Max-Planck-Institut für Informatik
max planck institut
mpii logo Minerva of the Max Planck Society


A faster algorithm for computing a longest common increasing subsequence

Katriel, Irit and Kutz, Martin

MPI-I-2005-1-007. March 2005, 13 pages. | Status: available - back from printing | Next --> Entry | Previous <-- Entry

Abstract in LaTeX format:
Let $A=\langle a_1,\dots,a_n\rangle$ and
$B=\langle b_1,\dots,b_m \rangle$ be two sequences with $m \ge n$,
whose elements are drawn from a totally ordered set.
We present an algorithm that finds a longest
common increasing subsequence of $A$ and $B$ in $O(m\log m+n\ell\log n)$
time and $O(m + n\ell)$ space, where $\ell$ is the length of the output.
A previous algorithm by Yang et al. needs $\Theta(mn)$ time and space,
so ours is faster for a wide range of values of $m,n$ and $\ell$.
References to related material:

To download this research report, please select the type of document that fits best your needs.Attachement Size(s):
MPI-I-2005-1-007.pdfLCIS_TR.ps191 KBytes; 237 KBytes
Please note: If you don't have a viewer for PostScript on your platform, try to install GhostScript and GhostView
URL to this document:
Hide details for BibTeXBibTeX
  AUTHOR = {Katriel, Irit and Kutz, Martin},
  TITLE = {A faster algorithm for computing a longest common increasing
  TYPE = {Research Report},
  INSTITUTION = {Max-Planck-Institut f{\"u}r Informatik},
  ADDRESS = {Stuhlsatzenhausweg 85, 66123 Saarbr{\"u}cken, Germany},
  NUMBER = {MPI-I-2005-1-007},
  MONTH = {March},
  YEAR = {2005},
  ISSN = {0946-011X},