

elements are ∅ and U2. (Note: dom(R) and ran(R) denote respectively the domain and

range of the relation R and are formally defined in (3.29) and (3.30) of Section 3.3.)

Observe that the relations (defined in (2.43)) presenting domain and range expressions

are examples of right- and left-ideal elements, respectively. Although there is no direct

way of expressing the notions of domain and range in the calculus of relations (because

they are sets, not relations), their properties can often be expressed indirectly with

right- and left-ideals (see Chin and Tarski [1951, pp. 360]). For example, the two

relations R and S have the same domain iff R ;U2 = S ;U2.

To establish a result in Peirce algebras (which I discuss in Section 3.4) I need the

following property:

R24 If s is a right-ideal element then r · s = (s · e) ; r.

Proof. Applying R14 to s · e ≤ e and using R3 we obtain (s · e) ; r ≤ e ; r = r.

Similarly (s · e) ; r ≤ s ; r ≤ s ; 1 = s since s is a right-ideal element. Hence (s · e) ; r

≤ r · s. It remains to be shown that r · s ≤ (s · e) ; r. For this I use R16. r · s = s · r

= (e ; s) · (e ; r) ≤ e ; [(e⌣ ; e) · (s ; r⌣)] ; r = [e · (s ; r⌣)] ; r by B2, R3, and R9. Hence

since r⌣ ≤ 1 we get r · s ≤ [e · (s ; 1)] ; r = (e · s) ; r = (s · e) ; r using R14, s ; 1 = s

and B2. 2

Ideal elements have interesting algebraic properties. (For example, the set of ideal

elements forms a Boolean algebra. Likewise do the sets of right- and left-ideal elements.

See Chin and Tarski [1951]). Ideal elements have the important property that they can

be used to characterise simple relation algebras. In general, an algebra A is simple

iff the only congruence relations over A are the identity relation IA and the universal

relation A2. The next theorem establishes a more natural arithmetical characterisation

of simple relation algebras.

(3.28) Theorem (Jónsson and Tarski [1952, Theorem 4.10]) For every non-trivial re-

lation algebra R the following are equivalent.

(i) R is simple.
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(ii) R has exactly two distinct ideal elements, namely 0 and 1.

(iii) For every r ∈ R, r ̸= 0 iff 1 ; r ; 1 = 1.

Note that in (iii) Jónsson and Tarski only use the implication (∀r ∈ R) [r ̸= 0 ⇒

1 ; r ; 1 = 1]. But the converse is easily shown. For suppose that 1 ; r ; 1 = 1 but that

r = 0, then 1 ; 0 ; 1 = 1, hence 0 = 1 by R12, contradicting the non-triviality of R. For

my purposes the theorem is important since it allows me to formulate any inequality of

the form r ̸= 0 in simple relation algebras as an equation.

It is worth mentioning that even stronger results are available. Namely, every Boo-

lean combination of equations in a simple relation algebra can be equivalently formu-

lated as an equation of the form r = s and even as an equation of the form r = 1. (This

fact was established already by Schröder [1890–1895∗] for the calculus of relations; see

Maddux [1990a, p. 13].) There is even an effective transformation procedure, for which

see, e.g., Tarski [1941] and Jónsson [1982].

It is easy to verify that every proper relation algebra over a non-empty set U with

unit U2 is simple (by verifying that condition (iii) of Theorem (3.28) holds). Hence

every full relation algebra R(U) is also simple. In fact Jónsson and Tarski [1952,

Theorem 4.30] characterised a full relation algebra as a complete and atomic relation

algebra R which is simple and r ; 1 ; r⌣ ≤ e holds, for every atom r ∈ R. An earlier

characterisation of full relation algebras was given by McKinsey [1940].

In Section 4.2 I construct free relation algebras. These exist and have been treated

by various authors including Tarski and Givant [1987, Chapter 8], Maddux [1978b∗]

and recently by Andréka et al [1990, 1991].
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3.3 Boolean Modules

To model reasoning with concepts and roles interacting with each other I now consider

an algebraic formalisation of sets interacting with relations. Besides the set-forming op-

erations on sets, that is, intersection, union and complement (which are accommodated

in a Boolean algebra as discussed in Section 3.1) there are also set-forming operations

on relations. The following are examples of such operations:

(3.29) Domain: dom(R) = {x | (∃y)[(x, y) ∈ R]}

(3.30) Range: ran(R) = {y | (∃x)[(x, y) ∈ R]} .

Other operations combine a relation and a set to yield a set. For example:

(3.31) Peirce product: R :A = {x | (∃y)[(x, y) ∈ R & y ∈ A]}

(3.32) Image: R ”A = {y | (∃x)[(x, y) ∈ R & x ∈ A]} .

For our application Peirce product is the most convenient operation. (It was named by

Brink [1978, 1981] in honour of the nineteenth century American logician C.S. Peirce

[1870∗] who first used it.) The Peirce product R :A is the set of all those elements

related by R to some element in A. For example, if R is the relation ‘is an admirer of’

and A is the set of princes, then R :A is the set of ‘admirers of (some) princes’. The

other operations are variants of Peirce product, since:

(3.33) dom(R) = R :U

(3.34) ran(R) = R⌣ :U

(3.35) R ”A = R⌣ :A.

In this section we are interested in the equational laws satisfied by Peirce product.

For example:

(3.36) Id is an identity of Peirce product: Id :A = A

(3.37) Peirce product distributes over union: R : (A ∪ B) = R :A ∪ R :B

(3.38) Peirce product is weakly associative: R : (S :A) = (R ;S) :A.

Arithmetic with such identities constitutes the calculus of sets interacting with relations.

Just as Boolean algebras were introduced in an attempt to formalise the calculus of sets

and relation algebras in an attempt to formalise the calculus of relations, Brink [1978]

introduced Boolean modules in an attempt to formalise the calculus of sets interacting
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with relations through Peirce product. Accordingly, a Boolean module is defined as a

two-sorted algebra, which can be regarded as a Boolean algebra with a multiplication

(the algebraic counterpart of Peirce product) from a relation algebra. (A two-sorted

algebra has two base sets with the fundamental operations defined on either base and

additional fundamental operations defined on elements in both base sets. For a formal

definition of many-sorted or heterogeneous algebras see, e.g., Ehrig and Mahr [1985, p.

16], Manes and Arbib [1986, p. 322] and Birkhoff and Lipson [1970].)

(3.39) Definition (Brink [1988]) A Boolean module is a two-sorted algebra M =

(B,R, : ), where B = (B,+, · , ′, 0, 1) is a Boolean algebra, R = (R,+, · , ′, 0, 1, ; ,⌣, e)

is a relation algebra and : is a mapping R× B −→ B (called Peirce product and written

r : a instead of : (r, a) for any r ∈ R, a ∈ B) such that for any r, s ∈ R and a, b ∈ B:

M1 r : (a+ b) = r : a+ r : b

M2 (r + s) : a = r : a+ s : a

M3 r : (s : a) = (r ; s) : a

M4 e : a = a

M5 0 : a = 0

M6 r⌣ : (r : a)′ ≤ a′.

The order of precedence among the operations is ′ and ⌣, : , ; , · and + (in decreasing

order). Note that the operations (+, · and ′) and the constants (0 and 1) in the

Boolean algebra B are not notationally distinguished from those in the underlying

Boolean algebra of the relation algebra R. Nevertheless the association of the symbols

should be clear from the context.

If B(U) is the full Boolean algebra and R(U) is the full relation algebra over some

non-empty set U then M(U) = (B(U),R(U), : ), with : the Peirce product defined

by (3.31), is an example of a Boolean module. I will refer to M(U) as the full Boolean

module over U . The standard models of the axiomatisation of Boolean modules are the

proper Boolean modules which are defined more generally than full Boolean modules.

For the purposes of my exposition it suffices to say that a proper Boolean module is

essentially a two-sorted algebra of a proper Boolean algebra and a proper relation alge-
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bra together with Peirce product on relations. (See Brink [1981] for a formal definition

of proper Boolean modules and further examples of Boolean modules.)

As for relation algebras the question arises whether we can algebraically formulate

and derive every property satisfied in the calculus of sets interacting with relations.

More formally the question is whether every Boolean module is representable, that is,

isomorphic to a subalgebra of a full Boolean module. The fact that relation algebras

are not representable seems to preclude a positive answer. (If R is a non-representable

relation algebra then the Boolean module M = (B,R, : ) is not representable either.)

Based on the notion of weak representabilty for relation algebras (considered by Jónsson

and Tarski [1952]), Brink [1978, 1981] established weak representability for a certain

class of Boolean modules (those satisfying bijectivity, that is, for each r, s ∈ R if for each

a ∈ B, r : a = s : a then r = s). Pretorius [1990] obtained the same result for a wider

class of algebras (namely, Boolean algebras with normal additive unary operators).

Nevertheless the arithmetic of Boolean modules is sufficiently powerful, for us to

derive more than we need in Section 4.3. In the following theorem I list some essential

arithmetical properties of Boolean modules which are proved in Brink [1981, p. 296–

297].

(3.40) Theorem In any Boolean module M the following hold for each a, b ∈ B and

r, s ∈ R:

M7 a ≤ b ⇒ r : a ≤ r : b

M8 r ≤ s ⇒ r : a ≤ s : a

M9 r : (a · b) ≤ (r : a) · (r : b)

M10 (r · s) : a ≤ (r : a) · (s : a)

M11 r : 0 = 0

M12 1 : 1 = 1

M13 (r′ : 1)′ ≤ r : 1

M14 (r : a) · b ≤ r : ((r⌣ : b) · a)

M15 a ≤ 1 : a.

As can already be seen from (3.31), and as will be discussed further in Section 4.1,

Peirce product is a natural algebraic version of the terminological operator some. In an
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attempt to find also a natural algebraic version of the the terminological operator all

I have been investigating two variants of Peirce product: (r : a′)′ and (r′ : a)′. In a full

Boolean module M(U) these variants are interpreted as follows:

(3.41) Theorem Given any binary relation R over some non-empty set U and any

A ⊆ U , we have:

(i) (R :A′)′ = {x | (∀y)[(x, y) ∈ R ⇒ y ∈ A]}

(ii) (R′ :A)′ = {x | (∀y)[y ∈ A ⇒ (x, y) ∈ R]}.

Proof. By the definition of Peirce product (3.31) and the standard laws of first-order

logic, x ∈ (R :A′)′ iff ¬(∃y)[(x, y) ∈ R & y ̸∈ A] iff (∀y)[(x, y) ̸∈ R or y ∈ A] iff

(∀y)[(x, y) ∈ R ⇒ y ∈ A].

Also, x ∈ (R′ :A)′ iff ¬(∃y)[(x, y) ̸∈ R & y ∈ A] iff (∀y)[(x, y) ∈ R or y ̸∈ A] iff

(∀y)[y ∈ A ⇒ (x, y) ∈ R]. 2

It is difficult to give an adequate English formulation for the variant (R :A′)′. Provided

the domain of R is the entire universe U , x ∈ (R :A′)′ iff every element y to which x

is related by R is in A, that is, x is related by R only to elements in A. The other

variant has a more natural translation, namely x ∈ (R′ :A)′ iff x is related by R to

every element in A. Suppose R is the relation ‘is an admirer of’ and A is the set of

princes, then (R :A′)′ is the set of ‘admirers only of princes’ provided every human

admires someone, while (R′ :A)′ is the set of ‘admirers of all princes’.

To reason about the all construct we only need to investigate the properties of the

variant in the form (r : a′)′.

(3.42) Theorem In any Boolean module M the following conditions hold for each

a, b ∈ B and r, s ∈ R.

M16 a ≤ b ⇒ (r : a′)′ ≤ (r : b′)′

M17 s ≤ r ⇒ (r : a′)′ ≤ (s : a′)′

M18 (r : (a · b)′)′ = (r : a′)′ · (r : b′)′

M19 ((r + s) : a′)′ = (r : a′)′ · (s : a′)′

M20 (r : a′)′ + (r : b′)′ ≤ (r : (a+ b)′)′
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M21 (r : a′)′ + (s : a′)′ ≤ ((r · s) : a′)′

M22 (r : 1)′ ≤ (r : a′)′

M23 (r : a′)′ ≤ r : a iff r : 1 = 1

M24 (r : a) · (r : a′)′ = (r : 1) · (r : a′)′

M25 (r : a′)′ · (r : (a · b′))′ = (r : (a · b)′)′.

Proof. M16: By B12 and M7 a ≤ b iff b′ ≤ a′ ⇒ r : b′ ≤ r : a′ iff (r : a′)′ ≤ (r : b′)′.

M17 follows analogously by B12 and M8.

M18: By B11 and M1 (r : (a · b)′)′ = (r : (a′ + b′))′ = (r : a′ + r : b′)′ = (r : a′)′ · (r : b′)′.

M19 follows analogously by B11 and M2.

M20 follows by B11, B12 and M9: (r : a′)′ + (r : b′)′ = ((r : a′) · (r : b′))′ ≤ (r : (a′ · b′))′

= (r : (a+ b)′)′.

M21 follows analogously by B11, B12 and M10.

M22: Since (r : 1)′ + (r : a′)′ = ((r : 1) · (r : a′))′ ≤ (r : (1 · a′))′ = (r : a′)′ using B11,

B12, M9 and B6, the result follows by B12.

M23: Assume (r : a′)′ ≤ r : a. Then since 1 ≥ a and a ≥ 0 we have r : 1 ≥ r : a ≥

(r : a′)′ ≥ (r : 0′)′ = (r : 1)′ by M7 and M16. Using B8 and B7, r : 1 = r : 1 + (r : 1)′ =

1. Conversely, assume r : 1 = 1. Then (r : a′)′ · (r : a)′ = (r : a′ + r : a)′ = (r : (a′ + a))′

= (r : 1)′ = 1′ = 0 by B11, M1, B7 and B13. Thus by B12 we get (r : a′)′ ≤ r : a.

M24: By M7 r : a ≤ r : 1. Hence (r : a) · (r : a′)′ ≤ (r : 1) · (r : a′)′. To establish equal-

ity we need to show that (r : 1) · (r : a′)′ ≤ (r : a) · (r : a′)′. Since (r : 1) · (r : a′)′ ≤

(r : a′)′ it suffices to prove (r : 1) · (r : a′)′ ≤ r : a. Consider [(r : 1) · (r : a′)′]′ + r : a =

(r : 1)′ + r : a′ + r : a = (r : 1)′ + r : (a′ + a) = (r : 1)′ + r : 1 = 1 by B11, B10, M1 and

B7. Hence by B12, (r : 1) · (r : a′)′ ≤ r : a.

M25 follows by B11, M1, B5, B7 and B12: (r : a′)′ · (r : (a · b′))′ = (r : a′ + r : (a · b′))′

= (r : (a′ + a · b′))′ = (r : ((a′ + a) · (a′ + b′)))′ = (r : (1 · (a · b)′))′ = (r : (a · b)′)′. 2

Like full relation algebras, full Boolean modules satisfy an arithmetical condition

that charaterises simple Boolean modules. This condition will allow us to express as

equations certain inequalities involving Boolean elements. (If necessary we could use

this condition also to derive some more properties of sets interacting with relations.)
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To define simple Boolean modules as simple algebras (defined on page 39), it must be

shown that Boolean modules can be regarded as algebras in the sense of Definition (3.1).

In Brink [1978, 1981] (where Boolean modules were first defined) a Boolean module

is defined as a module over a given relation algebra R, called the (left) Boolean R-

module. (The reader familiar with ring theory will note the similarity of the following

definition with that of a module over a ring, see Burris and Sankappanavar [1981, p.

25].)

(3.43) Definition Let R = (R,+, · , ′, 0, 1, ; ,⌣, e) be a relation algebra. A (left) Boo-

lean R-module is an algebra (B,+, · , ′, 0, 1, {fr}r∈R) with fr(a) written as r : a for any

r ∈ R and a ∈ B such that B = (B,+, · , ′, 0, 1) is a Boolean algebra, and for any

r, s ∈ R and a, b ∈ B the axioms M1–M6 are satisfied.

This implies a Boolean R-module (or just Boolean module for short) can be regarded

as a Boolean algebra B with additional unary fundamental operations indexed by the

elements in the relation algebra R. By M1 each of these operations fr distributes

over Boolean addition. (We say each fr is additive.) A Boolean module is therefore a

Boolean algebra with operators (for a definition of which see Jónsson and Tarski [1951]).

Viewing Boolean modules as homogeneous algebras has the distinct advantage that one

can study their algebraic theory (including representability) in the general context of

Universal Algebra. In particular, we can use the definition of a simple algebra to define

simple Boolean modules. Like simple relation algebras, these are determined by their

ideal elements.

(3.44) Definition An ideal element in a Boolean module is an element a in the under-

lying Boolean algebra such that 1 : a = a.

(As for relation algebras the set of ideal elements can be shown to form a Boolean

algebra.) In a full Boolean module M(U) the only ideal elements are the empty set

and the universe U . The parallel result of Theorem (3.28) is the next result.

(3.45) Theorem (Brink [1981, Theorem 4.1]) For every non-trivial Boolean module M

the following are equivalent.

(i) M is simple.
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(ii) M has exactly two distinct ideal elements, namely 0 and 1.

(iii) For every a ∈ B, a ̸= 0 iff 1 : a = 1.

(In fact in (iii) Brink only uses the implication (∀a ∈ B) [a ̸= 0 ⇒ 1 : a = 1]. But as

for simple relation algebras the converse holds trivially, since 0 ̸= 1.) Since U2 :A = U

for A ̸= ∅, any proper Boolean module over a non-empty set U with unit U2 is simple,

and in particular any full Boolean module is simple. Theorem (3.45) is important since

it allows for an arithmetical characterisation of simple Boolean modules. This result

will allow me to reformulate in a simple Boolean module any inequality of the form

a ̸= 0 as an equation.

Although free Boolean modules have not been studied we know they exist since the

class of Boolean modules forms a variety (in fact a discriminator variety as Pretorius

[1990] showed).
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3.4 Peirce Algebras

In the previous section I presented Boolean modules as algebras representing a calculus

in which sets interact with relations to form new sets. Since concepts also interact

with roles to form new roles we are interested in an algebra in which sets and relations

also interact to form new relations. Such an algebra should formalise relation-forming

operations on sets, like:

(3.46) Domain restriction: R ⌈A = {(x, y) | (x, y) ∈ R & x ∈ A}

(3.47) Range restriction: R ⌋A = {(x, y) | (x, y) ∈ R & y ∈ A}

(3.48) Cartesian product: A×B = {(x, y) |x ∈ A & y ∈ B}

(3.49) Right cylindrification: cA = {(x, y) | y ∈ A}

(3.50) Left cylindrification: Ac = {(x, y) |x ∈ A} .

These operations are interdefinable. One can for example define the operations in

(3.46)–(3.49) with left cylindrification as follows:

(3.51) R ⌈A = R ∩ Ac, Ac = U2 ⌈A

(3.52) R ⌋A = R ∩ Ac⌣, Ac = (U2 ⌋A)⌣

(3.53) A×B = Ac ∩ Bc⌣, Ac = A× U

(3.54) cA = Ac⌣, Ac = (cA)⌣.

In this section I extend Boolean modules to accommodate also relation-forming opera-

tions on sets. The resulting algebras are called Peirce algebras. Since the operations of

(3.46)–(3.50) are interdefinable it suffices to formalise one of these in Peirce algebras.

Peirce algebras were introduced by Britz [1988] in an attempt to accommodate the

extended relation algebras of Suppes [1976]. (Suppes uses extended relation algebras in

the context of computational linguistics to analyse the semantics of fragments of the

English language. I return to extended relation algebras in Section 3.5.) A Peirce al-

gebra is essentially a Boolean module (B,R, : ), endowed with an extra operation from

the underlying Boolean algebra B to the underlying relation algebra R. This operation

is the algebraic counterpart to left cylindrification.

(3.55) Definition Let B be a Boolean algebra and R be a relation algebra. A Peirce

algebra is a two-sorted algebra P = (B,R, : , c) with (B,R, : ) a Boolean module and
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c :B −→ R a mapping such that for every a ∈ B and r ∈ R:

P1 ac : 1 = a

P2 (r : 1)c = r ; 1.

I refer to c simply as the cylindrification operation. The assumed order of precedence

(in descending order) is c, ′ and ⌣, then : , ; , · and finally +.

The motivating example of a Peirce algebra is what I call the full Peirce algebra

P(U) = (B(U),R(U), : , c) over a non-empty set U with (B(U),R(U), : ) the full Boo-

lean module over U and c the left cylindrification operation on sets defined by (3.50).

To verify that full Peirce algebras are indeed Peirce algebras we need to establish that

P1 and P2 are true in P(U). Recall that dom(R) = R :U . The first axiom states that

the domain of Ac = A× U is A, which is true. As for the second axiom, R composed

with the universal relation U2 is the set of (x, y) such that x ∈ dom(R) and y ∈ U , that

is, R ;U2 = dom(R)× U . Hence by (3.53) R ;U2 = (dom(R))c = (R :U)c.

Consequently any property true in a Peirce algebra is also true in the calculus of sets

and relations interacting with each other. It is not known whether the converse holds. In

fact very little is known about universal-algebraic aspects of Peirce algebras. However,

(in Section 4.2) I will assume that it is possible to construct free Peirce algebras. My

assumption is based on results obtained by Birkhoff and Lipson [1970]. They show that

many fundamental theorems for homogeneous (or one-sorted) algebras carry over to

heterogeneous (or many-sorted) algebras. In particular, Birkhoff and Lipson define and

construct free heterogeneous algebras. (Unlike Boolean modules Peirce algebras cannot

be viewed as homogeneous algebras.)

My main concern is whether the axiomatisation of Peirce algebras is adequate for

deriving the basic properties of those relation-forming operations on sets which model

terminological operators. In preparation for Chapter 4 I introduce a restriction opera-

tion ⌋ and a multiplication × defined by:

P3 r ⌋ a = r · ac⌣

P4 a× b = ac · bc⌣.

By (3.52) and (3.53) the operations ⌋ and × are the respective algebraic counterparts

to the range restriction operation and the Cartesian product.

60



The next theorem lists a number of arithmetical properties of Peirce algebras. I

prove only those not already contained in Britz [1988].

(3.56) Theorem In any Peirce algebra (B,R, : , c) the following hold for each a, b ∈ B

and r, s ∈ R.

P5 0c = 0, 1c = 1

P6 ac is a right-ideal element, i.e. ac ; 1 = ac

P7 (a+ b)c = ac + bc

P8 a = b iff ac = bc

P9 a ≤ b iff ac ≤ bc

P10 (a · b)c = ac · bc

P11 a′c = ac′

P12 ac · e is an equivalence element, i.e. (ac · e)⌣ = ac · e and (ac · e) ; (ac · e) ≤ ac · e

P13 r · ac = (ac · e) ; r, ac = (ac · e) ; 1

P14 r · ac⌣ = r ; (ac · e), ac⌣ = 1 ; (ac · e)

P15 (ac · e) : 1 = a

P16 (r · ac⌣) : 1 = r : a

P17 (r · ac⌣) : b = r : (a · b).

Proof. P12 follows by R17 since ac · e ≤ e.

P13 follows immediately by R24 since by P6 ac is a right ideal element. To establish ac

= (ac · e) ; 1 let r = 1.

P14: Using R4, R11, P13, R7 and P12 we get r · ac⌣ = (r · ac⌣)⌣⌣ = (r⌣ · ac⌣⌣)⌣

= (r⌣ · ac)⌣ = ((ac · e) ; r⌣)⌣ = r⌣⌣ ; (ac · e)⌣ = r ; (ac · e). Let r = 1 then ac⌣

= 1 ; (ac · e).

P15: By P2 and P13, ((ac · e) : 1)c = (ac · e) ; 1 = ac. By applying P8 we then get the

required result.

P16 follows by P15, M3 and P14: r : a = r : ((ac · e) : 1) = (r ; (ac · e)) : 1 = (r · ac⌣) : 1.

P17: Using P16, P10 and R11 we get r : (a · b) = (r · (a · b)c⌣) : 1 = (r · ac⌣ · bc⌣) : 1.

Therefore by P16, r : (a · b) = (r · ac⌣) : b. 2

Properties P16 and P17 are important properties of the restriction operation (and as

we will see in Chapter 4 also of the terminological operator restrict). P16 and P17 can
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be reformulated as follows:

P16′ (r ⌋ a) : 1 = r : a

P17′ (r ⌋ a) : b = r : (a · b).

Using P17′ we can also reformulate M25 in terms of restriction:

M25′ (r : a′)′ · ((r ⌋ a) : b′)′ = (r : (a · b)′)′.

More properties for restriction can be routinely derived using the axioms, Theorem (3.56)

and elementary properties in Boolean algebra. I list some without proof.

P18 r ⌋ (a+ b) = r ⌋ a+ r ⌋ b

P19 (r + s) ⌋ a = r ⌋ a+ s ⌋ a

P20 r ⌋ 1 = r, r ⌋ 0 = 0, 0 ⌋ a = 0

P21 1 ⌋ a = ac⌣

P22 a ≤ b ⇒ r ⌋ a ≤ r ⌋ b

P23 r ≤ s ⇒ r ⌋ a ≤ s ⌋ a

P24 (r · s) ⌋ (a · b) = ((r · s) ⌋ a) ⌋ b = (r ⌋ a) · (r ⌋ b)

P25 r ; (s ⌋ a) = (r ; s) ⌋ a.

Just as routinely we can derive properties of ×. In Section 4.3 I refer to the following

property:

P26 (a× b)⌣ = b× a.

It follows from the definition of × (in P4) and the fact that ⌣ is an involution and

distributes over · (see R4 and R11).
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3.5 Other Applications

The main thrust of this thesis is to show the application of relation-algebraic notions to

knowledge representation. However there are also a number of other application areas

in Computer Science, and in this section I discuss some of them. In particular, I discuss

the work of Suppes [1976] in computational linguistics and the work of Kozen [1980]

and Pratt [1979] in the area of logics of programs. Aspects of these are relevant to

terminological representation.

In [1976] and other papers [1973, 1979, 1981] Suppes aims at a systematic analysis

of the model-theoretic semantics of fragments of natural language. In Suppes [1979, p.

49] he says:

The central idea is that the syntax of first-order logic is too far removed

from that of any natural language, to use it in a sensitive analysis of the

meaning of ordinary utterances.

Instead he proposes an algebraic approach, using so-called extended relation algebras.

(3.57) Definition An extended relation algebra E(U) over a domain U (a non-empty

set), is a subset of 2U ∪2U2
closed under the operations of union, complementation,

converse, composition and image.

Complementation of sets is taken with respect to U and complementation of relations

with respect to U2. In Böttner [1986] an extended relation algebra is also assumed

closed under domain restriction.

Note that extended relation algebras are of model-theoretic nature and are not

abstract algebras as defined in Definition (3.1). Instead of calling them algebras they

are more appropriately thought of as calculi, in the same sense as in the preceding

sections. As mentioned in Section 3.4, Britz [1988] suggests that extended relation

algebras provide standard models for Peirce algebras. This remains open.

With extended relation algebras Suppes characterises the semantics of English lan-

guage phrases and sentences. The syntax is specified (Chomsky-style) by a grammar

G, called a phrase structure grammar. The semantics is defined in two steps. First,

the grammar G is extended to a so-called (potentially) denoting grammar by associat-
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Figure 3.1: Semantic association in a denoting grammar

Lexical Production Rule Semantic Function

(i) S −→ NP + VP [NP] ∩ [VP] ̸= ∅

(ii) NP −→ N [NP] = [N]

(iii) NP −→ Adj + N [NP] = [Adj] ∩ [N]

(iv) VP −→ TV+ NP [VP] = [TV] : [NP]

ing each production rule of G with a semantic function. This denoting grammar then

determines the meaning of phrases and sentences. For example, the semantics of the

phrase ‘male vegetarian’ and the sentence ‘Anne admires Charles’ are determined by

the semantic associations summarised in Figure 3.1. Symbols S, NP, VP, N, Adj and

TV denote ‘sentence’ (or ‘start symbol’), ‘noun phrase’, ‘verb phrase’, ‘noun’, ‘adjec-

tive’ and ‘transitive verb’, respectively. The square brackets indicate the interpretation

function. If the adjective ‘male’ is interpreted as the set of male people and the noun

‘vegetarian’ as the set of vegetarians, the intersection [male] ∩ [vegetarian] defines the

meaning of ‘male vegetarian’. According to Figure 3.1 (iv) the verb phrase ‘admires

Charles’ is interpreted as the set of admirers of Charles, given by the Peirce product

[admire] : [Charles]. (In (iv) Suppes uses the image operation (defined in (3.32)). But

recall that image is a variant of Peirce product.) The semantics of the sentence ‘Anne

admires Charles’ is therefore given by

[Anne] ∩ [admire] : [Charles] ̸= ∅.

This illustrates how meaning is assigned to a phrase or sentence by converting its

grammatic definition (which Suppes views as a grammatic derivation tree) to a semantic

definition (which he views as a semantic tree) via the denotational assignments to the

production rules which determine the syntax of the phrase or sentence.

In the second step a model structure (U, v) is defined for the phrase structure gram-

mar G. U is any non-empty set regarded as the domain or universe and v, called a

valuation, is a (partial) function from the vocabulary of terminal symbols in G to the

extended relation algebra E(U). That is, v maps terminal symbols to either sets in 2U

or binary relations in 2U2
.
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Figure 3.2: Interpretation of verb phrases containing quantifier words

Verb phrase Interpretation

(i) eat all fruit ([eat]′ : [fruit])′

(ii) eat some fruit [eat] : [fruit]

(iii) eat no fruit ([eat] : [fruit])′

(iv) do not eat some fruit [eat]′ : [fruit]

This algebraic approach has the advantage that it is free of variables and quantifiers

over variables. Consequently, according to Suppes [1981, p. 405] the analysis of the

semantics of natural language fragments can be carried out directly in English, avoiding

the translation into another language (e.g., into the first-order language). Furthermore,

it allows the development of a syntactic derivation system for direct inference in the

English language. (I won’t elaborate on this system, but see Suppes [1981].)

Since Suppes translates English language phrases and sentences as algebraic ex-

pressions, which as we will see in Chapter 4 can be associated with terminological

expressions, his work is relevant to the problem of finding adequate terminological rep-

resentations for information formulated in English and vice versa. In [1981] Suppes

demonstrates how phrases and sentences with quantifier words (such as ‘all’, ‘some’

and ‘no’) in object and subject position are interpreted in the framework of extended

relation algebras. For example, the verb phrases listed in Figure 3.2 are interpreted

by variants of the image operation, here appropriately translated as variants of Peirce

product. When each of these verb phrases is combined with quantified subjects the

semantics of the resulting sentences is of the form similar to that of the sentences given

in Figure 3.3.

Also relevant to terminological representation (in particular to the interpretation of

the all construct) is the semantics of phrases of the form:

(3.58) ‘eat only fruit’.

Böttner [1985] interprets this phrase by [eat] : [fruit] − [eat] : [fruit]′, or equivalently:

(3.59) [eat] : [fruit] ∩ ([eat] : [fruit]′)′.
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Figure 3.3: Interpretation of sentences containing the word ‘all’

Sentence Interpretation

(i) Some persons eat all fruit [persons] ∩ ([eat]′ : [fruit])′ ̸= ∅

(ii) All persons eat all fruit [persons] ⊆ ([eat]′ : [fruit])′

(iii) No person eats all fruit [persons] ∩ ([eat]′ : [fruit])′ = ∅

As Böttner pointed out in [1990], ([eat] : [fruit]′)′ alone inadequately interprets (3.58).

If ‘eat only fruit’ were to be interpreted as ([eat] : [fruit]′)′ one would not be able to

deduce that persons who eat only fruit are also persons who eat (some) fruit, since in

general

(3.60) ([eat] : [fruit]′)′ ̸⊆ [eat] : [fruit].

(For suppose [fruit] is empty. Then [eat] : [fruit] is empty (by M11), but ([eat] : [fruit]′)′

is not necessarily empty, since ([eat] : ∅′)′ = [eat] :U = (dom([eat]))′ by (3.33).) By

M23 and (3.33) we have

(3.61) ([eat] : [fruit]′)′ ⊆ [eat] : [fruit] iff dom([eat]) = U.

But to decree that the domain of each relation must be the entire universe of discourse

does not seem feasible. (For example, we would not want to include the instances of

[fruit] in the domain of [eat].) However the interpretation (3.59) suggested by Böttner

is contained in [eat] : [fruit], ensuring that persons eating only fruit also eat some fruit.

In the paper [1985] Böttner not only analyses the semantics of sentences like ‘John

loves only Mary’ with ‘only’ in object position, but also of sentences like ‘Only John

loves Mary’ and also like ‘All boys except John love Mary’. In other papers [1989,

1986] he investigates the algebraic interpretation of anaphoric expressions and English

imperatives. (An expression is anaphoric if it refers back to earlier contexts as in ‘John

loves himself’, ‘John and Mary like each other’ and ‘John likes his toys’.)

Besides being relevant to this thesis as regards representing knowledge in a calculus

of sets and relations, the work of Suppes and Böttner (in particular Böttner’s analysis

of English imperatives in [1986]) also relate to the algebraic side of a certain logic of

programs, called dynamic logic, introduced by Pratt [1976∗]. (For a survey of dynamic
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logic refer to Harel [1984] and Parikh [1981].) Dynamic logic is a vehicle for reasoning

about program characteristics such as correctness, termination and equivalence. It

provides a formalism for studying assertions about the state of programs before and

after execution. (A state of a program is an assignment of values to program variables.)

Dynamic logic can thus be viewed as a logic of propositions acted upon by programs.

The algebraic versions of propositional dynamic logic are dynamic algebras, introduced

by Kozen [1980] and Pratt [1979]. In a dynamic algebra the propositions are presented

in a Boolean algebra and the programs in a Kleene algebra.

Kleene algebras are meant to formalise a calculus of (non-deterministic) programs.

Programs can be interpreted as binary relations over the sets of possible input and out-

put states. In this interpretation the program denotations form a calculus of relations

with basic operations union ∪ , composition ; and a reflexive transitive closure oper-

ation ∗, called the Kleene closure. Let α and β denote programs which are interpreted

as relations R and S respectively. Then

(i) ‘do α or β’ (non-deterministic choice) is interpreted by R ∪ S,

(ii) ‘do α then do β’ (sequence) by R ;S, and

(iii) ‘do α zero or more times’ (iteration) by R∗,

where R∗ is defined by:

(3.62) R∗ = Id ∪ R ∪ R ;R ∪ R ;R ;R ∪ . . ..

Accordingly a Kleene algebra is defined as an algebra K = (K,+, 0, ; , ∗, e) with a join

+, a relative composition operation ; and a star operation ∗ (these essentially being

the respective algebraic counterparts to (i)–(iii) above) satisfying a set of equational

axioms. For a definition of Kleene algebras refer to Kozen [1980]. In the standard

models of Kleene algebras the star operation is a reflexive transitive closure operation

(see Kozen [1980, p. 356]) that has the following property: for any r ∈ K

(3.63) r∗ =
∞∑
n=0

rn

where
∑

is taken with respect to + and rn is defined by:

(3.64) r0 = e and rn+1 = r ; rn (for n ≥ 0).

The difference between Kleene algebras and relation algebras is that Kleene algebras

need not form Boolean algebras (note the absence of a meet and a complementation
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operation), and they do not include a converse operation (although some definitions do,

e.g., the one in Pratt [1990a]). Also, Kleene algebras have a star operation which the

relation algebras defined in Section 3.2 do not. However relation algebras with transitive

closure have been defined by Ng in [1984∗] and together with Tarski in [1977].

A dynamic algebra is then a two-sorted algebra (B,K, ⋄), with B a Boolean algebra,

K a Kleene algebra and ⋄ a multiplication over the Boolean algebra from the Kleene

algebra. This multiplication satisfies certain equational axioms which characterise the

interaction between propositions and programs. (The axioms of ⋄ are similar to those

satisfied by Peirce product in Boolean modules, but also accommodate the star opera-

tion). A definition of dynamic algebras can be found in Kozen [1981].

Work in this field continues. In a recent paper Pratt [1990a] discusses dynamic

algebras in relation to relation algebras. In [1990b] he introduces more powerful struc-

tures than Kleene algebras but which are weaker than the Ng-Tarski relation algebras

with transitive closure. These new algebras are called action algebras. (Interestingly,

residuation plays an important role in these.) Recent work by Kozen on Kleene al-

gebras appears in [1990a∗] and [1990b∗]. In a ‘very preliminary draft’ Jónsson [Draft]

tentatively outlines another algebraic treatment of programs and program specification

which is more extensively based on universal-algebraic notions.

In conclusion I list some references to other applications of the algebra of relations.

Schmidt and Ströhlein [1985] consider some requirements for relation algebra applied

in the (relational) theory of graphs and programs. Maddux [1983] presents a sequent

calculus for the calculus of relations, and Wadge [1975] and Hennessy [1980] develop

natural deduction systems for the calculus of relations. Further references can be found

in Brink [1988], which discusses the history of relations as well as their applications in

Boolean modules, extended relation algebras and dynamic algebras.
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Chapter 4

Algebraic Terminological

Representation

In Chapter 2 I discussed terminological representation formalisms and defined two typ-

ical terminological languages, and in Chapter 3 I gave an overview of algebras of sets

and relations. I this chapter I relate these two topics. First, I accommodate the model-

theoretic semantics of terminological languages in the algebraic framework. With the

exception of the number restriction operators each terminological operator can be ex-

pressed algebraically. This enables me to use the algebraic apparatus of Boolean alge-

bras, relation algebras, Boolean modules and Peirce algebras as an inference mechanism

for reasoning about concepts and roles. I then demonstrate the algebraic approach with

a number of case studies.This motivates my claim that terminological reasoning can be

handled equationally.

4.1 Algebraic Semantics

In this section I show how the semantics of a terminological language can be presented

algebraically. The language I treat is a sublanguage of U which I will call U−, obtained

by dropping the number restriction constructs atleast and atmost. Its model-theoretic

semantics was discussed at some length in Section 2.2. The algebraic apparatus I use

is that of Chapter 3. There I presented Boolean algebras, relation algebras, Boolean

modules and Peirce algebras as formalisations of different operations on sets and rela-
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tions.

As before an interpretation I of U− is a pair (U, ·I) with U ( = DI) the universe of

interpretation and ·I the interpretation function. A concept C is interpreted as a set

CI ⊆ U and a role R as a binary relation RI over the set U . Instead of defining the

constraints on ·I model-theoretically I will here define the constraints in the algebraic

context. To emphasise this context, I use the notation of Chapter 3 and abbreviate CI ,

DI , . . . and RI , SI , . . . by C, D, . . . and R, S, . . . , respectively. I follow quite closely

the order of exposition of Section 2.2, to which the reader should refer.

The interpretation of the concept descriptions defined in (2.11) (with ‘Q’ replaced

by ‘R’) can be rewritten as follows:

(4.1) ⊤I = U

⊥I = ∅

(and C D)I = C ∩ D

(or C D)I = C ∪ D

(not C)I = C ′

(some R C)I = R :C

(all R C)I = (R :C ′)′.

The designated top and bottom concepts (⊤ and ⊥) and the Boolean operators (and,

or and not) are defined as before. The some operator is assigned to the Peirce product

(defined in (3.31)) and the all operator is assigned to that variant of Peirce product

which I considered in Theorem (3.41) (i).

The interpretation of the role value map as defined in (2.25) can be reformulated in

terms of Peirce product (or the domain operation defined in (3.29)) as follows:

(4.2) (rvm R S)I = ((R ∩ S ′) :U)′ ( = (dom(R ∩ S ′))′).

Proof. (x, y) ∈ (rvm R S)I iff (∀y)[(x, y) ∈ R ⇒ (x, y) ∈ S] (by (2.25)) iff (∀y)[(x, y) ̸∈

R or (x, y) ∈ S] iff ¬(∃y)[(x, y) ∈ R & (x, y) ̸∈ S] iff ¬(∃y)[(x, y) ∈ R ∩ S ′] iff x ̸∈

dom(R ∩ S ′) (by (3.29)) iff x ∈ (dom(R ∩ S ′))′ iff x ∈ ((R ∩ S ′) :U)′ (by (3.33)). 2

As is apparent from the definition of Peirce product in (3.31) and the definition of

structural description in (2.25) its new formulation is given by:
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(4.3) (sd C Rb1 . . .Rbk)
I = (

k∩
i=1

Rbi) :C

(where Rbi abbreviates Rbi
I). Recall that the role bindings Rbi have one of two forms:

(⊆ R S) or (⊇ R S). It is immediate by (2.26) and Theorem (3.26) (ii) that the semantics

of role bindings in the form (⊇ R S) coincides with the definition of a left residual in

the calculus of relations. Below I prove that role bindings in the form (⊆ R S) can be

expressed as right residuals. Because the residuals can be defined (by R20) in terms

of relational composition and conversion the role bindings can now be formulated as

follows:

(4.4) (⊆ R S)I = (R ;S⌣′)′ ( = R⌣\S⌣)

(⊇ R S)I = (R′ ;S⌣)′ ( = R/S).

Proof. (Of the formulation of (⊆ R S)I .) (x, y) ∈ (⊆ R S)I iff (∀z)[(x, z) ∈ R ⇒ (y, z) ∈

S] (by (2.26)) iff (∀z)[(z, x) ∈ R⌣ ⇒ (z, y) ∈ S⌣] iff (x, y) ∈ R⌣\S⌣ (by Theo-

rem (3.26) (i)) iff (x, y) ∈ (R⌣⌣ ;S⌣′)′ (by R20) iff (x, y) ∈ (R ;S⌣′)′ (by R4). 2

Next I reformulate the interpretation of the role descriptions as defined in (2.27).

The model-theoretic semantics of the identity role self coincides with the definition

(given in (3.15)) of the identity relation Id . The Boolean operators and, or and not

(applied this time to roles) are defined as before. As is apparent from (3.14) and (3.13)

the inverse and compose operator can be equivalently defined with conversion ⌣ and

relational composition ; , respectively. Thus

(4.5) selfI = Id

(and R S)I = R ∩ S

(or R S)I = R ∪ S

(not R)I = R′

(inverse R)I = R⌣

(compose R S)I = R ;S.

The interpretation of (trans R) (given in (2.27)) can be characterised by a recursive

definition:

(4.6) (trans R)I = R ∪ R ; (trans R)I .

This unfolds to
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(4.7) (trans R)I = R ∪ R ;R ∪ R ;R ;R ∪ . . .

=
∞∪
n=1

Rn

where R1 = R and Rn+1 = R ;Rn. (Note that
∪∞

n=1R
n = R ;R∗ where R∗ is the

Kleene closure, that is, the reflexive transitive closure, defined by (3.62).) The restrict

operator can be formulated (by (3.47)) as range restriction or (by (3.52)) it can be

formulated using (left) cylindrification. Namely:

(4.8) (restrict R C)I = R ∩ Cc⌣ ( = R ⌋C).

It is feasible to define further designated roles and operators in U−. These are

the top and bottom roles (∇and Λ) defined as on page 24 and the domain and range

operators defined as in (2.44). Their semantics is given by

(4.9) ∇I = U2

ΛI = ∅
and

(4.10) (domain C)I = Cc ( = C × U)

(range C)I = Cc⌣ ( = U × C).

Proof. (Of (4.10).) Using (2.44), (4.5), (4.8), (4.9), R4 and (3.53) we get: (domain C)I

= (inverse (restrict ∇ C))I = (U2 ∩ Cc⌣)⌣ = Cc⌣⌣ = Cc = C × U .

Analogously (range C)I = (restrict ∇ C)I = U2 ∩ Cc⌣ = Cc⌣ = U × C. 2

By P6 (domain C) is therefore interpreted as a right-ideal element, and since the con-

verse of a right-ideal element is a left-ideal element (for a proof see Chin and Tarski

[1951]), (range C) is interpreted as a left-ideal element. This verifies an earlier remark

in Section 3.2 (page 39).

The interpretation of the terminological axioms used to specify specialisation and

equivalence relations between concepts and roles is defined as in Section 2.2. Namely:

(4.11) |=I C ⊑ D iff C ⊆ D

|=I C
.
= D iff C = D,

and likewise for specialisations and equivalences between roles.

I have thus shown that the model-theoretic semantics of terminological expressions

in U− can be formulated in terms of constants and operations in the calculus of sets
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and relations interacting with each other. These constants and operations have alge-

braic counterparts in the algebras presented in Chapter 3 which capture (or attempt

to capture) their corresponding calculi. Each terminological expression can therefore

be directly associated with algebraic terms as summarised in Figure 4.1. The figure

lists the different terminological expressions, their respective interpretations (derived

above) as well as their associated algebraic formulations. (The term
∏k

i=1 ri used in (iii)

denotes the product r1 · r2 · . . . · rk.)

I now discuss in more detail the associations of the different kinds of terminological

operators with algebraic operations. From primitive ones, new concepts and roles arise

by using one of four kinds of operators:

(i) Concept-forming operators on concepts: These are the Boolean operators

and, or and not. Each operator is assigned to a set-forming operation on sets (see

Figure 4.1 (i)) and is thus catered for in the calculus of sets. Since Boolean algebra

captures the calculus of sets these concept-forming operators can be captured in

the context of Boolean algebra.

(ii) Role-forming operators on roles: These are the operators listed (with the

designated roles) in category (ii) of Figure 4.1. Their interpretations are defined

with the relation-forming operations in the calculus of relations. Relation algebras

thus cater for these role-forming operators in the same way as they cater for the

calculus of relations. (As pointed out in Section 2.2, relation algebras do not fully

capture the calculus of relations.)

(iii) Concept-forming operators on concepts and roles: Their semantics is ac-

commodated in the calculus of sets which interact with relations through Peirce

product. Hence in the same way as Boolean modules cater for this calculus,

Boolean modules also cater for the operators some, all, rvm and sd.

(iv) Role-forming operators on concepts and roles: These operators are inter-

preted in the calculus of relations interacting with sets as formalised by Peirce

algebra. That is, the properties of domain, range and restrict are formalised in

Peirce algebra.

Note that the terminological constants have algebraic counterparts as well. The des-
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Figure 4.1: Algebraic Semantics of U−

Terminological expression Interpretation Algebraic term

(i) ⊤ U 1

⊥ ∅ 0

(and C D) C ∩ D a · b

(or C D) C ∪ D a+ b

(not C) C ′ a′

(ii) ∇ U2 1

Λ ∅ 0

self Id e

(and R S) R ∩ S r · s

(or R S) R ∪ S r + s

(not R) R′ r′

(inverse R) R⌣ r⌣

(compose R S) R ;S r ; s

(trans R)
∞∪
n=1

Rn
∞∑
n=1

rn

(⊆ R S) (R ;S⌣′)′ = R⌣\S⌣ (r ; s⌣′)′ = r⌣\s⌣

(⊇ R S) (R′ ;S⌣)′ = R/S (r′ ; s⌣)′ = r/s

(iii) (some R C) R :C r : a

(all R C) (R :C ′)′ (r : a′)′

(rvm R S) ((R ∩ S ′) :U)′ ((r · s′) : 1)′

(sd C Rb1 . . .Rbk) (
k∩

i=1

Rbi) :C (
k∏

i=1

ri) : a

(iv) (domain C) Cc ac

(range C) Cc⌣ ac⌣

(restrict R C) R ∩ Cc⌣ = R ⌋C r · ac⌣ = r ⌋ a
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ignated top and bottom concepts ⊤ and ⊥ are associated with the top and bottom

elements 1 and 0, of the partial order in a Boolean algebra. The designated top and

bottom roles ∇ and Λ are similary associated with 1 and 0, this time in a relation alge-

bra. The constant corresponding to the third designated role self is the identity element

e in a relation algebra. The corresponding relationships to ⊑ and
.
= expressions are

inclusions and equations in the relevant algebras.

With one exception every algebraic operation introduced in Chapter 3 can be as-

sociated with a terminological operator. The exception is the × operation defined in

Section 3.4 for Peirce algebras. I will use this operation in Section 4.3.

To conclude this section I illustrate how the algebraic properties relate to the se-

mantic theory of U−. It is an axiom (R4) in relation algebra that conversion is an

involution. Formally:

(4.12) r⌣⌣ = r for every element r in a relation algebra.

In the calculus of relations a corresponding identity is satisfied (see (3.17)). This implies

that for any role description R the associated terminological statement

(4.13) (inverse (inverse R))
.
= R

is satisfied in any interpretation I of U− (since (inverse (inverse R))I = (RI)⌣⌣ =

RI). This in turn implies that (4.13) is valid (in symbols, |= (4.13)). Hence

(4.14) (inverse (inverse R)) ≈ R for any role description R.

This transformation from an arithmetical identity like (4.12) to a semantic equivalence

relation like (4.14) works for each universal identity in relation algebra. (By a universal

identity I mean an equational axiom or equational property of relation algebra.) Every

such universal identity thus determines a semantic equivalence relation between roles

in U−. Although an inclusion like r ≤ 1 is an implicit equation and determines a

semantic equivalence, it can be seen to determine the subsumption relationship R ≼ ∇.

Analogously we can show that any universal identity in Boolean algebras, Boolean

modules and Peirce algebras appropriately determine ≈ expressions for U−.
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4.2 Algebraic Reasoning

In this section I propose an algebraic approach to reasoning about terminological expres-

sions formulated in the language U−. My proposal is based on the algebraic formulations

presented in Section 4.1. There I showed that concept descriptions can be regarded as

forming a Boolean algebra and role descriptions as forming a relation algebra. Fur-

thermore, concepts interacting with roles form, depending on the operators, a Boolean

module or a Peirce algebra. I propose to make use of the arithmetic of these algebras

to calculate inferences phrased in U−.

To illustrate my approach I use in the first instance the core example presented in the

Preview. The semantic network in Figure 1.1 contains some explicit information (such

as (1.1)–(1.5)) but it also contains some implicit information (such as (1.6)–(1.11)).

The semantic network is a (graphic) representation of explicit facts specified by the

user, formulated in a terminological language such as U−. Recall that these explicit

facts are formulated as terminological axioms, each of which is a ⊑ or
.
= expression.

The set of terminological axioms makes up the terminology, and this corresponds to

the semantic diagram. The aim now is to extract by some inference mechanism also

knowledge implicit in the diagram, or terminology.

I now describe the algebraic method I propose for computing such inferences. Recall

(from Chapter 1 and Section 2.2) that the concepts in a terminology are ordered with

respect to the subsumption relation and form a poset, called the concept taxonomy.

The set of concepts in the semantic network of Figure 1.1 form the concept taxonomy

depicted in Figure 4.2. Analogously the set of roles forms a poset called the role

taxonomy, which for the sample network is depicted in Figure 4.3. Thus the first step

is to separate the concept taxonomy from the role taxonomy.

The next step involves the generation of free algebras. The idea is that the given

primitive concepts and roles are used as generators for constructing compound concepts

and roles. Consider first the concept taxonomy. New concepts are generated by com-

bining the given primitive ones using the Boolean operations. That is, every pair of

concepts generates both a meet and a join, and every concept generates a concept as

its complement. In this way we generate many new concepts. For example, from the
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Figure 4.2: Concept poset
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Figure 4.3: Role poset
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concepts in Figure 4.2 we generate ‘male heirs to the throne’ as the meet of ‘males’

and ‘heirs to the throne’, ‘females and vegetarians’ as the join of ‘females’ and ‘ve-

getarians’, ‘not princes’ as the complement of ‘princes’ and so on. This generation is

constrained by the axioms of Boolean algebra. For example, since join is commutative

(by B2) the concept ‘vegetarians and females’ will not be generated in addition to the

concept ‘females and vegetarians’. Since ‘humans’ is the top concept in our example

it generates the bottom concept as its complement, in accordance with the property

B13 in Boolean algebras that the complement of the unit coincides with the zero. The

user can assign certain names to compound concepts by specifying appropriate equiva-

lences. For example he/she may want to call the bottom concept ‘nobody’. This would

be facilitated if the expression Nobody
.
= (not Humans) is added to the terminology.

Like the axioms, user constraints also limit the number of concepts being generated.

Since princes are male (formulated as Princes ⊑ Males), for example, the concept ‘male

prince’ (the meet of ‘males’ and ‘princes’) coincides with ‘princes’ and will therefore not

be generated. In this way we generate a free Boolean algebra of concept descriptions.

These are the concept descriptions formulated in U− with the and, or and not operators.

78



As is the case in general, from n atomic concepts we would generate a Boolean algebra

of 2n concepts.

Consider next the role taxonomy. As for concepts we can freely generate a Boolean

algebra of role descriptions from the given primitive roles (including the designated

identity role self). Using the Boolean operations we generate new roles such as ‘both

sister of and admirer of’, ‘mother of or teacher of’, ‘not sibling of’ etc. Again this

generation is in accordance with the axioms of Boolean algebra and possible user con-

straints. The user may wish to specify that the roles ‘mother of’ and ‘father of’ are

mutually exclusive and exhaust the role ‘parent of’. A way of generating the top role

is as the join of self and its complement. We obtain then the bottom role analogous

to how we did the bottom concept. With roles we go further than with concepts. We

use the relational operations of converse and composition to generate additional roles as

constrained by the axioms of relation algebra and the relevant user constraints. In this

way we generate a free relation algebra of role descriptions. Roles like the following will

be generated: ‘has as parent’ as the converse of ‘parent of’, ‘mother of parent of’ as the

composition of ‘mother of’ and ‘parent of’, ‘has not as teacher’ as the complement of

the converse of ‘teacher of’ and so on. Again the user can assign certain names to roles.

For example, he/she may want to define ‘child of’ as ‘has as parent’, ‘grandmother of’

as ‘mother of parent of’ and ‘pupil of’ as ‘has as teacher’. The role descriptions thus

generated are those defined in U− with the Boolean operators and the relational oper-

ators inverse and compose. Observe that roles expressed with the trans operator and

the role binding constructs are implicitly generated in terms of the relational operators.

Unlike Boolean algebras freely generated from a finite set of elements, freely generated

relation algebras are in general not finite. For example, from the standard example we

obtain ‘parent of’, ‘grandparent of’, ‘great-grandparent of’, . . ..

As a third step we freely generate all the interactions between concepts and roles

that yield concepts. That is, using Peirce product we freely generate a Boolean module

over the Boolean algebra of concepts and a relation algebra of roles. In this way we

generate additional concepts such as ‘mother of Charles’ or ‘sister of (some) princes’.

The generation will also yield variants of Peirce product such as ‘fathers of no females’,

‘not pupils of Anne’, ‘admirers of all princes’ and ‘teachers only of heirs to the throne’.
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Other variants generated include those concepts which are represented in U− as role

value maps and structural descriptions. Examples are ‘relatives of all those of whom

they are an aunt’, ‘admirers of all those of whom they are a child’, ‘humans with

brothers’ and ‘princes with siblings’.

The fourth and final step consists of the free generation of all interactions between

concepts and roles yielding roles. We use the cylindrification operation to generate

a Peirce algebra over the Boolean module of concepts and roles. Recall that I used

cylindrification to model the restrict, domain and role operators of U−. The free gen-

eration thus yields new roles such as ‘being a mother of heirs to the throne’ or ‘be-

ing a sibling of males’ which are represented in U− as (restrict mother-of Heirs) and

(restrict sibling-of Males), respectively. We could also generate roles expressed with

domain and range which do not necessarily have a natural English translation.

I have thus shown how implicit relationships between concepts and roles can in

principle be generated. An implementation cannot attempt to do free generation of

entire algebras since the free algebras are in general infinite. I envisage that in practice

only part of the relevant algebra is generated in response to a user query, namely that

part which will be sufficient for answering the query.

80



4.3 Case Studies

This section is devoted to a number of case studies of deducing implicit knowledge from

explicitly given facts within the equational framework of the algebras of Chapter 3.

We have already seen in Section 4.1 how terminological claims can be formulated with

algebraic operators. On the basis of Section 4.2 I assume that new concepts and roles

are generated as required. Deriving further claims will thus amount to proof along the

lines of those in Chapter 3. However, for ease of exposition I will present these in an

informal mixture of English and algebraic operators.

Still keeping to the standard example of Figure 1.1 in Chapter 1, I will show how

the implicit facts listed in (1.6)–(1.11) can be derived equationally. In (4.15)–(4.20)

below I list these claims again. There are three parts to each claim:

(i) the English formulation (given in (1.6)–(1.11)),

(ii) the terminological formulations (given in (1.18)–(1.23)), and

(iii) the algebraic formulations (which I will prove).

(4.15) (i) Elizabeth is human

(ii) Elizabeth ⊑ Humans

(iii) Elizabeth ≤ Humans

(4.16) (i) All sisters of someone are relatives of that person

(ii) sister-of ⊑ relative-of

(iii) sister-of ≤ relative-of

(4.17) (i) Charles is a father of some prince

(ii) Charles ⊑ (some father-of Princes)

(iii) Charles ≤ father-of : Princes

(4.18) (i) William is a child of Charles

(ii) William ⊑ (some (inverse parent-of) Charles)

(iii) William×Charles ≤ child-of (where child-of = parent-of⌣)

(4.19) (i) Anne is an aunt of some prince

(ii) Anne ⊑ (some (compose sister-of parent-of) Princes)

(iii) Anne ≤ aunt-of : Princes (where aunt-of = sister-of ; parent-of)

(4.20) (i) Some vegetarian is a parent of William
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(ii) (and Vegetarians (some parent-of William)) ̸ .= ⊥

(iii) Vegetarians · (parent-of :William) ̸= 0.

The reader is reminded that inclusions (that is, ≤ expressions) are in fact disguised

equations. To handle algebraic inequalities like (iii) in (4.20) I make use of the properties

of simple Boolean modules, discussed in Section 3.3. In particular, I use Theorem (3.45),

by which in a simple Boolean module a ̸= 0 iff 1 : a = 1 (for any Boolean element a).

The terminological inequality (ii) in (4.20) is strictly speaking not well-formulated

in U− (as defined in Section 2.2). Neither is the earlier example given in (1.17):

(4.21) (and Females (some sibling-of Males)) ̸ .= ⊥.

To cater for such inequalities I assume that any model of a terminology forms a full

Peirce algebra (over some non-empty set U). Its underlying Boolean module is simple,

because the underlying Boolean module of a full Peirce algebra is full and every full

Boolean module is simple (refer to page 45). Then again according Theorem (3.45), we

may regard a terminological expression of the form C ̸ .= ⊥ as an abbreviation of the

expression (some ∇ C)
.
= ⊤. In particular, then, (4.20) (ii) and (4.21) can be regarded

as respectively abbreviating:

(4.22) (some ∇ (and Vegetarians (some parent-of William)))
.
= ⊤

(4.23) (some ∇ (and Females (some sibling-of Males)))
.
= ⊤.

The same method works also for role inequalities. By Theorem (3.28), in a simple rela-

tion algebra r ̸= 0 iff 1 ; r ; 1 = 1 (for every element r). Hence we may in the terminology

regard claims of the form R ̸ .= Λ as abbreviations of (compose (compose ∇ R) ∇)
.
=

∇.

To infer the algebraic formulations of the claims in (4.15)–(4.20) I therefore use the

arithmetic of Peirce algebras with simple underlying Boolean modules.

(4.15)′ By (1.1) and (1.2) we know that Elizabeth ≤ Females and Females ≤

Humans. In a Boolean algebra ≤ is a transitive relation. Hence Elizabeth ≤

Humans.

(4.16)′ Analogous to (4.15)′. Since sister-of ≤ sibling-of and sibling-of ≤ relative-of

is given, we obtain sister-of ≤ relative-of by transitivity of ≤ .
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(4.17)′ William is a prince, i.e. William ≤ Princes, implies father-of :William ≤

father-of : Princes using M7. Therefore since Charles ≤ father-of :William by

(1.4), Charles ≤ father-of : Princes.

(4.18)′ In (4.17)′ we expressed that Charles is a father of William in terms of Peirce

product. It can also be expressed as Charles×William ≤ father-of. Hence

since father-of ≤ parent-of, Charles×William ≤ parent-of. By R4, P26

and R10 it follows then that William×Charles = (William×Charles)⌣⌣ =

(Charles×William)⌣ ≤ parent-of⌣ = child-of. Observe that we could have

expressed the claim which we set out to prove by William ≤ child-of : Charles.

To derive the claim in this form would require some properties of Peirce product

applied to atoms.

(4.19)′ There is more than one way of proving this. One possibility is:

Anne ≤ sister-of : Charles (since ‘Anne is a sister of Charles’ is given)

≤ sister-of : (father-of : Princes) (by (1.8) and M7)

≤ sister-of : (parent-of : Princes) (since father-of ≤ parent-of, M8 and by M7)

= (sister-of ; parent-of) : Princes (by M3)

= aunt-of :William.

(4.20)′ Charles ≤ Vegetarians is given. Hence Vegetarians ·Charles = Charles by

B8. Charles is an atom in the semantic diagram. Therefore Charles ̸= 0, which

implies Vegetarians ·Charles ̸= 0. Since father-of ≤ parent-of and Charles

≤ father-of :William, by M8 Charles ≤ parent-of :William. Thus 0 ̸=

Vegetarians ·Charles ≤ Vegetarians · (parent-of :William).

A strictly equational proof would rely on Theorem (3.45) and would go as fol-

lows: By (iii) of Theorem (3.45) Charles ̸= 0 iff 1 : Charles = 1. By

B8 Charles ≤ Vegetarians iff Charles ·Vegetarians = Charles. There-

fore, since father-of ≤ parent-of and Charles ≤ father-of :William, 1 =

1 :Charles = 1 : (Vegetarians ·Charles) ≤ 1 : (Vegetarians · (father-of :William))

≤ 1 : (Vegetarians · (parent-of :William)). Hence 1 = 1 : (Vegetarians · (parent-

of :William)) which implies Vegetarians · (parent-of :William) ̸= 0.

I have now discharged the challenge made in Chapter 1, of deducing some implicit
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knowledge for the standard example of Figure 1.1. However, as is clear from Section 2.2,

there are many more terminological operators than those of the standard example. I

therefore give also some further examples covering such other terminological operators.

Namely, I will derive some implicit relationships expressed with the rvm, trans, restrict

and sd operators. These relationships involve the sample constructs given in (2.30),

(2.34), (2.35), (2.37) and (2.38) of Section 2.2.

(4.24) The expression (rvm aunt-of relative-of) from (2.30) represents the set of all hu-

mans who are relatives of all those of whom they are an aunt, which we ex-

pect coincides with the set of all humans. This intuitively obvious fact is

also relatively easy to prove formally. Our aim is to show that Humans
.
=

(rvm aunt-of relative-of) is derivable from the terminology of the given facts

in the semantic network. Recall the algebraic formulation of rvm constructs

given in Figure 4.1 (iii) according to which the associated algebraic term of

(rvm aunt-of relative-of) is ((aunt-of · relative-of ′) : 1)′. So, algebraically we aim

to show that Humans = ((aunt-of · relative-of ′) : 1)′ is true.

To prove this I assume that ‘aunt-of’ is defined as in (4.19) as sister-of ; parent-

of. By (4.16) sister-of ≤ relative-of. It is given that parent-of ≤ relative-

of. Thus using R14 repeatedly we obtain aunt-of = sister-of ; parent-of ≤

relative-of ; parent-of ≤ relative-of ; relative-of. I also assume it is given that

‘being a relative of’ is a transitive relation. According to Theorem (3.20) (iv)

this is specified by relative-of ; relative-of ≤ relative-of. Hence aunt-of ≤

relative-of, which is equivalent to aunt-of · relative-of ′ = 0 by B12. Therefore

((aunt-of · relative-of ′) : 1)′ = (0 : 1)′ = 0′ = 1 = Humans (by M5 and B13),

as required.

(4.25) Using (2.34) the fact that ‘Elizabeth is a parent or an ancestor of William’ can be

expressed in U− as Elizabeth ⊑ (some (trans parent-of) William). Algebraically

it becomes Elizabeth ≤ (
∑∞

n=1parent-of
n) :William. To cater for this example

I use the arithmetic of complete relation algebras which provide for arbitrary

joins (and meets). This is justified since we model terminologies in full Peirce

algebras. These have full underlying relation algebras which are necessarily
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complete. Here is a proof then:

Since Elizabeth is a mother of Charles who is a father of William, Elizabeth is

a parent of Charles who is a parent of William. In other words, Elizabeth is a

grandparent of William. Formally, since Elizabeth ≤ mother-of : Charles,

mother-of ≤ parent-of, Charles ≤ father-of :William, and father-of ≤

parent-of, by using M8, M7 and M3 we get Elizabeth ≤ mother-of : Charles

≤ parent-of : Charles ≤ parent-of : (father-of :William) ≤ parent-of : (parent-

of :William) = (parent-of ; parent-of) :William. Since
∑∞

n=1parent-of
n =

parent-of + parent-of ; parent-of + . . . it follows that parent-of ; parent-of

≤ ∑∞
n=1parent-of

n. By M8 it follows then that Elizabeth ≤ (
∑∞

n=1parent-

of n) :William.

(4.26) According to (2.35) the relation ‘has as brother’ is represented by the role

(restrict sibling-of Males). The sentence ‘Anne has brothers’ can then be repre-

sented in U− as Anne ⊑ (some (restrict sibling-of Males) Humans). Algebraically

it is expressed as Anne ≤ has-brother : Humans where has-brother =

sibling-of ⌋Males. To prove this I use M7 and M8 as well as P16′.

Given that Charles ≤ Princes ≤ Males and sister-of ≤ sibling-of and

given that Anne is a sister of Charles, we get Anne ≤ sister-of : Charles

≤ sister-of :Males ≤ sibling-of :Males = (sibling-of ⌋Males) : 1 = (sibling-

of ⌋Males) : Humans.

(4.27) Structural description constructs are paradigm examples of constructs that are

hard to translate in English. In Section 2.2 I discussed the sample expressions

(sd Males (⊆ child-of child-of))

and

(sd Males (⊆ self (not self)) (⊆ child-of child-of))

and their associated problems. But from Figure 4.1 (ii) and (iii) it is apparent

that these expressions do have algebraic formulations, namely (child-of⌣\child-

of⌣) :Males and ((e⌣\e′ ⌣) · (child-of⌣\child-of⌣)) :Males, respectively.

I claimed that (sd Males (⊆ child-of child-of)) represents the set of all people who

are either male or have brothers. To show, e.g., thatMales is subsumed by this ex-
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pression, i.e. Males ⊑ (sd Males (⊆ child-of child-of)), is now routine. To prove

this I need to show that Males ≤ (child-of⌣\child-of⌣) :Males. By R23 child-

of⌣\child-of⌣ (the algebraic formulation of the construct (⊆ child-of child-of))

is reflexive. By Definition (3.23) (i) this means e ≤ child-of⌣\child-of⌣.

Using M4 and M8 we get Males = e :Males ≤ (child-of⌣\child-of⌣) :Males.

Just as easy to prove is my claim (on page 23 in Section 2.2) that the subex-

pression (⊆ self (not self)) of the second sd expression is equivalent to (not self).

For this we need to establish that e⌣\e′ ⌣ = e′. It follows by R11, R9 and

R21 that e⌣\e′⌣ = e⌣\e⌣′ = e\e′ = e′⌣ = e⌣′ = e′.

As a final example (which involves the all construct) consider the following expression

from Patel-Schneider [1990, p. 14]:

(4.28) (and Persons (and (all has-child Lawyers) (all (restrict has-child Lawyers) Doctors)))

⊑ (and Persons (all has-child Doctors)).

This is quite complicated. It is also not clear how to read this in English.

Patel-Schneider himself translates the subsumed term by ‘the class of people

whose children are all lawyers and whose children who are lawyers are all doc-

tors’, and the subsuming term by ‘the class of anyone whose children are all

doctors’. Note that with this translation the same point would arise as in

the discussion in Section 3.5 on the intended meaning of the phrase ‘eat only

fruit’. Namely, representing the set of individuals whose children are all doc-

tors by (all has-child Doctors) or algebraically by (has-child : Doctors′)′ means it

is impossible to deduce that such individuals have children who are doctors.

However, the point of this example is, presumably, to illustrate the inference

mechanism rather than the expressiveness of the formalism. In this respect the

subsumption relation has a perfectly manageable algebraic formulation, which

is persons · (has-child : Lawyers′)′ · ((has-child ⌋Lawyers) : Doctors′)′

≤ persons · (has-child : Doctors′)′. It is ‘perfectly manageable’ in the sense that

it can be proved algebraically in the same way as the other examples above. The

proof goes as follows:

It suffices to prove (has-child : Lawyers′)′ · ((has-child ⌋Lawyers) : Doctors′)′
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≤ (has-child : Doctors′)′. To prove this I use the property M25′ (given on

page 48) as reformulated from M25 proved in Section 3.3. So

(has-child : Lawyers′)′ · ((has-child ⌋Lawyers) : Doctors′)′

= (has-child : (Lawyers ·Doctors)′)′ (by M25′)

≤ (has-child : Doctors′)′ (using M16).

My principal objective with the case studies of this section has been to illustrate

the power and elegance of the equational algebraic approach. Even quite complicated

formulations from U− have straightforward translations in the algebraic framework, and

reasonably straightforward deductions from the terminological axioms—and of course

the algebraic axioms.

Studying terminological representation languages from an algebraic point of view

has several spinoffs. It makes for easier analysis of terminological expressions (especially

those constructed with operators otherwise difficult to handle). Furthermore, it provides

one with a useful link to other areas where relation-algebraic concepts have been applied.

Analysis of structural description sd has revealed that this operator is redundant,

since it is interdefinable with the some operator. That the sd operator can be defined

in terms of some and the other terminological operators is apparent form the algebraic

presentation of sd (given in (ii) and (iii) of Figure 4.1). To show that some can be

expressed with sd, consider the algebraic presentation r⌣\s⌣ of the role binding

construct (⊆ R S). R22 implies that for any element r in a relation algebra r =

r⌣′\e′. Hence using R11 and R9 any r can be identically formulated as r′⌣\e′⌣.

Therefore (since any algebraic identity determines a semantic equivalence), for any role

description R

(4.29) R ≈ (⊆ (not R) (not self)).

Also, it is immediate by R22 that

(4.30) R ≈ (⊇ (not self) (not (inverse R))).

Using these results it is easy to encode any role description as a role binding construct

of either kind. More importantly, these results imply that anything expressible with

some can be expressed with sd since, e.g.,

(4.31) (some R C) ≈ (sd C (⊆ (not R) (not self))).

87



So, sd and some are interdefinable. In the light of the problems associated with using

structural description this raises doubts about the value of including sd and role binding

constructs in terminological languages at all.

Also contributing to simplifying the analysis of terminological expressions is the

link between their algebraic representations and the linguistic analysis of Suppes and

Böttner (discussed in Section 3.5). This link can be utilised to provide valuable as-

sistance when representing given information formulated in English as terminological

expressions and likewise when translating represented information into ordinary En-

glish. For example, according to Figure 3.2 (iii) the set of ‘admirers of no princes’ is

represented by (admirer-of : Princes)′ which translates to the terminological expres-

sion (not (some admirer-of Princes)). Using (3.58) and (3.59) we represent the set of

‘admirers only of princes’ by admirer-of : Princes ∩ (admirer-of : Princes′)′ or in a

terminological language by

(and (some admirer-of Princes) (all admirer-of Princes)).

Reversing this process, given for example the terminological expression

(and Humans (not (some (not admirer-of) Princes)))
.
= ⊥

its algebraic formulation is Humans · (admirer-of ′ : Princes)′ = 0 (or in the calculus

Humans ∩ (admirer-of ′ : Princes)′ = ∅) which according to Figure 3.3 (iii) translates

to ‘no human admires all princes’.

Terminological representation can also be linked to algebras that formalise a tran-

sitive closure operation. As mentioned earlier (in Section 3.2 on page 38 and in (4.25))

the trans construct, which is interpreted as a transitively closed relation (namely the

arbitrary union
∪∞

n=1R
n) can be catered for in complete relation algebras (since these

have arbitrary joins). For certain purposes it may however be more advantageous to

have an algebraic axiomatisation of a transitive closure operation. Such axiomatisations

exist for example in the algebras mentioned in Section 3.5. In particular the Ng-Tarski

relation algebras have a transitive closure operation and the Kleene algebras, the dy-

namic algebras and also the action algebras have a star operation intended to formalise

reflexive transitive closure. Some work still needs to be done to cater for transitively

closed relations interacting with sets (by for example extending Boolean modules with
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a transitive closure operation or by strengthening the underlying Kleene algebra in a

dynamic algebra). The reader interested in formalisations of transitive closures should

consult the references given in Section 3.5.

In Section 4.1 I showed that U−, a sublanguage of U , can be accommodated in

the algebraic context. Unlike U , U− does not include the number restriction opera-

tors atleast and atmost. It remains to establish whether it is possible to accommodate

these operators. Consider the expression (atleast 4 R), for example. To present this

expression algebraically it must be possible to formulate equationally the statement

that ‘there exist four elements to which an element is related by R’. The algebras I

have been focussing on are remarkably powerful, but are expressively weaker than full

first-order logic. Thus, not every first-order statement can be represented equationally.

More specifically, it is known (see Tarski and Givant [1987]) that first-order statements

containing more than three variables cannot be represented equationally in relation

algebras. For example, ‘there exist four elements’ is such a statement. (According to

Tarski and Givant [1987, p. xi] this follows from a result by Korselt as documented in

Löwenheim [1915∗].) This suggests that atleast expressions have no algebraic represen-

tation in the context of this thesis. Since any atmost expression can be defined in terms

of the atleast operator (see, e.g., Patel-Schneider [1987a, p. 91]) and since atleast is a

special case of the fillers operator (see (2.46)), both the atmost and fillers operators are

likewise not presentable in the present context. This does not exclude the possibility

that other adequate formalisations can be found.
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4.4 Concluding Remarks

As outlined in the Introduction the goal of this thesis has been to show that the algebras

of sets and relations are natural vehicles for representing given terminological knowledge,

and also for inferring implicit knowledge from what is given. In order to accomplish

this goal, I showed that the standard model-theoretic semantics of certain termino-

logical representation languages can be accommodated in the algebraic framework. I

established natural associations between terminological and algebraic representations

(summarised in Figure 4.1). Interactions between concepts and roles are then alge-

braically characterised, and the generation of new concepts and roles from old amounts

to the generation of free algebras, as discussed in Section 4.2. Finally, in Section 4.3

I used equational reasoning to derive those inferences in the core example which were

presented in Chapter 1 and also some fairly complex inferences with terminological

constructs. I also linked terminological representation with other areas of application,

notably computational linguistics.

In conclusion, I claim for the algebraic approach the following advantages.

An existing mathematical framework: In Section 2.1 I outlined the history of ter-

minological representation. It is a relatively new field of research and by and large,

the development has been implementation driven and rather ad hoc. It seems that only

recently research has started to focus on formal aspects such as semantics and tractabil-

ity. In contrast the algebras presented here are formal mathematical structures. Their

origins lie in the calculi of sets and relations which go back more than 100 years to

G. Boole, A. De Morgan, C.S. Peirce and E. Schröder. As is evident from the bulk

of literature available the algebras have been extensively studied and continue to be

of considerable interest. The algebraic approach thus has the advantage of embedding

new work into old.

Expressiveness: In this respect the algebras are quite powerful. Many elementary

statements concerning sets and relations can be formulated algebraically. For example,

in Theorem (3.20) I listed some such formulations of familiar properties of relations.

Schröder [1890–1895∗], who systematically studied the calculus of relations, was even

led to conjecture (wrongly as it turned out) that every elementary statement about
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relations can be formulated equationally in the calculus of relations. I mention again

Tarski’s claim (finally proved together with Givant in [1987]) that practically all of

mathematical research can be carried out in a formalism based on relation algebra. This

is truly remarkable, especially since one cannot express every first-order statement in the

relation-algebraic context. With regards to terminological representation I established

that the algebras are sufficiently expressive to cater for the language U− which includes

most existing terminological operators (the exceptions being the number restriction

operators).

Ease of use: This is apparent from Chapter 3 and the case studies presented in Sec-

tion 4.3. The main reasons why these algebras are so easy to work with are: first,

the form of the algebraic language (resulting in simple and elegant formulations for

first-order statements or terminological expressions), and second, the natural axiomati-

sations they provide for reasoning with sets and relations (and now also with concepts

and roles).

Other Areas of Application: The algebras of sets and relations already have some

firm links to other areas in Computer Science. I mentioned various applications in Sec-

tion 3.5, of which at least two (namely computational linguistics and logics of programs)

are useful to terminological representation.

Possible mechanisation: Since the algebras considered here are defined with equa-

tional axioms, I envisage an implementation based on equational logic. Equational logic

is a well-established field of mathematical logic and has been implemented in various

forms, for example as term rewriting systems (like that of Hsiang [1985]) or as equa-

tional logic programming systems (like that of O’Donnell [1985]). More on rewriting

techniques can be found in Huet and Oppen [1980], Jouannaud [1985∗] and Lescanne

[1987∗], and on equational logic programming in Goguen and Meseguer [1986∗] and

Hölldobler [1989]. For an introduction to term rewriting and logic programming see,

e.g., Jorrand [1988]. Equational logic also forms the basis for unification theory (for

a survey see Siekmann [1987]) and an extension of many-sorted logic (Cohn [1989])

called order sorted equational logic (Smolka et al [1989]). In both Siekmann [1987]

and Smolka et al [1989] further references can be found to various other automated
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deduction approaches. One such approach which has already been oriented towards

knowledge representation applications is that of Aı̈t-Kaci and Nasr [1986] and Aı̈t-Kaci

et al [1989] implementing lattice and inheritance operations.
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70, 27–45.

103



Jónsson, B. [Draft]. Program Specifications as Boolean Operators: A Very Preliminary

Draft. Department of Mathematics, Vanderbilt University, Nashville, TN.

Jónsson, B., and Tarski, A. [1948∗]. Representation Problems for Relation Algebras.

Abstract 89, Bulletin of the American Mathematical Society 54, 80 & 1192.

Jónsson, B., and Tarski, A. [1951]. Boolean Algebras with Operators, Part I. American

Journal of Mathematics 73, 891–939.

Jónsson, B., and Tarski, A. [1952]. Boolean Algebras with Operators, Part II. Ameri-

can Journal of Mathematics 74, 127–162.

Jorrand, P. [1988]. Fundamental Mechanisms for Artificial Intelligence Programming

Languages: An Introduction. In Nossum, R.T. (Ed.), Advanced Topics in Artificial

Intelligence. Lecture Notes in Artificial Intelligence 345 (Subseries of LNCS), 1–40.

Jouannaud, J.-P. (Ed.) [1985∗]. Rewriting Techniques and Applications. Lecture Notes

in Computer Science 202.

Kaczmarek, T.S., Bates, R., and Robbins, G. [1986]. Recent Developments in nikl.

Proc. Nat. Conf. AI, 978–985.

Knowledge Representation Workshop [1983∗]. Santa Barbara, CA.

Kozen, D. [1980]. A Representation Theorem for Models of ∗-free PDL. In de Bakker,

J., and van Leeuwen, J. (Eds.), Automata, Languages and Programming. Lecture

Notes in Computer Science 85, 351–362.

Kozen, D. [1981]. On the Duality of Dynamic Algebras and Kripke Models. In Engeler,

E. (Ed.), Logic of Programs. Lecture Notes in Computer Science 125, 1–11.

Kozen, D. [1990a∗]. A Completeness Theorem for Kleene Algebras and the Algebra of

Regular Events. Technical Report 90-1123, Cornell University.

Kozen, D. [1990b∗]. On Kleene Algebras and Closed Semirings. In Rovan, B. (Ed.),

Mathematical Foundations of Computer Science. Lecture Notes in Computer Sci-

ence 452, 26–47.

104



Kumar, D. [1990∗]. Current Trends in SNePS-Semantic Network Processing System.

Lecture Notes in Artificial Intelligence 437 (Subseries of LNCS).

Lescanne, P. (Ed.) [1987∗]. Rewriting Techniques and Applications. Lecture Notes in

Computer Science 256.

Levesque, H.J. [1986]. Knowledge Representation and Reasoning. Annual Review of

Computer Science 1, 255–287. Reprinted in Mylopoulos and Brodie [1989∗].

Levesque, H.J., and Brachman, R.J. [1987]. Expressiveness and Tractability in Know-

ledge Representation and Reasoning. Computational Intelligence 3, 78–93. An ex-

tended version of Brachman and Levesque [1984].
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