


Four Results on Randomized 

Incremental Constructions 

K.E. Clarkson K. Mehlhom Raimund Seidel 

MPI-I-92-112 March 1992 



Four Results on 
Randomized Incremental Constructions* 

Kenneth L. Clarkson t Kurt Mehlhornl 

November 5, 1991 
revised February 26, 1992 

Abstract 

Raimund Seidel§ 

We prove four results on randomized incremental constructions (RIes): 

• an analysis of the expected behavior under insertion and deletions, 

• a fully dynamic data structure for convex hull mamtenance in arbitrary dimensions, 

• a tail estimate for the space complexity of RIes, 

• a lower bound on the complexity of agame related to RIes. 

1 Introduction 

Randomized incremental eonstruction (RlC) is a powerful paradigm for geometrie algorithms 
(CS89, Mul88, BDS+]. It leads to simple and efficient algorithms for a wide range of geomet­
rie problems: line segment interseetion [CS89, Mul88], eonvex hulls (CS89, Sei90], Voronoi 
diagrams [CS89, MM091, GKS90, Dev], triangulation of simple polygons (Sei91], and many 
others. In this paper we malte four eontributions to the study of RlCs . 

• We give a simple analysis of the expeeted behavior of RlCs; cf. § 2. We deal with inser­
tions and deletions and derive bounds for the expected number of regions eonstrueted 
and the expeeted number of eonfliets eneountered in the eonstruetion. In the ease of 
deletions our bounds are new, but eompare [DMT91, Mul91a, Mul91b, Mul91e, Sch91] 
for related results, in the ease of insertions the results were known, but our proofs are 
simpler. 

• A preliminary version of this papers was presented at the 9th Symposium on Theoretical Aspects of 
Computer Science (STACS 92) 
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• We apply the general results on RlC to the problem of maintaining convex hulls in d­
dimensional space; cf. § 3. We show that random insertions and deletions take expected 
time O(logn) for d ~ 3 and time O(nLd/2J-l) otherwise. H the points are in convex 
position, which is, e.g., the case when Voronoi diagrams are transformed into convex 
hulls of one higher dimension, the deletion time becomes log log n for d ~ 3. Schwarzkopf 
[Sch91] has obtained the same bounds for all d 2: 6, Mulmuley [Mul91c] has obtained 
the same bound for all d but with a more complex construction, and Devillers et al 
[DMT91] have previously obtained the result for 2-dimensional Voronoi-diagrams. 

• We derive a tail estimate for the number of regions constructed in RlCs; cf. § 4. 

• We study the complexity of agame related to the O(nlog* n) RlCs of [Sei91] and [Dev] 
and show that the complexity of the game is 0(nlog* n); cf. § 5. 

2 Randomized Incremental Constructions: General Theo­
rems 

Let S be a set with ISI = n elements, which wewill sometimes call objects. Let F(S) be 
a multiset whose elements are nonempty subsets of S, and let b be the size of the largest 
element of F(S). We will call the elements of F(S) regions or ranges. Hall the regions have 
size b, we will say that F(S) is uniform. For a region F E F(S) and an object z, if Z E F 
we say that F relies on Z or Z supports F. For R ~ S, define F(R) = {F E F(S) I F eR}. 
(That is, the multiplicity of F in F(R) is the same as in F(S).) We also assume a conflict 
relation C ~ S X F( S) between objects and regions. We postulate that for all z E S and 
FE F(S), if (z, F) E C then F does not relyon z. 

For a subset R ~ S, Fo(R) will denote the set of FE F(R) having no ZER with (z, F) E C; 
that is, Fo(R) is the set ofregions over R which do not conflict with any object in R. 

Clarkson and Shor [CS89] analyzed the incremental computation of Fo(S) . In the general 
step, F o( R) for some subset R ~ S is already available, a random element z E S \ R is chosen, 
and Fo(RU {z}) is constructed from Fo(R). 

Let (Z1l ... ' Zj) be a sequence ofpairwise distinct elements of S, and Rj the set {Z1I ... , Zj}. 

Let Ro = {}, the empty set. The history H = H(z1I . . . ,zr) for insertion sequence 
(Z1I . .. ,zr) is defined as H = U Fo(Ri). Let IIs be the set ofpermutations of S. For 

l<i<r 
'Ir = (ZI, ... , zn) E IIs, Hr ( 'Ir) or -;i~ply Hr denotes the history H (ZI, ... , Zr). 

First, some simple facts about random permutations, whose proofs we leave to the reader: 

LemJna 1 1f'lr = (z I, . • . , zn) is a random permutation of S, then Rj is a random subset of 
S of size i, (Z1I ... ,Zj) is a random permutation of Rj, Zj is a random element of Rj, and 
if 5 is a (jized) permutation, then 'lr5 is a random permutation. 

We are now ready for an average case analysis of randomized incremental constructions. All 
expected values are computed with respect to a random ordering (zt, ... , zn) E IIs of the 
objects in S . 
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For subset R ~ S, r = IRI, and distinct objects z,y E R, let 

deg(z, R) I{F E .1'o(R)j z supports F}I 

pdeg(z, y, R) = I{F E .1'o(R)j z and y support F}I 
1 

c(R) = - L: deg(z, R) 
r zER 

1 
p(R) = ( ) L: pdeg(z, y, R) . 

rr-1( )R2 
Z,1I E . 

We caU deg(z, R) the degree of z in R, pdeg(z, y, R) the degree of the ordered pair (z, y) in 
R, c(R) the average degree ofa random object in R and p(R) the average pair degree of a 
random pair of objects in R. Of course, p(R) is only defined for r ;::: 2. 

For integer r, 1 ::; r ::; n, let 

c,. = E[c(R)] = L: c(R)/ (:) 
R~s,IRI=" 

and 

pf" = E[P(R)] = L: p(R)/ (:) . 
R~s,IRI=f" 

be the expected average degree and pair degree for random ~ eS, and let 

ff" = L: l.1'o(R)I/ (:) 
R~s,IRI=f" 

be the expected number of conflict-free regions of .1'(R), with respect to random~. Note 
that Cl = f1. It will be convenient to adopt the convention that Cj = Pj = fj = 0 for j < 1 
or j > n, and (almost always) convenient to adopt the convention that P1 = h. 

Lemma 2 The ezpectations Cf"1 Pf"1 and f,. satisfy ~ ::; bff"/r, and for r > I, pf" ::; b(b­
l)ff"/r(r - 1), with equality if .1'(S) is uniform. 

Proof: For every region F E .1'(S) there are at most b objects and at most b(b - 1) ordered 
pairs of objects which support F, and exact1y as many if .1'(S) is uniform. I 

Theorem 3 Let Cf" be the ezpected size of history Hf". Then Cf" = Ej<f" Cj. 

Proof: Ho is empty and hence Co = o. For r ;::: 1 the number of elements of Hf" which are 
not already elements of Hf"-l is equal todeg(zf"'~). Since ~ is a random sub set of S of 
size r and Zf" is a random object in R, we have 

E[deg(zf"' Rf")] = E[c(R)] = Cf". 

I 

In §4 we will strengthen Theorem 3 and prove a taU estimate for IHnl. 
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Theorem 4 The ezpected number of regions in H"-l which are in conftict with x" is -c,. + 
L-;<"p;. 

Proof: Let X be the number of regions F E H"-l with (x"' F) E C. Let H = H"-l = 
H{Xl' ... ,x,,-d and H' = H{X",Xl, ... ,x,,-d, i.e., in H' we "pretend" that x" was put in 
first. We have 

IHI + IH'\HI = IH'I + IH\H'I, 

which holds for any two finite sets. Now X = IH\H'I since H\H' is the set of regions in 
H which conflict with x". On the other hand, H'\H comprises regions supported by x,,; to 
count these regions, we count the number that appear when Xj is inserted. That is, letting 
Rj = Rj U {x" }, for each region F E H'\H we either have F E Fo{ {x" } ) or there is exact1y one 
j ~ 1 such that F E Fo{Rj) and Xj supports F. In·the latter case the region is also supported 
by x"' and so for given j the number of regions we count is pdeg{ x"' Xj, Rj). Putting these 
observations together, 

and so 

X = IHI-IH'I + IFo({x,,})1 + L pdeg(x",xj,Rj), 
l$j$,,-l 

EX = EIHI- EIH'I + EIFo({x,,})1 + L E[pdeg{x",xj,Rj)] 
1$j$"-1 

We have EIHI = C"-l by Theorem 3, and EIH'I = c" by Theorem 3 and Lemma 1. Also 
EIFo({x,,})1 = h = Pi by convention, and E[pdeg(x",xj, Rj)] = Pj+lt since Rj = Rj U{x,,} 
is a random subset of 5 of size j + 1 and x" and Xj are random elements of this subset. I 

The following estimates are also useful. 

Lemma 5 For j ~ r the following holds: 

(a) The expected number of regions in Fo{Rj-d in conftict with x" is fj-l - fj + Cj. 

(b) The ezpected number of regions in Fo{Rj-d supported by Xj-l and in conftict with x" 
is at most b(fj-l - fj + Cj)/U - 1), with equality if F(5) is uniform. 

Proof: 

(a) We have 

Fo(Rj-l U {x,,}) Fo{Rj-d\{F E Fo(Rj-d; (x"' F) E C} 

U {F E Fo{Rj-l U {x"});x,, supports F} 

and hence the desired quantity is 

EIFo(Rj-dl- EIFo(Rj_l U {x,,})1 + EI{F E Fo{Rj_l U {x"});x,, supports F}I 

= 1;-1 - I; + Cj 
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(b) Zj-l is a random element of Rj-l' Henee a region eonsidered in part (a) is supported 
by Zj-l with probability at most b/(j - 1). 

• 
Summation of the bound in Lemma Sb for j from 1 to r - 1 gives an alternative bound on 
the expeeted number ofregions in H"-l which eonfliet with z,.. 
The conflict history G = Gn = G( 1r) for insertion sequenee 1r = (ZlI ..• , zn) is the relation 
C n (S x Hn ). We may also describe this relation as abipartite graph, with an edge between 
objeet Z E S and region FEHn when Z and F eonfliet. The eonflict history eorresponds to 
the union (over time) ofthe conflict graphs in [CS89]. We use IGI to denote the size ofthe 
conflict history, i.e., the number of pairs in it. 

TheoreIn 6 The ezpected size of the conflict history is 

EI GI = -Cn + ~)n - j + 1)pj 
j 

Proof: Theorem 4 counts the expected number of edges incident to node z,. ES. The claim 
follows by summation over r. • 

We next turn to random deletions. For 1r = (Zl, •.. , zn) E ITs and r E [1 .. n], let 

We bound the expected size ofthe difference between H(1r) and H(1r\r) and between G(1r) 
and G(1r\r) for random 1r E ITs and random r E [1 . . n]. 

TheoreIn 7 

with equality if .1"(S) is uniform. 

Proof: For finite sets A and B, 

IB EB AI = IAI- IBI + 2I B \AI, 

and so for H = H(1r) and H(1r\r), 

IH EB H(1r\r)1 = IH(1r\r)I-IH/ + 2IH\H(1r\r)l· 

The set H\H(1r\r) comprises the regions in H supported by z,.. By Theorem 3, EIHI = 
Cn, and any FEH is supported by no more than b objeets, with equality if .1"(S) is 
uniform. Therefore on average the random Z,. E S supports no more than bCn/n regions of 
H. By Theorem 3 and Lemma 1, we have EIH(1r\r)1 = Cn - lI and the theorem follows since 
Cn - 1 - en = -en by definition. • 
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Theorem 8 

EIG( 1r\i)\G( 1r)1 
1 

n!n L L IG(1r\i)\G(1r)1 
'!rEns 

< Cn - (b+ I)Cn /n+ Lbp; - L(b+ l)(j -1)p;/n, 
; ; 

with equality if .r( S) is uniform. 

Proof: Letting G = G(1r), we have 

IG(1r\i)\GI = IG(1r\i)I-IGI + IG\G(1r\i)l, 

and by linearity of expectation, 

EIG(1r\i)\GI = EIG(1r\i)l- EIGI + EIG\G(1r\i)l· 

Theorem 6 gives an expression for EIGI, and together with Lemma 1 it gives a similar 
expression for EIG(1r\i)l, yielding 

EIG(1r\i)\GI = EIG\G(1r\i)1 + Cn - LP;' 
; 

(Altematively, note that EIGI-EIG(1r\i)1 is the expected number ofregions of Hn conßicting 
with Zi, and use Theorem 4.) We need to find EIG\G(1r\i)l. A pair (z, F) is in G\G(1r\i) 
if it is in G and either Zi = Z or Zi E F. At most b + 1 choices of Zi allow this, for any 
(z, F) E G, and so EIG\G(1r\i)1 ~ (b + I)EIGI/n, with equality if .r(S) is uniform. The 
result follows using Theorem 6 and easy manipulations. I 

In the convex hull algorithm of §3, the conßicts of G(1r\i)\G(1r) are not quite all those 
examined when deleting Zi. The following bound will also be useful. 

Lemma 9 Let l be the set of conflicts of the form (z;, F) with j > i and F E .ro(Rt-t} \ 
.rO(Ri). Then for random 1r E IIs and random i E [1 .. n], Eill = (EIGI- EIHI + fn)/n. 

Proof: Let li denote the set l for Zi. Then Eill = I:i Ellil/n, and since the li are disjoint, 
Eill = EI Ui lil/n. For any conflict (z;, F) E G, either F E .rO(Rj-l), or there is exactly 
one i < j such that F E .rO(Rt-l) \ .ro(Rt). In the latter case, (Zj, F) E h To count the 
conflicts (Zj, F) with F E .rO(Rj-l), note that each F E H\.ro(S) appears this way exactly 
once. Thus EIGI = EI Ui lil + EIHI-I.ro(S)I, from which the Lemma follows. I 

3 Dynamic Convex Hulls 

We apply the results of §2 to the problem of maintaining the convex hull in d-dimensional 
space under insert ions and deletions of points. Let X C m. d be a set of points, which we 
assume to be in nondegenerate position: no d + 1 lie in a common hyperplane. For R ~ X, 
let conv R denote the convex hull of R. We let ZI, Z2, ... , Zn denote the points in X in the 
order of their insertion, and let Ri denote {ZI,"" Zi}. 
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3.1 The Insertion Algorithm 

To maintain the convex hull of Runder insertions, we maintain a triangulation T of the hull: 
a simplicial complex whose union is conv R. (A simplicial complex is a collection of simplices 
such that the intersection of any two is a face of each.) The vertices of the simplices of T 
are points of R. The triangulation is updated as follows when a point z is added to R: if 
z E conv R, and so is in some simplex S of T, leave T as it was. H z ~ conv R, then for every 
facet F of the hull of R visible to z, add to T the simplex S (F, z) = conv( F U { z } ). Call F the 
base facet and z the peak vertex of the simplex. A facet is visible to z or z-visible just when 
S(F, z) meets the hull only at F. We may also say, for z-visible F, that z is visible to F, and 
they see each other. Use T,. to denote the triangulation after the insertion of ZlJ Z2,.'" z,.. 

This process is called triangulation by "placing" [Ede87]. It should be dear that the stated 
conditions on the triangulation are preserved. (When r :$ d + 1, we simply maintain a single 
(r - 1 )-dimensional simplex.) It will be convenient to extend the triangulation so that facets 
of the current hull are also base facets of simplices; this gives a uniform representation. The 
peak vertex of these simplices is a "dummy" that in effect is visible to all current facets; 
we use 0 to denote this dummy vertex and we use 0 to denote a point inside the first full­
dimensional simplex created, when r = d + 1. (Here we use the assumption of nondegenerate 
position.) Call the first full-dimensional simplex the origin simplez. (In the terminology of 
"two-sided space" [St087] 0 and 0 could be called the origin and anti-origin respectively: 
while the origin sees no facets of the current hull of R, the anti-origin sees all of them.) We . 
use T to also denote the extended triangulation. To carry the uniformity even further , we 
designate the vertex Zd+1 the peak of the origin simplex and call its opposite facet the base 
of the origin simplex. In this way, there are d + 2 simplices in the (extended) triangulation 
when the first full-dimensional simplex is created: the origin simplex and d + 1 simplices with 
peak O. One facet of the origin simplex (better: its two sides) is base facet of two simplices 
and all other facets of the origin simplex are base facet of one simplex. 

Two simplices of T are neighbors if they share a facet. The neighbor relation defines the 
neighborhood graph on the set of simplices. Call a neighbor of some simplex S and a vertex 
z of S opposite to each other, if the common facet does not contain z. In an implementation, 
we propose to store the directed version of the neighborhood graph augmented by information 
which supports the following operations in constant time: identification of the neighbor of a 
simplex sharing the base facet, identification ofthe peak vertex of a simplex, and identification 
ofthe vertex opposite to a facet. We also store for each simplex the equation ofthe hyperplane 
supporting the base facet of the simplex. The equation is normalized such that the peak lies 
in the positive half-space. 

We discuss next two search methods for finding the z-visible current facets of conv R. 

Here is one method: locate z in T by walking along the segment Oz beginning at O. H this 
walk enters a simplex whose peak vertex is the anti-origin, then an z-visible current facet has 
been found. Otherwise, a simplex ofT containing z has been found, showing that z E conv R. 
In the former case, find all z-visible hull facets by a search of the simplices incident to the 
anti-origin. These simplices form a connected set in the neighborhood graph. We call this 
search method the segment-walking method. 

Another search method is the following: starting at the origin simplex and the simplex sharing 
its base facet explore simplices according to the rule: if a simplex has an z-visible base facet, 
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search its neighbors (not including the neighbor that shares the base facet). Here we say 
that a base facet F is z-visible if that was true (in the previous sense) at the time that 
F was a current hull facet. This search procedure reaches all z-visible current hull facets, 
i.e., all simplices S(F, 0) with z-visible base facet F, since the base facets of all simplices 
traversed in the segment-walking search method are z-visible. We call this search scheme the 
all-visibilities method. 

We finally turn to the update procedure. At this point, we have found the current hull facets 
seeing z, in the form of the simplices whose base facets see z and with the anti-origin as 
their peak vertex. Let V be the set of such simplices. Now we update T by altering these 
simplices, and creating some others. The alteration is simply to replace the anti-origin with 
z in every simplex in V. 

The new simplices correspond to new hull facets. Such facets are the hull of z and a horizon 
ridge /; a horizon ridge is a (d - 2)-dimensional face of conv R with the property that exactly 
one of the two incident hull facets sees z. Each horizon ridge / gives rise to a new simplex 
AI with base facet conv( / U {z}) and peak o. For each horizon ridge of conv R there is 
a non-base facet G of a simplex in V such that z does not see the base facet of the other 
simplex incident to the facet G. Thus the set of horizon ridges is easily determined. 

It remains to update the neighbor relationship. Let AI = S(conv(f U {z}),O) be a new 
simplex corresponding to horizon ridge /. In the old triangulation (before adding z) there 
were two simplices V and N incident to the facet conv(f U {O}); V E V and N rt V. In 
the updated triangulation V has peak z. The neighbor of AI opposite to z is N and the 
neighbor opposite to 0 is (the updated version) of V. Now consider any vertex q E / and 
let S = SI,9 be the set of simplices with peak z and including vertex(f) \ {q} U {z} in their 
vertex set; for a face / we use vertex(f) to denote the set of vertices contained in /. We will 
show that the neighbor of AI opposite to q can be determined by a simple walk through S. 
This walk amounts to a rotation about the (d- 2)-face conv(vertex(f) \ {q} U{z}). Note first 
that V E S. Consider next any simplex S = S(F,z) E S. Then F = conv(f \ {q} U {Yl,Y2}) 
for some vertices Yl and Y2. Thus S has at most two neighbors in S, namely the neighbors 
opposite to Yl and Y2 respectively. Also, V has at most one neighbor in S, namely the 
neighbor opposite to q (Note that the neighbor opposite to y, where conv(fU{y}) is the base 
facet of V, is thesimplex AI rt S.). The neighbor relation thus induces a path on the set 
S with V being one end ofthe path. Let V' with base facet conv(f \ {q} U {Yl'Y2}) be the 
other end of the path. Assume that the neighbor of V' opposite to Yl, call it B, does not 
belong to S and that Yl = q if V = V', Le., the path has length zero. The simplex B includes 
vertex(f) \ {q} U {Y2, z} in its vertex set and does not have peak z. Thus B has peak 0 and 
hence B is the neighbor of AI opposite to q. This completes the description of the update 
step. 

3.2 Analysis of Insertions 

The cost of adding a point to set R is the time needed to locate the point z in the triangulation 
T, plus the time needed to update the triangulation. 

We need some additional notation. Let to be the number of simplices visited by the walk 
along segment Oz, let tl be the set of simplices with z-visible base facet, let t2 be the set 
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of simplices visited by the all-visibilites method, let t3 be the number of simplices with peak 
z, and let t4 be the number of new hull facets. Then to ::; tl, since the base facets of all 
simplices traversed by the segm~t-walking method see z, and t2 ::; (d + 1) . t1 since a simplex 
has d + 1 neighbors. 

In the segment-walking method the time spent on the walk is O(~). to, since given the entry 
point of segment Oz into a simplex S the exit point can be found in time O(~); it takes 
time O(d) per facet to compute the point of intersection, i.e., O(~) altogether, and O(d) 
time to select the first intersection following the entry point. The segment-walk determines 
the simplex containing z. All visible hull facets can then be determined in time O(~) . t3, 
since visiblity can be checked in time O( d) per base facet and since a visible facet has at 
most d invisible neighbors. We define the search time of the segment-walking method to be 
O(~) . to = 0(d2 ). t1 and include the O(~) . t3 term in the update time. 

The search time for the all-visibilities method is O( d) . t2 = O(~) . tl! since O( d) per simplex 
is needed for the visibility check and since the degree of the neighborhood graph is d + 1. 

Let's turn to the update time next. We need to alter ts simplices; this takes time 0(1) . ts. 
For each new simplex we have to compute the equation of the hyperplane supporting the 
base facet. This takes time O(~) ·t4, since solving the linear systems for the normal vectors 
requires O(~) time per simplex (A factor of d can be removed using complicated rank-one 
updating techniques, if desired.). Finally, we need to update the neighbor relation. Let 
S = SI,9 be defined as in the previous section. The walk through S takes time O(d 'ISI), 
since the neighbors in S of a simplex in S can be determined in time O(d). Next observe, 
that a simplex S = S( F, z) E V can belong to at most d( d -1) different sets S 1,9' since f \ {q} 
can be obtained from F by deleting two vertices ((~ choices) and since there are only two 
choices for q once f \ {q} is fixed (Note that there are only two horizon ridges containing 
f \ {q}.). Thus the time to update the neighbor relation is O(~) . ts and total update time 
is O(~). (ts + t4)' 

We next establish the connection to § 2. Our regions are half spaces. More formally, we have 
b = d and F(X) contains two copies of each subset {ZI,"" Zell ~ X of cardinality d. These 
two copies are identified with the two open half-spaces defined by the hyperplane through 
points ZI, Z2, ••• , Zcl. A point z is said to con1lict with a half-space if it is contained in the 
half-space. In this way, for IRI ~ d+ 1 the regions in Fo(R) correspond precisely to the facets 
of the convex hull of R (recall that we assume our points to be in general position) and a 
facet F of conv R is visible from z ~ R if z con1licts with the half-space supporting the facet. 
Also IFo(R)1 = 2 if IRI = d, Fo(R) = 0 for IRI < d, and F(X) is uniform. Using the notation 
of §2, we therefore have f". = 0 for r < d and /d = 2; for r > d, f". is the expected number of 
facets of conv R for random subset R ~ X with IRI = r. 

Theorem 10 (a) The ezpected number of simplices ofT". is e". = Ei~'" dl;/j. 

(b) The ezpected search time for z"., using either search method, is O(~) times 
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( c) The ezpected time to construct the convez hull 01 n points using either search method is 

3 '"' d 3 '"' d( d - 1). 6 '"' nl; O(d ) L..J -; I; + O(d ) L..J'e ) (n -.1 + 1)1; = O(d ) L..J -.(-. - ., 
. .1 . .1.1- 1 . .1.1- 1 
333 

Proof: 

(a) Each simplex has a base facet, and so the bound follows from Theorem 3 and Lemma 2. 

(b) From the above discussion, we need to find tl, the expected number of facets that are 
z,,-visible. The expected numberof visible facets is -c" + Ej~" Pi, by Theorem 4. 

(c) The work per simplex ofTn is O(~), as discussed above. The bound follows, using (a) 
and snmming the bound of (b) over r. 

I 

Since I" = O(r ld/2J ) in the worst case, the running tiineis O(nlogn) for d ~ 3, and O(nld/2J ) 
for d 2: 4. We note also that for many natural probability distributions, the expected com­
plexity of the hull of random points satisfies I" = O( r) for fixed d. For such point sets, our 
algorithm requires 0 (n log n) expected time. 

3.3 The Deletion Algorithm and its Analysis 

The global plan is quite simple. When a point Z is deleted from R, we change the triangulation 
T so that in effect z was never added. This is in the spirit of § 2. The effect of the deletion 
of z on the triangulation T is easy to describe. All simplices having z as a vertex disappear 
(If z is not a vertex of T then T does not change). The new simplices of T resulting from 
the deletion of z all have base facets visible to z, with peak vertices inserted after z. These 
are the simplices that would have been included had z not been inserted into R. Let R( z) be 
the set of points of R that are contained in simplices with vertex z, and also inserted after 
z. We will, in effect, reinsert the points of R( z) in the order in which they were inserted into 
R, constructing only those simplices that have bases visible to z. Ona superficiallevel, this 
describes the deletion process. The details follow. 

Let 'Ir = (Z17"" zn) be the insertion order and assume that z = Zi is deleted. We assume 
that Zi is a vertex of T( 'Ir) because otherwise the deletion is trivial. We first characterize the 
triangulation T( 'Ir \ i). Recall that we use vertex( F) to denote the set of vertices of a face F. 

Lemma 11 (a) Let S(F,zj) be a simplez oIT('Ir). Then S(F,zj) is a simplez oIT('Ir\i) iff 
Zi rt vertex(F) U {Zj}. 

(b) S (F, ZIe) is a simplez 01 T( 'Ir \ i) which is not already a simplez 01 T( 'Ir) iff k > i and F 
is an Zi- and zle-visible lacet 01 conv(RIe_l \ {Zi}). 

Proof: 
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(a) Let S = S(F,zj). Clearly, if Zi E vertex(F) U {Zj} then S is not a simplex of T(n-\i). 
So assume that S is simplex of T(n-) and that Zi f/. vertex(F) U {Zj}. Then Fis a facet 
of conv Rj-1 and since Zi f/. vertex(F) also a facet of conv(Rj_l \{zd). Since i =f. j this 
implies that S is a simplex of T( n- \ i). 

(b) Let S(F, ZIc) be a simplex of T(?i-\i) which is not already a simplex of T(n-). Then k > i 
and Fis an zlc-visible facet of conv(RIc_1 \ {Zi}). If F were not zi-visible then F were 
also a facet of conv RIc-1 and hence S( F, ZIc) a simplex of T( n-). 

Assume conversely that k > i and that F is an Zi- and zlc-visible facet of conv(RIc_1 \ 
{Zi}). Then S(F, ZIc) is clearly a simplex of T(n-\i). Also, Fis not a facet of conv RIc-1 
and hence S(F, ZIc) is not a simplex of T(n-). 

• 
Having characterized the set of simplices to be removed and to be constructed we next 
estimate their number under the assumption that the points were inserted in random order 
and that a random point is deleted. 

Lemma 12 The ezpected number of removed simplices is bounded by 

I: d(d + l)fi/(i· n) 
i$n 

and the ezpected number of new simplices is no larger. 

Proof: The expected number of simplices in T( 11') with peak 0 is fn and the expected 
number of simplices in T( 11') with peak different from 0 is Cn - In according to Theorem 
10. The corresponding numbers for T(lr\i) 8.1'e In-1 and Cn- 1 - In-1 according to Theorem 
10 and Lemma 1. Also each simplex of T( 11') has d + 1 vertices and therefore the expected 
number of removed simplices is (d + I){Cn - fn)/n + d/n/n = (d + I)Cn/n- In/n. The 
expected number of new simplices is thus Cn- 1 - (Cn - (d + I)Cn/n + In/n) which is no 
larger than the number of removed simplices. The bound now follows from Theorem 3 and 
Lemma 2. • 

The next Lemma restricts the set of k for which there may be an Zi- and zlc-visible facet of 
conv(RIc_1 \ {zd). 

Lemma 13 1f there is an Zi- and zlc-visible facet of conv( RIc-1 \ {Zi}) then ZIc E R( Zi). 

Proof: Let y = ZIc and let F be an Zi- and zlc-visible facet of conv(RIc_1 \ {z}). The 
hyperplane supporting F separates conv( RIc-1 \ {z}) from y and Z and hence y is not the 
convex combination of points in RIc-1 \ { Z }. If y E conv RIc-1 then y is the convex combination 
of points in RIc-1 and therefore the simplex of T containing y must have Z as a vertex. Thus 
y E R( Z ). If y ~ conv RIc-1 then some facet G of conv RIc-1 that contains Z must be visible 
from y (e.g. one that intersects the line segment joining y with some point of F, which, being 
visible from z, is not a facet of conv RIc-t). But now S(G,y) is a simplex of T, and hence 
y E R(z). • 
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Lemma 14 The ezpected size 0/ R(z) is bounded by 

(d + 1) (2 + d~ fij(i· n»)· . 
,~n 

Proof: Let R1(z) be the set ofpoints y E R(z) which are vertices ofT(7r) and let R2(Z) = 
R(z)\Rl(Z). To bound IR1(z)l, observe that IR1(z)1 is at most dplus the number ofdestroyed 
simplices. Thus 

E[lR1(z)l1:$ d+ Ed(d+1)/ij(i.n). 
i~n 

To bound IR2(z)l, observe that each non-vertex y is incident to exactly one simplex (recall 
that our points are in general position) and that z is the vertex of such a simplex with 
probability (d + 1) j n. Thus 

E [I R2 (z)l] :$ n( d + l)jn = (d + 1). 

I 

In order to support the eflicient computation of the set R( z) we need to augment our data 
structure slightly. We assume that each point stores apointer to some simplex containing it 
and that every simplex stores a list of the points contained in it. 

To determine R( z ), check first whether z is a vertex of the simplex pointed to by z. H not, z is 
removed and we are done. H so, construct the set R( z) by inspection of all simplices incident 
to z. This takes time proportional to d times IR(z)1 plus the number ofremoved simplices. 
Sorting the points in R(z) by the time of insertion takes time O(min{n, IR(z )Iloglogn}), 
where the former bound is obtained by bucket sort and the latter bound comes from the use 
of bounded ordered dictionaries ([vKZ77, MN90]). 

Lemma 11 shows that the zi-visible facets of conv( R"-l \ {z,}) play an important role in the 
reinsertion process. The next two Lemmas characterize the set of these facets. We need the 
following additional notation. For each point y E {z} U R( z) let S(y) be the set of simplices 
with peak y and also having z as a vertex. Also for y E R(z) and for each simplex 5 E S(y) 
let /(5) be the ridge with all the vertices of 5 but z and y. The sets S(y), y E R(z), can be 
determined in total time O( d) times the number of removed simplices. 

Lemma 15 A /acet F 0/ conv Rs-l is z, -visible iff F is the base /acet 0/ a simplez 5 E S ( Zi). 

Proof: Obvious. I 

Lemma 16 Let k > i I let B be the set 0/ Zi -visible /acets 0/ conv( R"-l \ {zd) I and let B' 
be the set 0/ zi-visible /acets 0/ conv(R" \ {Zi}). Then B' = (B' n B) U (B' \ B) .and 

(a) B' nB = B \ {F E B; F i3 Z" - vi3ible}. 
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(b) F E B' \ Biff the following two conditions hold: 

(1) F = conv(f U {ZIe}) for some ridge of B. 

(2) either B contains e:z:actly one zle-visible facet , say G, incident to fand F is Zi­
visible (F is a non-base facet of the new simplez 5( G, ZIe) in this situation and F 
is zi-visible iff Zi and G lie on different sides of F} 
or B contains no zle-visible facet incident to fand f = f(5) for some 5 E S(z,,). 

Proof: 

(a) Let F E B. Then FE B' iff Fis not z,,-visible. 

(b) Let F E B' \ B. Then F is an zi-visible facet of conv( R" \ {Zi}) but not a facet of 
conv(R"_l \{zd). Thus F = conv(fu{z,,}) for somehorizonridge ofconv(R"_l \{zd). 
Since F is zi-visible, f is zi-visible and hence f is a ridge of B. This shows (1). Let 
G be the unique z,,-visible facet of conv(R"_l \ {zd) incident to f. HG E B then 
the first alternative of (2) applies. HG ft B the conv(f U {zd) is a facet of conv R"-l 
and hence 5( conv(f U {zd), Zle) is a simplex of T( 11"). Thus f = f( 5) for some simplex 
5 E S(z,,) and the second alternative of (2) applies. 

Assume conversely that F satisfies (1) and (2). The F = conv(f U {z,,}) for some ridge 
f of B. Let G and G' be the two facets of conv(RIe_l \ {zd) incident to f. By property 
(2) fis zle-visible and hence at least one of G and G' is z,,-visible, say G. By property 
(1) at least one of G and G' belongs to B. We now distinquish cases. 

AssUme first that G E B. Then thefirst alternative of (2) applies and therefore F E 
B' \ B ü f is a horizon ridge of conv(R"_l \ {zd). Assume otherwise, i.e., G' is also 
zle-visible. Then G' ft B and hence Zi and G lie in the same halfspace with respect to 
F (to see this, project into the plane orthogonal to f) and hence Fis not zi-visible, a 
contradiction to (2). 

Assume next that G ft B. Then G' E B and the second alternative of (2) applies. Since 
G' is not z,,-visible, F is a facet of conv(R" \ {zd), and since conv(f U {Zi, z,,}) is a 
simplex of T( 11"), F is zi-visible. Thus F E B' \ B. 

I 

For k ~ i, let Ble be the set of zi-visible facets of conv(R" \ {zd). The previous lemma 
describes how Ble can be obtained from B"-l once the set of z,,-visible facets in B"-l is 
known. We discuss next how to determine this set. Assume inductively, that the following 
information is available: 

(A) a triangulation T which consists of T( Zl, ... , Zi-l, Zi+1, ... , Z"-l) and the simplices in 
T(1I") n T(1I"\i), 

(B) the set B = B,,-l1 its neighborhood graph, and for each facet F E B the simplex in T 
incident to, F and the equation of the hyperplane supporting F, 
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(C) a dictionary for the set of ridges in B. 

For the dictionary a unique integer label, e.g., the insertion time, is associated with each 
point in Rand a ridge is identified with the ordered (d - l)-tuple ofits vertices, i.e., a ridge 
corresponds to an ordered (d - 1 )-tuple of integers. These tuples are stored in a Trie of 
depth d-1, cf. [Meh84, section ID.1.1], whose nodes are realized by dynamic perfect hashing 
[DKM+88]. In this way all dictionary operations take randomized time O(d) and the space 
requirement is linear. 

The information above is readily initialized (k = i + 1). T is set to T(1r) minus the sim­
pli ces having Zi as a vertex, B is initialized to the set of base facets of simplices in S(Zi) 
(neighborhood graph and the association to the simplices in T are induced by T(1r», and the 
dictionary is initialized with the set of ridges in B. All of this takes time O( cf) times the 
number of removed simplices. 

To find the set of zle-visible facets in BIe-l we distinquish cases. Let y = Zle and assume fist 
that y is a vertex. 

Lemma 17 Let y be a vertez. Then all y-visible facets of B can be reached from a ridge in 
{feS); SE S(y)} in the neighborhood graph of B. The time to find the y-visible facets in B 
is O(d) times the number of removed and new simplices with peak y. . 

Proof: Let 9 be the facet graph of conv( RIe-l \ {zil) and let 9z and 91/ be the parts of 9 
formed by the facets and ridges of conv( RIe-l \ { zil ) that are visible from Z and y, respectively. 
Note that 9z as well as 91/ is connected (in the topological sense and in the graph theoretic 
sense). Moreover note that 9z is nothing but B. The set {feS); SE S(y)} comprises exactly 
all ridges in 91/ for which exactly one of the containing facets is in 9z. Connectedness of 91/ 
now ensures that all facets and ridges that are in 9z and in 91/ can be reached from some 
ridge in {feS); S E S(y)}. The time bound is obvious. I 

We next discuss how to update informations (A), (B), and (C). For each zle-visible facet F 
of BIe-l we construct a new simplex S = S(F, ZIe) with peak Zle. The neighbor of S opposite 
to Zle is the simplex incident to F in (the old) T. Consider any vertex q of S different from 
Z Ie next . Then F = conv(f U {q}) for some ridge f of B. If two facets in B are incident 
to f then let G be the other facet in B incident to f. If G is zle-visible then S( G, ZIe) 
is the neighbor of S opposite to q. If G is not zle-visible then conv(f U {ZIe}) is a facet of 
conv( Rle \ {Zi}) and there is no neighbor yet. Assume next that there is only one facet in B 
incident to f. If conv(f U {ZIe}) is zi-visible then conv(f U {ZIe}) is a facet of conv( Rle \ {zil) 
an{ there is no neighbor yet. Finally, if conv(f U {ZIe}) is not zi-visible then f = feS') for 
some simplex S' E S(ZIe) and the neighbor of S opposite to q is the neighbor of S' in T(1r) 
opposite to Zi. All of this shows that (A) can be updated in time O(d) times the number of 
new simplices with peak y. We turn to (B) next. Let B' = Ble. Lemma 16 describes how 
to obtain B' from B. The neighborhood relation on B' can be established as follows: On 
(B n B') X (B n B') nothing changes and all new relations can be detected by storing the 
ridges of the facets in B' \ B in the dictionary (C). This takes time O( d) per ridge and hence 
O(d2 ) per facet. Finally, the face equation of each facet in B' \ B can be determined in time 
O(d2

). In summary, informations (A), (B), and (C) can be updated in time O(d2 ) times the 
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ntmlber of removed and new simplices with peak x1c. This completes ~he cliscussion of the 
case that x1c is a vertex. 

Lemma18 If x1c is avertex then reinsertion of x1c takes time O(d2 ) times the number of 
removed and new simplices with peak X1c. The expected total time to reinsert vertices is 
O(d4 Li$n Ii/(i· n». . 

Proof: This follows from the cliscussion above and Lemma 12. • 
We now turn to the case that y = X1c is a non-vertex. We first show how to identify a single 
facet in B visible from y and then argue that a graph seach determines all y-visible facets in 
B. Assume first that y is contained in a simplex 5 E S( x). Let 5 = 5( F, x) and let 0 be the 
intersection of F with the line through x and y. Locate y by a wallt along Oy starting at O. 
Assume next that y is contained in a simplex 5 E S(z) for some z E R(x). The ridge 1(5) of 
5 with all vertices but x and y is a ridge of B when point z is reinserted and hence the facet 
spanned by f( 5) and z is added to T when point z is reinserted. Let 0 be the intersection 
ofthat facet with the line through x and y. Locate y by a wallt along Oy starting at O. 

Lemma 19 Let y be a non-vertez and let 0 be defined as above. The walk along Oy traverses 
only newly constructed simplices whose basefacet is y-visible. The time for the walk is O(~) 
times the number of new simplices with y-visible base facet. 

Proof: The line segment Oy is contained in the simplex 5. This implies that Oy traverses 
only new simplices. Let 5' with base facet G be a simplex traversed. Then G is x-visible. 
Since 5' is intersected by Oy and G is visible from every point in 5', G must be visible 
from either 0 or y. But O-visibility and x-visibility of G and the fact that y E Ox implies 
y-visibility of G. Thus Gis y-visible. The time bound is obvious • 

At this point we have found one y-visible facet in B. 

Lemma 20 Let y = X1c be a non-vertez. Then all y-visible facets of conv(R1c_l \ {Xi}) are 
also xi-visible. 

Proof: Assume that there are y-visible facets of conv( R1c-l \ {xö} ) and let F be one of them. 
Then Xi ~ conv R1c-l and there is a facet G of conv( R1c-l \ {Xi}) such that y E 5 ( G, Xi). 
Then the hyperplane supported by F separates G and y. Thus Xi sees F. • 

The set of y-visible facets of conv(R1c_l \ {Xi}) is neighbor-connected and is identical to the 
set of y-visible facets in B. Thus a graph search on B finds all y-visible facets in B in 
time O(~) times their number. The informations (A), (B), and (e) can now be updated a.s 
described for the case where y is a vertex. This completes the cliscussion of the case that X1c 
is a non-vertex. 

Lemma 21 If X1c is a non-vertez then reinsertion of X1c takes time O(~) times the number 
of new simplices with x1c-visible base facet plus the number of new simplices with peak X1c. The 
ezpected total time to reinsert non-vertices is O(~ Ei$n li/(i. n) + tJ6 E2$i$n li/(i(i - 1}). 

15 



Proof: The first part follows from Lemmas 19 and 20. For the second part observe that an 
xlc-visible base facet of a new simplex is either a facet of conv ~-l visible to Xi and xlc or a 
newly constructed base facet visible to Xi and xlc. The expected number of the first kind of 
facet is (EIGI- EIHI + In)ln according to Lemma 9 and the expected number ofthe second 
kind offacet is EIG(1r\i)\G(1r)I. The bound now follows from Theorems 3 and 8 and Lemma 
2. I 

We can now state the main result of this section. 

Theorem 22 The ezpected time to delete a random point from the convez hull 01 n points 
(constructed by random insertions) is 

o (min in, (d + d2 ~ li/(i· n)) IOgiOgn} + ~ ~ li/(i· n) + d6 ~ li/(i(i - 1))) . 
~:5n ~:5n 2:5~:5n 

11 the points are in convez position, then time 

o (min {n, (d + cl' ~ /;/(i· n)) IOglogn} + d' ~ f,/(i. n)) 
suffices. 

Proof: ,This follows immediately from Lemmas 14, the paragraph following this Lemma, 
and Lemma 18 and 21. I 

We have li = O(iLd/ 2J ). Adeletion from a convex hull in m.3 therefore takes time O(logn) 
and adeletion from a Voronoi diagram in m.2 takes time O(loglogn). For d ~ 4, adeletion 
from a convex hull in m.d and a Voronoi diagram in m.d- 1 takes time O(nLd/2J-l). We note 
also that for many natural prob ability distributions, the expected complexity of the hull of 
random points satisfies Ir = O( r) for fixed d. For such point sets, a random deletion requires 
O(logn) expected time. 

4 A Tail Estimate for the Size of the History 

In this section, we derive a taU estimate for the size of the history. We first prove a general 
lemma and then apply one of its consequences to obtain a taU estimate for the size of the 
history in randomized incremental constructions. 

In the notation of §2, we want to study the random variable X = I:j deg(Yj, Rj) for random 
permutations 1r = (Yl, ... , Yn) of S, inducing the subsets Rj = {ylJ ... , Yj}. Let p( x) = ps( x) 
be the generating function of this random variable. By the following standard observation, 
we can use bounds on p( x) to show that X is large only with low prob ability. 

Fact 23 11 Z is a non-negative integer random variable with generating function p( x ), then 
lor any k ~ 0 

Pr[Z ~ k] 5 p(a)/alc lor any a ~ 1. 
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Suppose for some function M(r) we have b· l.ro(R)1 ~ M(r) when IRI = r. Then we have 
the following bound on p(:c ). 

Claim 24 For all :c > 1 we ha1Je 

p(:c) ~ Pn(:C):= II (1 + ~(:cM(i) - 1)) . 
19$n t 

Proo!: We use induction on n, the size of S, looking at corresponding generating functions 
for subsets of 5 .. The claim. holds vacuously for n = O. 

For the random permutation 11" of 5, we know that Yn is a random element of S, and so 

Applying the inductive assumption to every (n - 1 )-element subset of 5, we get 

Since 
L deg(y, 5) ~ bl.ro(5)1 ~ M(n), 
lieS 

the power sum is maximized for :c > 1 when deg(y, S) = M(n) for some y E S and the 
degrees of the other members of 5 are zero. Thus 

I 

Theorem 25 For any integer M ~ 0 and any real:c ~ 1 

Proo!: This follows from Fact 23 and Claim 24, using the inequality 1 + :c ~ elf:. I 

Corollary 26 If M(i)/i is non-decreasing, then for all c > 1 

Pr[X ~ cM(n)] ~ (l/e)· (ele)e . 
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Proof: If M(i)/i is non-decreasing, then for all z ~ 1 we have HzM(i} -1) ::; ~(zM(n) -1) 
for each i ::; n. (The polynomial ~(zM(n) - 1) - HzM(i} - 1) has a root at z = 1 and 
nonnegative derivative for z ~ 1.) Therefore 

Pr[X ~ cM(n)] ::; e~l:$i:$" HzM(i)-l} e~l:$i:$" ~(zM(")_l) 
_111_\ ::; ----=--

Now choose z such that zM(n} = c. 

ZM(")-l e 
Zc:M(n} 

I 

For many RICs, e.g., the construction of convex hulls (in any dimension) ([CS89] and this pa­
per), Delauney triangulations ([GKS90]), abstract Voronoi diagrams ([MM091]), trapezoidal 
diagrams for non-intersecting line segments ([CS89, Sei91]), spherical intersections ([CS89]) 
and the construction of a single face of an arrangement ([CEG+91]), there is a function M(r) 
such that M(r)/r is non-decreasing, bIFo(R)1 ::; M(r) when IRI = r, and M(r) ::; dC" for 
some small constant d. In these situations, Corollary 26 bounds the probability that the size 
of the history exceeds its expected value by a constant factor. 

The following Corollary of Theorem 25 may also be useful. 

Corollary 27 If M(i) = mo for all i, then Pr [X ~ cmoHn] ::; e-H ,,(1+c:log(c:/e» for c > 1, 
where Hn is the n-th harmonie number. 

Proof: Prom Theorem 25 we get 

~ . 4(.z"'O-1} eH,,(z"'O-l} e~l:$':$" • 
Pr[X ~ cmoHn] ::; _,,",All_ = zemoH" 

Now choose z such that zmo = C to obtain the desired result. I 

5 Agame related to so~e randomized incremental construc­
tions 

Seidel [Sei91] gave a randomized O(nlog* n) algorithm for the triangulation of simple poly­
gons. Devillers [Dev] recently extended the approach to other problems, e. g., the construction 
of the Voronoi-diagramfor the edges of a simple polygon. The idea behind the O(nlog* n) 
is as follows: When an object z E S - R is added to R in standard RIC, the object z traces 
through the history of the construction. This takes time O(log r) for the r-th object to be 
inserted (apply Theorem 4 with fi = O(j)). On the other hand, in the two examples men­
tioned above, all conflicts between objects in S - R and regions in Fo(~) can be computed 
in expected linear time. Seidel and Devillers therefore interrupt the standard algorithm at 
suitable breakpoints , say after the i-th insertion, and compute all conflicts between S - ~ 
and Fo(Ri). The crucial observation is now that if object z/c E S - Ri knows its conflicts 
with the regions in Fo(~) then its conflicts with the regions in Fo(RIc-l) can be computed 
in additional O(log(k/i)) expected time; sum the bound in Lemma 5 for i between i and 
k to see that only O(log(k/i)) additional conflicts exist on average. A suitable choice of 
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breakpoints yields an O(nlog* n) algorithm. Can this approach yield linear time algorithms? 
The following game is supposed to shed some light on this question. 

The game is played on a sequence of n balls. Initially, all balls have labelland color white. 
There are two players A and B who take turns. The game stops when all balls are blaclc. In 
its r-th turn player A selects a white ball, turns it blaclc and labels it r. The cost of this 
move is log(r/rold), where rold is the previous label of the ball. In its turn, B performs one 
or more of the following moves: She selects an interval of balls and relabels all balls in the 
interval with the highest label occurring in the interval. The cost of the move is the length 
of the interval. A tries to max;m;ze cost, B tries to minimize it. 

The intended relationship to BlC is as follows: A ball is blaclc if it belongs to R. The label 
of a ball is i if the ball knows its confiicts with the regions in .ro(Ri). A move of player A 
moves a ball from time r old in the history to time r and a move of player B moves an interval 
of points to the latest time in history occurring in the interval. In the algorithms mentioned 
above, the interval is always the entire sequence of balls. 

Let L = log* n = max{i;log(i) n > I}, Di = log(i) n for 1 :$ i:$ L, DL+1 = 1, and Do = n+ 1. 

Let Bi = L n/ DiJ for 0 :$ i :$ L + 1. 

Lemma 28 Player B can keep the cost in O(nlog* n). 

Proof: B plays the following simple strategy. In its Bi-th turn, 1 :$ i :$ L, B relabels the 
complete sequence of balls. The total cost of B 's moves is nL = n log* n. The total cost of 
A's moves is 

:$ L (Bi+1 - Bi) log(Bi+dmax{Bi, I}) = O(nlog* n) 
°SiSL 

Lemma 29 Player A can force the cost into O(nlog* n). 

I 

Proof: We first describe the strategy of player A. A's game is divided into phases; the i-th 
phase, 1 :$ i :$ L + 1, consists of moves Bi-l + 1 to Bi. In the i-th phase, A labels all 
multiples of Di which are not multiples of Di-l. We assume here that the balls are numbered 
1 through n. 

We show that the total cost of A's and B's moves in the i-th phase is O(n). Call a multiple 
of Di interesting if A labels it by one of the moves Bi/2 + 1 to Bi. H for more than 1/2 of the 
interesting balls the cost of A's move is log«Bi/2)/ max(I , Bi-l», then the total cost of A's 
moves in the i-th phase is O(Bi/2 .log(Di_l/Di» = O(Bi' (Di - Di+l» = O(n). Otherwise, 
more than half of the interesting points must have been relabeled in the i-th phase by a move 
of B, since all interesting points have label at most Bi-l at the beginning of the i-th phase. 
Since an interesting point has distance Di from any point touched by A in the i-th phase, the 
total cost ofB's moves must be at least O(Bi/2· Di) = O(n). In either case we have shown 
that the cost of a phase is O(n). Since there are log* n phases, the lower bound follows. I 

In Lemma 29, player A chooses balls so as to make the life for player B as difficult as possible. 
In BlC's objects are chosen randomly. Let us say that player A plays randomly if he always 
chooses a random white ball. 
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Lemma 30 I/ A plays randomly, then the ezpected cost 0/ the game is O(nlog* n). 

Proof: Define the division into phases as in Lemma 29. At the end of the i-th phase there 
are Bi black balls. These balls from a random subset of [1 .. n). In order to lower bound the 
expected cost of the i-th phase we change the rules of the game in B 's favor: At the end 
of the i-th phase, player B selects Bi/2 black balls and declares that A's moves in the i-th 
phase involving these baUs are free of charge. 

We now distinguish two cases. For the remaining Bi/2 balls which are black at the end of 
the i-th phase, either at least Bi/4 were relabeled by B before A selects the ball, or this is 
not the case. In the former case, the cost of B's moves is clearly lower bounded by the sum 
of the Bi/4 smallest distances between black baUs. The expected value of this sum is O(n). 
In the latter case, the cost of A's moves is O(n). I 
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