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Abstract

We introduce a set of transformations on the set of all probability distribu-
tions over a finite state space, and show that these transformations are the
only ones that preserve certain elementary probabilistic relationships. This
result provides a new perspective on a variety of probabilistic inference prob-
lems in which invariance considerations play a role. Two particular applica-
tions we consider in this paper are the development of an equivariance-based
approach to the problem of measure selection, and a new justification for
Haldane’s prior as the distribution that encodes prior ignorance about the
parameter of a multinomial distribution.
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1 Introduction

Many rationality principles for probabilistic and statistical inference are based on
considerations of indifference and symmetry. An early expression of such a princi-
ple is Laplace’s principle of insufficient reason: “One regards two events as equally
probable when one can see no reason that would make one more probable than the
other, because, even though there is an unequal possibility between them, we know
not which way, and this uncertainty makes us look on each as if it were as proba-
ble as the other”(Laplace, Collected Works vol. VIII, cited after (Hacking 1975)).
Principles of indifference only lead to straightforward rules for probability assess-
ments when the task is to assign probabilities to a finite number of different alterna-
tives, none of which is distinguished from the others by any information we have.
In this case all alternatives will have to be assigned equal probabilities. Such a
formalization of indifference by equiprobability becomes notoriously problematic
when from state spaces of finitely many alternatives we turn to infinite state spaces:
on countably infinite sets no uniform probability distributions exist, and on un-
countably infinite sets the concept of uniformity becomes ambiguous (as evidenced
by the famous Bertrand’s paradox (Holbrook & Kim 2000, van Fraassen 1989)).

On (uncountably) infinite state spaces concepts of uniformity or indifference
have to be formalized on the basis of certain transformations of the state space:
two sets of states are to be considered equiprobable, if one can be transformed into
the other using some natural transformation t. This, of course, raises the sticky
question what transformations are to be considered as natural and probability-
preserving. However, for a given state space, and a given class of probabilistic
inference tasks, it often is possible to identify natural transformation, so that the
solution to the inference tasks (which, in particular, can be probability assessments)
should be invariant under the transformations. The widely accepted resolution of
Bertrand’s paradox, for example, is based on such considerations of invariance un-
der certain transformations.

In this paper we are concerned with probabilistic inference problems that per-
tain to probability distributions on finite state spaces, which are by far the most
widely used type of distributions used for probabilistic modelling in artificial intel-
ligence. As indicated above, when dealing with finite state spaces there does not
seem to be any problem of capturing indifference principles with equiprobability.
However, even though the underlying space of alternatives may be finite, the object
of our study very often is the infinite set of probability distributions on that space,
i.e. for the state space S = {s1, . . . , sn} the (n − 1)-dimensional probability
polytope

∆n := {(p1, . . . , pn) ∈ Rn | pi ∈ [0, 1],
∑

i

pi = 1}.

The objective of this paper now can be formulated as follows: we investigate what
natural transformations there exist of ∆n, such that inference problems that pertain
to ∆n should be solved in a way that is invariant under these transformations. In
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section 2 we identify a unique class of transformations that can be regarded as most
natural in that they alone preserve certain relevant relationships between points of
∆n. In sections 3 and 4 we apply this result to the problems of noninformative
priors and measure selection, respectively.

2 Representation Theorem

The nature of the result we present in this section can best be explained by an anal-
ogy: suppose, for the sake of the argument, that the set of probability distributions
we are concerned with is parameterized by the whole Euclidean space Rn, rather
than the subset ∆n. Suppose, too, that all inputs and outputs for a given type of
inference problem consist of objects (e.g. points, convex subsets, . . . ) in Rn. In
most cases, one would then probably require of a rational solution to the inference
problem that it does not depend on the choice of the coordinate system. Specifi-
cally, if all inputs are transformed by a translation, i.e. by adding some constant
offset r ∈ Rn, then the outputs computed for the transformed inputs should be just
the outputs computed for the original inputs, also translated by r:

sol(i + r) = sol(i) + r, (1)

where i stands for the inputs and sol for the solution of an inference problem. Con-
dition (1) expresses an equivariance principle: when the problem is transformed
in a certain way, then so should be its solution (not to be confused with invariance
principles according to which certain things should be unaffected by a transforma-
tion).

The question we now address is the following: what simple, canonical trans-
formations of the set ∆n exist, so that for inference problems whose inputs and
outputs are objects in ∆n one would require an equivariance property analogous
to (1)? Intuitively, we are looking for transformations of ∆n that can be seen as
merely a change of coordinate system, and that leave all relevant geometric struc-
tures intact. The following definition collects some key concepts we will use.

Definition 2.1 A transformation of a set S is any bijective mapping t of S onto
itself. We often write ts rather than t(s). For a probability distribution p =
(p1, . . . , pn) ∈ ∆n the set {i ∈ {1, . . . , n} | pi > 0} is called the set of sup-
port of p, denoted support(p). A transformation t of ∆n is said to

• preserve cardinalities of support if for all p: |support(p) |=|support(tp) |

• preserve sets of support if for all p: support(p) = support(tp).

A distribution p is called a mixture of p′ and p′′ if there exists λ ∈ [0, 1] such that
p = λp′ + (1 − λ)p′′ (in other words, p is a convex combination of p′ and p′′). A
transformation t is said to
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• preserve mixtures if for all p,p′,p′′: if p is a mixture of p′ and p′′, then tp
is a mixture of tp′ and tp′′.

The set of support of a distribution p ∈ ∆n can be seen as its most fundamental
feature: it identifies the subset of states that are to be considered as possible at all,
and thus identifies the relevant state space (as opposed to the formal state space
S, which may contain states si that are effectively ruled out by p with pi = 0).
When the association of the components of a distribution p with the elements of
the state space S = {s1, . . . , sn} is fixed, then p and p′ with different sets of
support represent completely incompatible probabilistic models that would not be
transformed into one another by a natural transformation. In this case, therefore,
one would require a transformation to preserve sets of support.

A permutation of ∆n is a transformation that maps (p1, . . . , pn) to (pπ(1), . . . ,
pπ(n)), where π is a permutation of {1, . . . , n}. Permutations preserve cardinalities
of support, but not sets of support. Permutations of ∆n are transformations that
are required to preserve the semantics of the elements of ∆n after a reordering
of the state space S: if S is reordered according to a permutation π, then p and
πp are the same probability distribution on S. Apart from this particular need for
permutations, they do not seem to have any role as a meaningful transformation of
∆n.

That a distribution p is a mixture of p′ and p′′ is an elementary probabilis-
tic relation between the three distributions. It expresses the fact that the proba-
bilistic model p can arise as an approximation to a finer model that would dis-
tinguish the two distinct distributions p′ and p′′ on S, each of which is appropri-
ate in a separate context. For instance, p′ and p′′ might be the distributions on
S = {jam, heavy traffic, light traffic} that represent the travel conditions on week-
days and weekends, respectively. A mixture of the two then will represent the
probabilities of travel conditions when no distinction is made between the different
days of the week.

That a transformation preserves mixtures, thus, is a natural requirement that it
does not destroy elementary probabilistic relationships. Note that we do not require
that t preserves the mixture coefficient: when p = λp′ + (1 − λ)p′′ then usually
we will have tp = κtp′ + (1 − κ)tp′′ with κ 6= λ. In fact, it is easy to see that
only the identity function preserves both sets of supports and mixtures, such that
the mixture coefficient is unchanged.

We now introduce the class of transformations that we will be concerned with
in the rest of this paper. We denote with R+ the set of positive real numbers.

Definition 2.2 Let r = (r1, . . . , rn) ∈ (R+)n. Define for p = (p1, . . . , pn) ∈
∆n

tr(p) := (r1p1, . . . , rnpn)/

n
∑

i=1

ripi.

Also let Tn := {tr | r ∈ (R+)n}.
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Note that we have tr = tr′ if r′ is obtained from r by multiplying each com-
ponent with a constant a > 0. We can now formulate our main result.

Theorem 2.3 Let n ≥ 3 and t be a transformation of ∆n.

(i) t preserves sets of support and mixtures iff t ∈ Tn.

(ii) t preserves cardinalities of support and mixtures iff t = t′ ◦π for some permu-
tation π and some t′ ∈ Tn.

The statements (i) and (ii) do not hold for n = 2: ∆2 is just the interval [0, 1],
and every monotone bijection of [0, 1] satisfies (i) and (ii). A weak form of a dual
version of this theorem was already reported in (Jaeger 2001). In appendix A we
give the dual version in a strong form corresponding to Theorem 2.3. The proof
of the theorem is given in appendix B. The following example illustrates how
transformations t ∈ Tn can arise in practice.

Example 2.4 In a study of commuter habits it is undertaken to estimate the relative
use of buses, private cars and bicycles as a means of transportation. To this end,
a group of research assistants is sent out one day to perform a traffic count on a
number of main roads into the city. They are given count sheets and short written
instructions. Two different sets of instructions were produced in the preparation
phase of the study: the first set advised the assistants to make one mark for every
bus, car, and bicycle, respectively, in the appropriate column of the count sheet.
The second (more challenging) set of instructions specified to make as many marks
as there are actually people travelling in (respectively on) the observed vehicles. By
accident, some of the assistants were handed instructions of the first kind, others
those of the second kind.

Assume that on all roads being watched in the study, the average number of
people travelling in a bus, car, or on a bicycle is the same, e.g. 10, 1.5, and 1.01,
respectively. Also assume that the number of vehicles observed on each road is so
large, that the actually observed numbers are very close to these averages.

Suppose, now, that we are more interested in the relative frequency of bus, car
and bicycle use, rather than in absolute counts. Suppose, too, that we prefer the
numbers that would have been produced by the use of the second set of instruc-
tions. If, then, an assistant hands in counts that were produced using the first set of
instructions, and that show frequencies f = (f1, f2, f3) ∈ ∆3 for the three modes
of transportation, then we obtain the frequencies we really want by applying the
transformation tr with r = (10, 1.5, 1.01). Conversely, if we prefer the first set of
instructions, and are given frequencies generated by the second, we can transform
them using r′ = (1/10, 1/1.5, 1/1.01).

This example gives rise to a more general interpretation of transformations in
Tn as analogues in discrete settings to rescalings, or changes of units of measure-
ments, in a domain of continuous observables.

4



3 Noninformative Priors

Bayesian statistical inference requires that a prior probability distribution is speci-
fied on the set of parameters that determines a particular probability model. Herein
lies the advantage of Bayesian methods, because this prior can encode domain
knowledge that one has obtained before any data was observed. Often, however,
one would like to choose a prior distribution that represents the absence of any
knowledge: an ignorant or noninformative prior. The set ∆n is the parameter set
for the multinomial probability model (for a fixed sample size). The question of
what distribution on ∆n represents a state of ignorance about this model has re-
ceived much attention, but no conclusive answer seems to exist.

Three possible solutions that most often are considered are: the uniform distri-
bution, i.e. the distribution that has a constant density c with respect to Lebesgue
measure, Jeffreys’ prior, which is given by the density c

∏

i p
−1/2
i (where c is a

suitable normalizing constant), and Haldane’s prior, given by density
∏

i p
−1
i . Hal-

dane’s prior (so named because it seems to have first been suggested in (Haldane
1932)) is an improper prior, i.e. it has an infinite integral over ∆n. All three dis-
tributions are Dirichlet distributions with parameters (1, . . . , 1), (1/2, . . . , 1/2),
and (0, . . . , 0), respectively (in the case of Haldane’s distribution, the usual defi-
nition of a Dirichlet distribution has to be extended so as to allow the parameters
(0, . . . , 0)). Schafer (1997) considers all Dirichlet distributions with parameters
(α, . . . , α) for 0 ≤ α ≤ 1 as possible candidates for a noninformative prior.

The justifications for identifying any particular distribution as the appropriate
noninformative prior are typically based on invariance arguments: generally speak-
ing, ignorance is argued to be invariant under certain problem transformations, and
so the noninformative prior should be invariant under such problem transforma-
tions. There are different types of problem transformations one can consider, each
leading to a different concept of invariance, and often leading to different results
as to what constitutes a noninformative prior (see (Hartigan 1964) for a systematic
overview). In particular, there exist strong invariance-based arguments both for Jef-
freys’ prior (Jeffreys 1961), and for Haldane’s prior (Jaynes 1968, Villegas 1977).
Novick and Hall (1965) derive Haldane’s prior by a different type of argument.
Skilling (1985), on the other hand, rejects Haldane’s prior because it remains im-
proper when updated by unreliable observations. In the following, we present ad-
ditional invariance-based arguments in support of Haldane’s prior.

Example 3.1 (continuation of example 2.4) Assume that the true, long-term rel-
ative frequencies of bus, car, and bicycle use are the same on all roads at which
the traffic count is conducted (under both counting methods). Then the counts ob-
tained in the study are multinomial samples determined by a parameter f ∗

1 ∈ ∆3 if
the first set of instructions is used, and f ∗

2 ∈ ∆3 if the second set of instructions is
used. Suppose the project leader, before seeing any counts, feels completely unable
to make any predictions on the results of the counts, i.e. he is completely ignorant
about the parameters f ∗

i .
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When the samples are large (i.e. a great number of vehicles are observed on
every road), then the observed frequencies f obtained using instructions of type
i are expected to be very close to the true parameter f ∗

i . The prior probability Pr
assigned to a subset A ⊆ ∆n then can be identified with a prior expectation of find-
ing in the actual counts relative frequencies f ∈ A. If this prior expectation is to
express complete ignorance, then it must be the same for both sampling methods:
being told by the first assistant returning with his counts that he had been using
instructions of type 2 will have no influence on the project leader’s expectations
regarding the frequencies on this assistant’s count sheet. In particular, merely see-
ing the counts handed in by this assistant will give the project leader no clue as to
which instructions were used by this assistant.

The parameters f ∗
i are related by f∗

2 = trf∗
1, where tr is as in example 2.4.

Having the same prior belief about f ∗
2 as about f ∗

1 means that for every A ⊆ ∆3

one has Pr(A) = Pr(trA). A noninformative prior, thus, should be invariant under
the transformation tr. As the relation between f ∗

1 and f∗
2 might also be given by

some other transformation in Tn, this invariance should actually hold for all these
transformations.

This example provides one intuitive justification for requiring noninformative
priors to be invariant under Tn-transforms. The next theorem states that this invari-
ance property only holds for Haldane’s prior. In the formulation of the theorem a
little care has to be taken in dealing with the boundary of ∆n, where the density of
Haldane’s prior is not defined. We therefore restrict the statement of the theorem
to the prior on the interior of ∆n, denoted int∆n.

Theorem 3.2 Let Pr be a measure on int∆n with Pr(int∆n) > 0 and Pr(A) < ∞
for all compact subsets A of int∆n. Pr is invariant under all transformations tr ∈
Tn iff Pr has a density with respect to Lebesgue measure of the form c

∏

i p
−1
i with

some constant c > 0.

It is instructive to compare the justification given to Haldane’s prior by this the-
orem with the justification given by Jaynes (1968). Jaynes bases his justification
on an intuitive interpretation of a noninformative prior as a distribution of beliefs
about the true value of p that one would find in “a population in a state of total con-
fusion”: according to this interpretation one assumes that there exists a population
I of individuals i, and each individual believes the value of a binomial parameter
θ to be θi ∈ [0, 1] (Jaynes only considers the binomial case, and we here adopt his
notation, where (θ, 1−θ) corresponds to (p0, p1) in our notation). The distribution
of beliefs in the population I , thus, gives rise to a density f(θ) on [0, 1]. This den-
sity can be interpreted as a noninformative prior when the individuals i ∈ I base
their beliefs on “different and conflicting information”, and, thus, the population
as a whole is in a state of “total confusion”.

Jaynes’s argument then is that such a state of total confusion will remain to be
the same when some piece of evidence E is given to all individuals, and each indi-
vidual updates his or her beliefs by conditioning on E. By a suitable formalization
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of this scenario, Jaynes shows that a single individual’s transition from an original
belief θ to the new belief θ′ is given by

θ′ 7→ aθ/(1 − θ + aθ). (2)

This can easily be seen as a transformation from our group T2. The assumption of
a collective state of ignorance being invariant under assimilation of the evidence
E, thus, leads to the condition of invariance of f under the transformation (2).
Jaynes then proceeds to show that only Haldane’s prior is invariant under these
transformations (which is the special case n = 2 of our Theorem 3.2).

Jaynes’s justification, thus derives the transformation group T2 from a concrete
scenario in which it seems intuitively reasonable to argue that a noninformative
prior should be invariant under these transformations. This is similar to our argu-
ment for the invariance of a noninformative prior under the transformation tr in
example 3.1. Justifications of Haldane’s (or any other) prior that are based on such
specific scenarios, however, always leave the possibility open that similarly intu-
itive scenarios can be constructed which lead to other types of transformations, and
hence to invariance-based justifications for other priors as noninformative. Theo-
rems 2.3 and 3.2 together provide a perhaps more robust justification of Haldane’s
prior: any justification for a different prior which is based on invariance arguments
under transformations of ∆n must use transformations that do not have the conser-
vation properties of definition 2.1, and therefore will tend to be less natural than
the transformations on which the justification of Haldane’s prior is based.

4 Equivariant Measure Selection

A fundamental probabilistic inference problem is the problem of measure selec-
tion: given some incomplete information about the true distribution p on S, what
is the best rational hypothesis for the precise value of p?

Example 4.1 (continuation of example 2.4) One of the research assistants has lost
his count sheet on his way home. Unwilling to discard the data from the road
watched by this assistant, the project leader tries to extract some information about
the counts that the assistant might remember. The assistant is able to say that he
observed at least 10 times as many cars as buses, and at least 5 times as many cars
as buses and bicycles combined. The only way to enter the observation from this
particular road into the study, however, is in the form of accurate relative frequen-
cies of bus, car, and bicycle use. To this end, the project leader has to make a best
guess of the actual frequencies based on the linear constraints given to him by the
assistant.

The general formulation of the measure selection problem given above admits
of a number of different more precise problem specifications. In particular, one
can distinguish different variants of the general problem according to the nature of
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the distribution p, and the nature of the incomplete information available about p.
Several solutions that have been proposed for the measure selection problem are
based on quite different interpretations of p and incomplete information (Shore &
Johnson 1980, Paris & Vencovská 1990, Jaeger 2001). In order to clarify the role
of the equivariance principle that we will propose as a desideratum for measure
selection rules, we first take a closer look at these different interpretations.

4.1 Variants of the Measure Selection Problem

We first make some general assumptions on the purely mathematical form of in-
complete information about p, and the measure selection problem: one assumption
is that incomplete information consists of a set c = c1, . . . , ck of linear constraints
on p, i.e. linear inequalities of the form

ci,1p1 + . . . + ci,npn ≤ ci,0 (1 ≤ i ≤ k)

with real coefficients ci,j . This is quite a restrictive assumption on what types
of incomplete information are to be considered, as it excludes e.g. independence
constraints of the form “events A and B are independent”. In spite of this restric-
tiveness, the limitation to linear constraints usually has to be made in order to make
the measure selection problem at all feasible.

A set c of linear constraints defines the set ∆(c) ⊆ ∆n of distributions that sat-
isfy all constraints (the solution set of c). One possible mathematical formulation
of the measure selection problem now is

(Sel 1)
define a selection function sel that maps sets c of linear
constraints to nonempty subsets sel(c) ⊆ ∆n.

This formalization, on the one hand, is very strong in that it requires sel to be
defined for all, even inconsistent, sets of constraints; on the other hand it is very
weak in that sel(c) is allowed to be a subset of ∆n, rather than a unique element,
and, moreover, it is not required that sel(c) ⊆ ∆(c) (which would be incompatible
with the requirement that sel also is defined for inconsistent c). An alternative,
more traditional formalization of the problem is

(Sel 2)
define a selection function sel that maps consistent sets c

of linear constraints to points sel(c) ∈ ∆(c).

Identifying a set of constraints c with its solution set ∆(c), and generalizing from
such polytopes to arbitrary closed and convex subsets A ⊆ ∆n, one can finally put
the problem in the following form:

(Sel 3)
define a selection function sel that maps nonempty, closed
and convex subsets A ⊆ ∆n to points sel(c) ∈ A.

Sel 1-3 are purely mathematical formalizations of the problem which do not di-
rectly represent any specific interpretations of the nature of p, or the constraints c.
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However, which of these formalizations is most appropriate is partly determined
by the interpretation given to p and c.

First turning to p, we can distinguish the cases that p represents a statistical, ob-
servable probability, or that p represents a subjective probability (degree of belief).
These two different types of distributions give rise to two distinct interpretations
of the “true” distribution p that we want to identify by measure selection: In the
case, of statistical probabilities the “true” p describes actual long-run frequencies,
which, in principle, given sufficient time and experimental resources, one could
determine exactly. In the case of subjective probability, the “true” p is a rational
belief state that an ideal intelligent agent would arrive at by properly taking into
account all its current, incomplete knowledge.

A second dichotomy arises through different interpretations of the nature of
the constraints c: these can either be seen as a complete description of a state of
information, or as randomly sampled pieces of (possibly unreliable) information.
This distinction between constraints as knowledge and constraints as data was
introduced in (Jaeger 2001). It is a distinction that is independent from the dis-
tinction between statistical and subjective probabilities p. The following examples
illustrate all four combinations of interpretations for p and c.

Example 4.2 (Statistical probabilities, constraints as data) Let p be a probability
distribution in a medical domain that represents relative frequencies of certain dis-
eases and symptoms. A linear constraint can, for instance, provide an upper bound
on the probability of disease D given symptom S. We can now obtain a great num-
ber of such constraints by evaluating patient data from different hospitals and/or
by interviewing numerous medical experts. Each individual constraint we elicit in
this manner can then be seen as a randomly sampled piece of information on the
true distribution p that describes the actual relative frequencies in the population
we actually want to model. Note that constraints obtained in this manner can eas-
ily be inconsistent (patient data from different hospitals may show quite different
conditional probabilities). Note, too, that we will probably have greater confidence
in, and pay more attention to, constraints that we have observed multiple times
(e.g. the conditional probability of D given S has been determined for many dif-
ferent hospitals, and similar values have been found in all cases) than “isolated”
constraints (e.g. a conditional probability for D ′ given S′ has only been mentioned
by one expert, and not been corroborated otherwise).

Example 4.3 (Statistical probabilities, constraints as knowledge) Let p be as in
the preceding example, but now suppose that the constraints are obtained by sys-
tematically interviewing a single expert, for instance by requiring him to state for
every possible conditional probability in the domain a best lower and upper bound,
according to his knowledge.

Example 4.4 (Subjective probabilities, constraints as data) Let p represent the
subjective probabilities some European football enthusiast holds about the results
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in the upcoming champion’s league season. Suppose we meet this fan at some late
hour in the local pub, and that the conversation turns to football. Every now and
then he will make a statement that, in effect, is a linear constraint on p: “Barcelona
has at least twice the chance of reaching the finals that Madrid has”, “I’d bet 10:1
that Bayern Munich will exit in the first round again – no, make that 20:1”, . . . As
in example 4.2, the constraints so obtained can be interpreted as randomly sam-
pled pieces of evidence on the true beliefs p. As before, these constraints can be
inconsistent, and we will pay greater attention to those constraints that have been
consistently repeated several times.

Example 4.5 (Subjective probabilities, constraints as knowledge) Let p be the be-
liefs held by a professional bookmaker on the results in the upcoming champion’s
league season. Before the season starts, he offers certain odds on some possible
bets, e.g. 10:1 that Madrid will reach the semifinals. Assuming the bookmaker to
be rational, we can interpret these odds as constraints on his beliefs p (the prob-
ability that Madrid will reach the semifinals is at most 0.1). As the bookmaker
will aim to offer bets on all events for which he believes to have some reasonable
probability assessment, and will also want to offer competitive odds, one can view
the collection of bets he offers as a complete description of his state of knowledge.

Clearly, in any given situation it need not be obvious whether the constraints
as data or constraints as knowledge interpretation is more appropriate – both inter-
pretations are idealizations that will never be encountered in a pure form in reality.
A good criterion by which one can judge which interpretation of the given con-
straints is the right one is to decide whether one should base measure selection
on the raw set of observed constraints c, taking into account possible multiple oc-
currences of the same constraint, or whether ∆(c) alone already encodes all the
relevant information provided by c. This also means that under the constraints as
data interpretation the mathematical shape of the measure selection problem is (Sel
1), whereas under the constraints as knowledge interpretation (Sel 2) and (Sel 3)
are more natural.

More important than the technicalities of the problem formalization, however,
is the question whether the different interpretations for p and c will lead to com-
pletely different solution paradigms, or whether the same formal selection rules
are appropriate in all cases. Paris (1994, n.d.) emphasizes that the principles he
postulates for measure selection rules are meant to apply to subjective probabili-
ties p and the constraints as knowledge interpretation only. In (Jaeger 2001), on
the other hand, it has been argued that the constraints as data perspective requires
different selection principles than the constraints as knowledge perspective (no dis-
tinction between statistical and subjective p was there made). However, in contrast
to Paris, we see no reason to believe that measure selection for subjective prob-
abilities should follow different principles than measure selection for statistical
probabilities. The following now summarizes our working hypotheses:

• Selection rules under the constraints as data interpretation are different from
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selection rules under the constraints as knowledge interpretation.

• Under either interpretation for the constraints, the same selection rules are
applicable to statistical and subjective probabilities.

• The equivariance principle, introduced below, is applicable (in slightly dif-
ferent forms) under both interpretations for the constraints.

The preceding discussions already provide sufficient support for the first hy-
pothesis: we have seen that the constraints as data perspective leads to selection
rules that must be sensitive to multiple occurrences of identical constraints, but un-
der the constraints as knowledge perspective such multiplicities would be ignored.

Our second hypothesis is to be regarded as a working hypothesis that might
have to be revised should arguments to the contrary appear. It is mainly sup-
ported by a uniform philosophical interpretation of measure selection for statistical
and subjective probabilities: as already observed above, in the statistical case, the
“true” p represents unobserved long-run frequencies. Measure selection for statis-
tical probabilities can then be seen as a prediction on actual long-run frequencies
that, in principle, one would be able to observe in a suitable experimental setup (or
simply by making observations over a sufficiently long period of time).

Measure selection for subjective probabilities admits of a quite similar interpre-
tation: following earlier suggestions of a frequentist basis for subjective probabil-
ity (Reichenbach 1949, Carnap 1950), it is argued in (Jaeger 1995) that subjective
probability is ultimately grounded in empirical observation, hence statistical prob-
ability. In particular, in (Jaeger 1995) the process of subjective measure selection
is interpreted as a process very similar to statistical measure selection, namely a
prediction on the outcome of hypothetical experiments (which, however, here even
unlimited experimental resources may not permit us to carry out in practice). Un-
der the uniform interpretation of statistical and subjective measure selection as a
prediction of frequencies in (hypothetical) experiments, it seems reasonable that
both selection processes should follow the same formal rules. In further support
of our second hypothesis it may be remarked that the measure selection principles
Shore and Johnson (1980) postulate are very similar to those of Paris and Ven-
covská (1990), but they were formulated with statistical probabilities in mind.

Our third working hypothesis is a combined result of the arguments made in
(Jaeger 2001), and those contained in the following section.

4.2 Equivariance Principle

In the following we focus on the measure selection problem under the constraints as
knowledge perspective, taking (Sel 3) to be its mathematical structure. We propose
an equivariance principle for this setting. An analogous principle adapted to the
constraints as data perspective and the mathematical form (Sel 1) is described in
(Jaeger 2001).
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The most widely favored solution to the measure selection problem under the
constraints as knowledge interpretation is the entropy maximization rule: define
selme(A) to be the distribution p in A that has maximal entropy (for closed and
convex A this is well-defined). Axiomatic justifications for this selection rule are
given in (Shore & Johnson 1980, Paris & Vencovská 1990). Both these works pos-
tulate a number of formal principles that a selection rule should obey, and then
proceed to show that entropy maximization is the only rule satisfying all the prin-
ciples. Paris (1999) argues that all these principles in essence are just expressions
of one more general underlying principle, which is expressed by an informal state-
ment (or slogan) by van Fraassen (1989): Essentially similar problems should have
essentially similar solutions.

In spite of its mathematical sound derivation, entropy maximization does ex-
hibit some behaviors that appear counterintuitive to many (see (Jaeger 2001) for
two illustrative examples). Often this counterintuitive behavior is due to the fact
that the maximum entropy rule has a strong bias towards the uniform distribu-
tion u = (1/n, . . . , 1/n). As u is the element in ∆n with globally maximal
entropy, u will be selected whenever u ∈ A. Consider, for example, figure 1 (i)
and (ii). Shown are two different subsets A and A′ of ∆3. Both contain u, and
therefore selme(A) = selme(A

′) = u. While none of Paris’ rationality principles
explicitly demands that u should be selected whenever possible, there is one prin-
ciple that directly implies the following for the sets depicted in figure 1: assuming
that sel(A) = u, and realizing that A′ is a subset of A, one should also have
sel(A′) = u. This is an instance of what Paris (1994) calls the obstinacy principle:
for any A,A′ with A′ ⊆ A and sel(A) ∈ A′ it is required that sel(A′) = sel(A).
The intuitive justification for this is that additional information (i.e. information
that limits the previously considered distribution A to A′) that is consistent with
the previous default selection (i.e. sel(A) ∈ A′) should not lead us to revise this
default selection. While quite convincing from a default reasoning perspective (in
fact, it is a version of Gabbay’s (1985) restricted monotonicity principle), it is not
entirely clear that this principle is an expression of the van Fraassen slogan. Indeed,
at least from a geometric point of view, there does seem to exist little similarity be-
tween the two problems given by A and A′, and thus the requirement that they
should have similar solutions (or even the same solution) hardly seems a necessary
consequence of the van Fraassen slogan.

An alternative selection rule that avoids some of the shortcomings of selme is
the center of mass selection rule selcm: selcm(A) is defined as the center of mass of
A. With selcm one avoids the bias towards u, and, more generally, the bias of selme

towards points on the boundary of the input set A is reversed towards an exclusive
preference for points in the interior of A. A great part of the intuitive appeal of selcm

is probably owed to the fact that it satisfies (1), i.e. it is translation-equivariant.
Such an equivariance property can be understood as a much more direct for-

malization of the van Fraassen slogan than the individual postulates proposed in the
derivations of the maximum entropy principle. Indeed, van Fraassen (1989), after
giving the informal slogan, proceeds to explain it further as a general symmetry
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Figure 1: Maximum Entropy and Tn- equivariant selection

requirement of the form

h(R(A)) = R(h(A)), (3)

where A is the input to some inference problem, R is a solution rule for the prob-
lem, and h is some problem transformation (van Fraassen 1989, p.260). This sym-
metry requirement, thus, is a very general principle that can be applied to many
different types of inference problems. The equivariance principle (1) is a special
form of (3) with h the translation by r. For our special measure selection problem
we have that A is any closed and convex subset of ∆n, and R is a selection rule.
To apply van Fraassen’s general symmetry requirement to our special problem, it
thus remains to specify the transformation(s) h for which (3) should be required.

Appealing to theorem 2.3, we argue that the transformations in Tn are the most
relevant transformations to consider in our problem setting, so that we arrive at the
following Tn-equivariance principle for selection rules:

For all tr ∈ Tn : sel(trA) = trsel(A). (4)

Figure 1 (iii)-(v) illustrates the Tn-equivariance principle: shown are three dif-
ferent transformations A1, A2, A3 of a polytope defined by three linear constraints,
and the corresponding transformations p1,p2,p3 of one distinguished element in-
side the Ai. Tn-equivariance now demands that sel(A1) = p1 ⇔ sel(A2) = p2 ⇔
sel(A3) = p3.

Example 4.6 (continuation of example 4.1) Assume that the unlucky assistant in
example 4.1 was given instructions of the first type, and that he collected his data
accordingly. If, instead, he had been given instructions of the second type, then the
frequencies on the lost count sheet would have been frequencies f ′ = trf , where
f are the actual frequencies on the lost sheet, and tr is as in example 2.4. The
partial information he would then have been able to give also would have taken a
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different form. For instance, he might then have stated that he observed at least
6 times as many cars as buses, and at least 4.5 times as many cars as buses and
bicycles combined.

Thus, while the actual constraints he gives (having used the first set of instruc-
tions) define a set A ⊆ ∆n, the constraints he would have stated had he been using
the second set of instructions define a set A′ ⊆ ∆n. Under very natural modelling
assumptions on how the constraints stated in the two potential situations are re-
lated, one can show that they are related via the transformations t̄r on constraints
defined in appendix A, and that A′ = trA (Jaeger 2001).

When the project leader uses a Tn-equivariant selection rule for reconstruct-
ing the true frequencies from the information he is given, then the following two
approaches will lead to the same solution, whatever set of instructions this par-
ticular assistant was using: 1: first infer the actual frequencies observed by the
assistant by applying the selection rule to the given set ∆(c), and then transform
to the preferred type of frequencies. 2: first transform the given set ∆(c) so that it
corresponds to the information that would have been given had the preferred set of
instructions been used, and then apply the selection rule.

Tn-equivariance imposes no restriction on what sel(Ai) should be for any sin-
gle Ai in figure 1. It only determines how the selections for the different Ai should
be related. This principle alone, thus, is far from providing a unique selection rule,
like the rationality principles of Paris and Vencovská (1990). On the other hand, we
have not yet shown that Tn-equivariant selection rules even exist. In the remainder
of this section we investigate the feasibility of defining Tn-equivariant selection
rules, without making any attempts to find the best or most rational ones.

From (4) one immediately derives a limitation of possible Tn-equivariant selec-
tion rules: let A = ∆n in (4). Then trA = A for every tr ∈ Tn, and equivariance
demands that trsel(A) = sel(A) for all tr, i.e. sel(A) has to be a fixpoint under all
transformations. The only elements of ∆n that have this property are the n vertices
v1, . . . ,vn, where vi is the distribution that assigns unit probability to si ∈ S.
Clearly a rule with sel(∆n) = vi for any particular i would be completely arbi-
trary, and could not be argued to follow any rationality principles (more technically,
such a rule would not be permutation equivariant, which is another equivariance
property one would demand in order to deal appropriately with reorderings of the
state space, as discussed in section 2).

Similar problems arise whenever sel is to be applied to some A ⊆ ∆n that is
invariant under some transformations of Tn. To evade these difficulties, we restrict
in the following the domain of sel to sets A that are not invariant under any transfor-
mation tr (except the identity transformation). Let A denote the set of closed and
convex A that are contained in the interior of ∆n (i.e. support(p) = {1, . . . , n}
for all p ∈ A), and that have full dimension (i.e. the affine hull of A has dimension
n− 1)1. One can show that A ∈ A are not invariant under any non-trivial tr ∈ Tn.

1The notation here is slightly modified from the one used in (Jaeger 2003)
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A is not the most general class of closed and convex subsets of ∆n with the desired
non-invariance property. However, we shall also need the containment in the inte-
rior of ∆n and the full dimensionality to facilitate some of the constructions and
arguments following below.

The selection rule we define in the following for A ∈ A is not necessarily
meant to already be a best or most rational selection rule. However, it does have
some intuitive appeal, and the method by which it is constructed illustrates a gen-
eral strategy by which Tn-equivariant selection rules can be constructed.

Example 4.7 Define on A an equivalence relation ∼:

A ∼ A′ :⇔ ∃tr ∈ Tn : A′ = trA.

The equivalence class orb(A) := {A′ | A′ ∼ A} (= {trA | tr ∈ Tn}) is called
the orbit of A (these are standard definitions). It is easy to verify that for A ∈ A
also orb(A) ⊆ A, and that for every A′ ∈ orb(A) there is a unique tr ∈ Tn with
A′ = trA (here transformations are unique, but as observed above, this does not
imply that the parameter r representing the transformation is unique).

Suppose that sel(A) = p = (p1, . . . , pn). With r = (1/p1, . . . , 1/pn) then
trp = u, and by equivariance sel(trA) = u. It follows that in every orbit there
must be some set A′ with sel(A′) = u. On the other hand, if sel(A′) = u, then this
uniquely defines sel(A) for all A in the orbit of A′: sel(A) = p, where p = tru

with tr the unique transformation with trA′ = A. One thus sees that the definition
of an equivariant selection rule is equivalent to choosing for each orbit in A a
representative A′ for which sel(A′) = u shall hold.

For A ∈ A let chm(A) denote the center of mass of A with respect to Haldane’s
prior H . Thus, p = chm(A) iff for i = 1, . . . , n:

pi =

∫

A
p′idH(p′i)/H(A) (5)

Since A is full-dimensional, closed, and contained in the interior of ∆n, one has
0 < H(A) < ∞, so that the pi are well-defined.

Lemma 4.8 Let A ∈ A. There exists a unique A′ ∈ orb(A) with chm(A′) = u.

Combining the intuitive center-of-mass selection rule with the principle of Tn-
equivariance, we thus arrive at the Tn-equivariant center-of-mass selection rule:
selequiv-chm(A) = p iff A = trA′, u is the center of mass of A′, and p = tru.

In (Jaeger 2003) the same construction as given here was sketched using center-
of-mass with respect to Lebesgue measure instead of Haldane’s prior. While the
analogue of lemma 4.8 might be expected to also hold for cm in place of chm, this
appears to be much harder to prove, so that at this point it must be considered an
open question whether the construction also works for cm.

One may wonder whether a Tn-equivariant selection rule cannot be defined
much simpler as selchm(A) := chm(A), and whether perhaps even selequiv-chm =
selchm. This is not the case: one can show that selchm is not Tn-equivariant.
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5 Conclusions

Many probabilistic inference problems that are characterized by a lack of informa-
tion have to be solved on the basis of considerations of symmetries and invariances.
These symmetries and invariances, in turn, can be defined in terms of transforma-
tions of the mathematical objects one encounters in the given type of inference
problem.

The representation theorem we have derived provides a strong argument that
in inference problems whose objects are elements and subsets of ∆n, one should
pay particular attention to invariances (and equivariances) under the transforma-
tions Tn. These transformations can be seen as the analogue in the space ∆n of
translations in the space Rn.

One should be particularly aware of the fact that it usually does not make sense
to simply restrict symmetry and invariance concepts that are appropriate in the
space Rn to the subset ∆n. A case in point is the problem of noninformative
priors. In Rn Lebesgue measure is the canonical choice for an (improper) nonin-
formative prior, because its invariance under translations makes it the unique (up
to a constant) “uniform” distribution. Restricted to ∆n, however, this distinction
of Lebesgue measure does not carry much weight, as translations are not a mean-
ingful transformation of ∆n. Our results indicate that the choice of Haldane’s prior
for ∆n is much more in line with the choice of Lebesgue measure on Rn, than the
choice of the “uniform” distribution, i.e. Lebesgue measure restricted to ∆n.

In a similar vein, we have conjectured in section 4 that some of the intuitive
appeal of the center-of-mass selection rule is its equivariance under translations.
Again, however, translations are not the right transformations to consider in this
context, and one therefore should aim to construct Tn-equivariant selection rules,
as, for example, the Tn-equivariant modification of center-of-mass.

An interesting open question is how many of Paris and Vencovská’s (1990)
rationality principles can be reconciled with Tn-equivariance. As the combination
of all uniquely identifies maximum entropy selection, there must always be some
that are violated by Tn-equivariant selection rules. Clearly the obstinacy principle
is rather at odds with Tn-equivariance (though it is not immediately obvious that
the two really are inconsistent). Can one find selection rules that satisfy most (or
all) principles except obstinacy?

A A Dual Version of the Representation Theorem

In this appendix we formulate a dual version of Theorem 2.3 in which we consider
transformations on linear constraints on ∆n, rather than transformations of ∆n

directly.
A linear constraint in the general form

c : c1p1 + . . . + cnpn ≤ c0 (x1, . . . , xn, z ∈ R).
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can be rewritten as

(c1 − c0)p1 + . . . + (cn − c0)pn ≤ 0,

(using
∑

i pi = 1). By normalizing with 1/‖(c1 − c0, . . . , cn − c0)‖ this becomes

s1p1 + . . . + snpn ≤ 0, (6)

where s := (s1, . . . , sn) is an element of the n − 1-dimensional unit sphere

Sn = {(s1, . . . , sn) |
∑

i

s2
i = 1}.

In analogy to the partitioning of ∆n into subsets with common sets of support, we
partition Sn into sectors according to the following definition.

Definition A.1 A sign vector is any vector with components in {−1, 0, 1}. For
r ∈ R we define sign(r) as −1, 0 or 1, depending on whether r < 0, r = 0, or
r > 0. The sign vector sign(s) for s ∈ Sn is the vector (sign(si))i=1,... ,n. Each
sign-vector ζ of length n defines a sector Sζ in Sn:

Sζ := {s ∈ Sn | sign(s) = ζ}. (7)

As before, denote with ∆(s) the set of distributions in ∆n that satisfy (6).
We call a constraint s proper iff ∆(s) 6∈ {∅,∆n}, i.e. s is neither vacuous nor
unsatisfiable. Note that s is proper iff sign(s) has at least one component equal to
1, and at least one component equal to −1. In particular, either all constraints in a
sector Sζ are proper, or all are improper. Thus we can also speak of (im-)proper
sectors. Let Sn

prop denote the set of proper constraints. A transformation t̄ of Sn
prop

is said to

• preserve sectors, iff t̄ is a bijection on every proper sector Sζ .

• preserve implications, iff for all k ∈ N, s1, . . . , sk ∈ Sn
prop:

k−1
⋂

i=1

∆(si) ⊆ ∆(sk) ⇔
k−1
⋂

i=1

∆(t̄si) ⊆ ∆(t̄sk) (8)

Definition A.2 Let r = (r1, . . . , rn) ∈ (R+)n. The transformation t̄r : Sn → Sn

is defined by

t̄r (s1, . . . , sn) :=
(r1s1, . . . , rnsn)

‖(r1s1, . . . , rnsn)‖
.

We write T̄n for the set {t̄r | r ∈ (R+)n}.

We now obtain the desired result.
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Theorem A.3 Let n ≥ 3, and t̄ a transformation of Sn
prop. t̄ preserves sectors and

implications iff t̄ ∈ T̄n.

The duality of the transformations in T̄n and Tn is expressed by the following
theorem.

Theorem A.4 Let r ∈ (R+)n, p ∈ ∆n. Then for all proper s:

p ∈ ∆(s) ⇔ trp ∈ ∆(t̄rs).

Proof of Theorem A.3: The right-to-left direction is straightforward. For the
converse direction we first introduce the following notation: for I ⊆ {1, . . . , n}
let F I := {p ∈ ∆n | support(p) = I}. Geometrically speaking, F I is the interior
of an (| I | −1)-dimensional face of ∆n. For j = 1, . . . , | I | −1 let F I

j denote
the set of all j-dimensional intersections of F I with linear spaces. Thus, F I

0 is the
set of all points in F I , FI

1 is the set of all lines in F I , etc. Each A ∈ F I
j can be

represented as the intersection of F I with an n− |I | −1−j-dimensional subspace
L. L, in turn, is given as the intersection of |I | −1 − j hyperplanes.

Let t̄ be a transformation of Sn
prop that preserves sectors and implications. We

first show that the following holds for all proper constraints si, and all F I :

(i) ∩k
i=1∆(si) ∩ F I = ∅ iff ∩k

i=1 ∆(t̄si) ∩ F I = ∅

(ii) ∩k
i=1∆(si) ∩ F I ⊆ ∩l

j=1∆(s′j) ∩ F I iff
∩k

i=1∆(t̄si) ∩ F I ⊆ ∩l
j=1∆(t̄s′

j) ∩ F I

(iii) t̄(−s) = −t̄s.

To prove (i), we distinguish the cases I = {1, . . . , n}, and I 6= {1, . . . , n}.
For the case I 6= {1, . . . , n} we show that ∩k

i=1∆(si) ∩ F I = ∅ holds iff
there exists a proper sector Sζ with {i | ζi = 1} ⊆ I ⊆ {i | ζi ∈ {0, 1}}, and
a constraint s ∈ Sζ with ∩k

i=1∆(si) ⊆ ∆(s). From this equivalence (i) follows,
because the right-hand side of the equivalence clearly is preserved under t̄. The
right-to-left direction of the equivalence is immediate from F I ∩ ∆(s) = ∅ for
all s ∈ Sζ . For the left-to-right direction let p1, . . . ,pm be the vertices of the
polytope ∩k

i=1∆(si). Suppose that p1, . . . ,pl (0 ≤ l ≤ m) are those vertices with
support(pi) 6⊆ I , and let J := ∪m

i=l+1support(pi). From ∩k
i=1∆(si) ∩ F I = ∅ it

follows that J ( I . Let ζ be the sign vector with ζi = 1 for i ∈ I \ J , ζi = 0
for i ∈ J , and ζi = −1 for i 6∈ I . Since I 6= {1, . . . , n}, Sζ is a proper sector.
Furthermore, for ε ∈ (0,∞) let s(ε) ∈ Sζ be the constraint with s(ε)i = ε for
i ∈ I \ J , and s(ε)i = −1/ε for i 6∈ I . For i = 1, . . . , l there exists εi > 0 with
pi ∈ ∆(s(ε)) for all ε ≤ εi. Let ε∗ := min1≤i≤l εi (if l = 0 simply let ε∗ := 1). We
now have pi ∈ ∆(s(ε∗)) for i = 1, . . . ,m, and hence ∩k

i=1∆(si) ⊆ ∆(s(ε∗)), as
desired.

In the case I = {1, . . . , n} we have that ∩k
i=1∆(si) ∩ F I = ∅ is equivalent

to the existence of a set J ( {1, . . . , n} such that ∩k
i=1∆(si) is contained in the
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closure of F J . This, in turn, is equivalent to ∩k
i=1∆(si) ⊆ ∆(s) for all s with

sign(si) = 1 for i 6∈ J , and sign(si) = −1 for i ∈ J . This last property is
preserved under t̄.

The proof of (ii) is similar to (i): one shows that ∩k
i=1∆(si)∩F I ⊆ ∩l

j=1∆(s′j)∩

F I is equivalent to the existence of a constraint s with sign(si) = −1 for i ∈ I
and sign(si) = 1 for i 6∈ I , such that ∩k

i=1∆(si) ∩ ∆(s) ⊆ ∩l
j=1∆(s′

j).
For (iii) we observe that for all s, s′: s′ = −s iff for all s′′ 6= s:

∆(s′′) ⊆ ∆(s) ⇔ ∆(s′) ∩ ∆(s′′) ∩ int ∆n = ∅,

where int ∆n denotes the interior of ∆n. By implication preservation and (i) both
sides of this equivalence are preserved under t̄, and, therfore, so is the equivalence.
Thus, s′ = −s iff t̄s′ = −t̄s, i.e. t̄(−s) = −t̄s.

Now we show that t̄ induces transformations tIj on FI
j for all I, j: let A ∈ F I

j .
Then

A = ∩
|I|−j−1
i=1 (∆(si) ∩ ∆(−si)) ∩ F I

for suitable si. Define

tIjA = ∩
|I|−j−1
i=1 (∆(t̄si) ∩ ∆(−t̄si)) ∩ F I .

By (ii) tA is well-defined, i.e. it does not depend on the particular choice of the
si. From (i) and (iii) it follows that tA 6= ∅ is the intersection of F I with a linear
subspace, i.e. tA ∈ F I

h for some h ∈ {0, . . . , | I | −1}. We show that h = j by
induction on j.

Let j = 0, i.e. A = {p} for some p ∈ F I . Suppose that h > 0. Then A
contains two distinct points, and there exist constraints s, s ′ with ∆(s) ∩ ∆(s′) ∩
F I = ∅, ∆(s)∩F I 6= ∅, ∆(s′)∩F I 6= ∅. By (i) these (in)equalities are preserved
when substituting t̄−1s, t̄−1s′, A for s, s′, tA, which is a contradiction to A = {p}.

Now let j ≥ 1. Let Ã ∈ FI
j−1 with Ã ( A. Then Ã = A ∩∆(s)∩∆(−s) for

some s, and

tÃ = tA ∩ ∆(t̄s) ∩ ∆(−t̄s) ∈ F I
j−1

by induction hypothesis. Since tA ∈ F I
h is an open set (relative to its affine hull),

its intersection with the hyperplane ∆(t̄s)∩∆(−t̄s) has dimension at least h− 1,
so that j − 1 ≤ h ≤ j. Finally, h = j − 1 would entail tÃ = tA, which with (ii)
contradicts the definition of Ã.

The transformations tIj are consistent in the following sense: if A ∈ F I
j , A′ ∈

FI
h with j < h and A ⊂ A′, then tIjA ⊂ tIhA′. Furthermore, when I ⊂ I ′,

A ∈ FI′
j , and A′ ∈ FI

k is the intersection of the boundary bd A with F I , then

tIkA = bd (tI
′

j A) ∩ F I .
We now define the transformation t on ∆n as the union of the transformations

tI0 (I ⊂ {1, . . . , n}). By definition, t preserves sets of support. To see that t
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preserves mixtures, we observe that p is a mixture of p′,p′′ iff there does not exist
s ∈ Sn

prop with p′,p′′ ∈ ∆(s), p 6∈ ∆(s). By (ii) and the definition of t we have
for all p, s

p ∈ ∆(s) ⇔ tp ∈ ∆(t̄s) (9)

which, with the foregoing characterization of mixtures, implies that mixtures are
preserved under t.

By theorem 2.3 t = tr ∈ Tn for some r ∈ (R+)n. Using (9) we thus obtain
for all p, s

p ∈ ∆(s) ∩ ∆(−s) ⇔ trp ∈ ∆(t̄s) ∩ ∆(−t̄s), (10)

i.e.
∑

i

pisi = 0 ⇔
∑

i

ripi(t̄s)i = 0. (11)

As (10) completely determines the transformation t̄, and (11) is seen to be solved
by (t̄s)i = csi/ri for any constant c, we obtain t̄ = t̄r.

�

Proof of Theorem A.4: This is an immediate consequence of (9) in the preceding
proof. �

B Proofs for Sections 2 - 4

Theorem 2.3 Let n ≥ 3 and t be a transformation of ∆n.

(i) t preserves sets of support and mixtures iff t ∈ Tn.

(ii) t preserves cardinalities of support and mixtures iff t = t′ ◦π for some permu-
tation π and some t′ ∈ Tn.

Proof:
For x ∈ (R+)n we denote with [x] the linear subspace of Rn generated by x.

We use Rn
1Q to denote the first quadrant of Rn, i.e. the set of all points with only

non-negative coordinates. With Pn−1 we denote the set of all one-dimensional
linear subspaces of Rn, i.e. the (n − 1)-dimensional projective space over R.
Furthermore, with Pn−1

1Q we denote the subset of Pn−1 containing those subspaces
that intersect Rn

1Q not only in 0. Thus,

Pn−1
1Q = {[p] | p ∈ ∆n},

and, moreover, every [x] ∈ Pn−1
1Q is uniquely represented by one p ∈ ∆n. The

transformation t, therefore, immediately induces a (bijective) transformation on
Pn−1

1Q , which, for simplicity, we also denote with t.
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The main part of the proof now consists of showing that t can be extended to a
linear transformation t∗ of Rn

1Q. The arguments used to establish this closely follow
the proofs of the representation theorem for projective colineations (also known as
the fundamental theorem of projective geometry) as given in (Faure & Frölicher
2000) and (Beutelspacher & Rosenbaum 1998). That representation theorem states
that every transformation t on Pn−1 that preserves colinearity is induced by a linear
transformation t∗ of Rn. Here we show basically a version of this result that, on
the one hand, is restricted to Pn−1

1Q and Rn
1Q, and, on the other hand, starts with the

slightly stronger requirement of preservation of mixtures, rather than preservation
of colinearity (the former requires also that the relative order of colinear points is
preserved). The main work in adapting the proof of the representation theorem for
colineations to our problem consists of making sure that all geometric constructions
in the original proof can be contained within the subset Pn−1

1Q .
We require some additional notation: [x,y] stands for the linear subspace gen-

erated by x and y. If x and y are linearly independent, this is a two-dimensional
plane, which, in projective geometry terms, is the line connecting [x] and [y]. We
say that subspaces [x1], . . . , [xk] are linearly independent if the xi are linearly
independent. A vector z ∈ Rn

1Q is a positive combination of x,y ∈ Rn
1Q if there

exists α, β ∈ R+ with z = αx + βy. In that case we also say that [z] is a positive
combination of [x] and [y]. Observe that the mixture preservation property of t just
means that t[z] is a positive combination of t[x] and t[y] whenever z is a positive
combination of x and y.

We prepare the main part of the proof with the following lemma.

Lemma B.1 (A) Let x,y, z ∈ Rn
1Q such that x,y are linearly independent, and z

is a positive combination of x and y. Then there exists exactly one ỹ ∈ [y] ∩ Rn
1Q

with x + ỹ ∈ [z].
(B) Let t[x1], t[x2], t[x3] be linearly independent, and let yi ∈ t[xi] (i =

1, 2, 3) such that

t[x1 + x2] = [y1 + y2] and t[x1 + x3] = [y1 + y3].

Then

t[x2 + x3] = [y2 + y3] and t[x1 + x2 + x3] = [y1 + y2 + y3].

Proof of lemma: (A) Independent from n, this is a statement only about the plane
spanned by x,y, z. The construction of ỹ, therefore is illustrated in full generality
by Figure 2.

(B) With

[x2 + x3] ⊆ [x2,x3] ∩ [x1,x1 + x2 + x3]

[x1 + x2 + x3] ⊆ [x1 + x2,x3] ∩ [x1 + x3,x2]
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it follows that

t[x2 + x3] ⊆ [y2,y3] ∩ [y1,y1 + y2 + y3]

t[x1 + x2 + x3] ⊆ [y1 + y2,y3] ∩ [y1 + y3,y2].

From the linear independence of the yi it follows that the intersections of the spaces
on the right are just [y2 + y3], resp. [y1 + y2 + y3].

�

Let a1,a2,a3 be such that t[a1], t[a2], t[a3] are linearly independent. Let
[b1] = t[a1]. We have that t[a1 + a2] is a positive combination of t[a1] and
t[a2], so that by part (A) of the lemma there exists a unique b2 ∈ t[a2] such
that t[a1 + a2] = [b1 + b2]. Similarly, there exists a unique b3 ∈ t[a3] with
t[a1 + a3] = [b1 + b3]. With part (B) of the lemma it furthermore follows that
t[a2 + a3] = [b2 + b3].

We can now define t∗: first, define t∗(0) := 0. Now let x ∈ Rn
1Q \ 0. Let

ai ∈ {a1,a2,a3} such that t[ai] 6= [x]. Then t[ai+x] is a positive combination of
t[ai] and t[x], so that by part (A) of the lemma there exists a unique z ∈ t[x]∩Rn

1Q

with [bi + z] = t[ai + x]. Define t∗(x) := z.
We have to show that the definition of t∗(x) does not depend on the particular

choice of ai. For this, assume that t[ai] 6= [x] 6= t[aj ], and that by above construc-
tion we have obtained zi, zj with [bi + zi] = t[ai + x], [bj + zj ] = t[aj + x].

To show that zi = zj first consider the case that t[x] 6∈ [t[ai], t[aj]]. Applying
part (B) of the lemma to x1 = ai,x2 = x,x3 = aj and y1 = bi,y2 = z1,y3 =
bj , one obtains t[aj + x] = [bj + zi] and hence by the uniqueness statement of
part (A) of the lemma zi = zj .

In the case t[x] ∈ [t[ai], t[aj ]] we obtain from the linear independence of the
t[ai] that t[x] 6∈ [t[ai], t[ak]] ∪ [t[aj ], t[ak]] where k = {1, 2, 3} \ {i, j}. In
particular, t[ak] 6= t[x], so that zk is defined by our construction. Applying the
first case twice we obtain zi = zk = zj .
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We next proceed to show that t∗(x + y) = t∗(x) + t∗(y) for all x,y ∈ Rn
1Q.

For this, first assume that t∗(x) and t∗(y) are linearly independent. There exists
ai (i ∈ {1, 2, 3}) with t[ai] 6⊆ [t[x], t[y]]. Applying part (B) of the lemma to
x1 = ai,x2 = x,x3 = y and y1 = bi,y2 = t∗(x),y3 = t∗(y) one obtains
t[x + y] = [t∗(x) + t∗(y)] and t[ai + x + y] = [bi + t∗(x) + t∗(y)]. As
t[ai] 6= t[x + y] therefore t∗(x + y) = t∗(x) + t∗(y).

Now assume that [t∗(x)] = [t∗(y)], and hence t[x] = t[y] and [x] = [y].
Choose any z such that t∗(z) is linearly independent from t∗(x+y) (and therefore
also from t∗(x) and t∗(y)). Then also t∗(x) and t∗(y+z) are linearly independent,
because [x] 6= [y + z]. Applying the previous case twice, we obtain on the one
hand t∗(x + y + z) = t∗(x + y) + t∗(z), and on the other hand t∗(x + y + z) =
t∗(y + z) + t∗(x) = t∗(y) + t∗(z) + t∗(x).

Next we show that t∗(αx) = αt∗(x) for α ∈ R+. By definition we have
that t∗(αx) = βt∗(x), where β = βx(α) ∈ R+ might depend both on α and
on x. We first show that β does not depend on x, i.e. βx(α) = βy(α) for all
x,y. For this, first assume that [x] 6= [y]. By additivity we have on the one hand
t∗(α(x+y)) = βx(α)t∗(x)+βy(α)t∗(y), and on the other hand t∗(α(x+y)) =
βx+y(α)(t∗(x) + t∗(y)). From the linear independence of t∗(x) and t∗(y) it
follows that βx(α) = βx+y(α) = βy(α).

If [x] = [y] we pick z with [z] 6= [x] and obtain with the previous case
βx(α) = βz(α) = βy(α).

It remains to show that β(α) = α. For this, we first show that β(α1 +
α2) = β(α1) + β(α2). For this, let x be any point. Then β(α1 + α2)t

∗(x) =
t∗(α1x+α2x) = β(α1)t

∗(x)+β(α2)t
∗(x). Similarly, we obtain β(α1α2)t

∗(x) =
t∗(α1α2x) = β(α1)t

∗(α2x) = β(α1)β(α2)t
∗(x), so that β(α1α2) = β(α1)β(α2).

As β is not identically zero, the multiplicativity of β implies that β(α) 6= 0 for
all α 6= 0. Also by multiplicativity, β(1) = 1. From additivity and multiplicativity
we then obtain β(n) = n and β(1/n) = 1/n for all n ∈ N, and hence β(α) = α
for all α ∈ Q+. Finally, from additivity and β(α) ≥ 0 for all α, we obtain that
α ≤ α′ implies β(α) ≤ β(α′), so that β � Q+ = id implies β = id on R+. This
concludes the proof that t∗(αx) = αt∗(x).

Let ei be the ith unit vector, i.e. ei = (0, . . . , 0, 1, 0, . . . , 0) with 1 in the ith
component. As the transformation t preserves sets of support, we have t[ei] = [ei],
and hence t∗(ei) = riei for some ri ∈ R+. For x =

∑

i xiei then t∗(x) =
∑

i rixiei. In particular, for p ∈ ∆n we have t∗(p) =
∑

i ripiei ∈ t[p]. As,
furthermore, t(p) ∈ t[p], where t(p) is the original transformation on ∆n, and t[p]
the induced transformation on Pn−1

1Q , we have t(p) = t∗(p)/
∑

i ripi = ḡr for
r = (r1, . . . , rn). �

Theorem 3.2 Let Pr be a measure on int∆n with Pr(int∆n) > 0 and Pr(A) < ∞
for all compact subsets A of int∆n. Pr is invariant under all transformations
tr ∈ Tn iff Pr has a density with respect to Lebesgue measure of the form c

∏

i p−1
i

with some constant c > 0.
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Proof: We first show the invariance of distributions Pr given by densities gc(p) :=
c
∏

i p−1
i . It is sufficient to consider the case c = 1. We write g for g1. Furthermore,

we may restrict attention to transformations tr given by vectors r with ri = 1
in all but one coordinate i. General tr can be obtained as compositions of such
primitive transformations, and therfore the invariance of Pr under each primitive
transformation implies invariance under all transformations. Moreover, without
loss of generality, we may take r = (r, 1, . . . , 1). In the following we write t for
this tr:

t(p) = 1/(rp1 +
n

∑

i=2

pi)(rp1, p2, . . . , pn).

Saying that a distribution Pr on ∆n has density g means that ∆n is identified
as a subset of the n − 1-dimensional affine space L := {x ∈ Rn |

∑

xi = 1},
and that g is a density with respect to n− 1-dimensional Lebesgue measure on this
space. To simplify the parameterization of our problem, we can identify L with
Rn−1 via the embedding

π : (x1, . . . , xn−1, 1 −
n−1
∑

i=1

xi) 7→ (x1, . . . , xn−1).

This embedding is measure preserving up to a constant: for all measurable A ⊆ L
with finite Lebesgue measure λn−1(A) we have λn−1(π(A)) = cnλn−1(A) with
cn a constant depending on n. In particular, we have

π(∆n) = {x ∈ [0, 1]n−1 |
∑

xi ≤ 1} =: Dn−1.

The distribution Pr induces a distribution πPr on int Dn−1 given by the density
f(x1, . . . , xn−1) := cng(x1, . . . , xn−1, 1 −

∑n−1
i=1 xi).

The invariance of Pr under t is equivalent to the invariance of πPr under

tπ : (x1, . . . , xn−1) 7→ 1/(1 + (r − 1)x1)(rx1, x2, . . . , xn−1).

We thus have transformed our original problem on ∆n ⊆ L into a similar problem
for Dn−1 ⊆ Rn−1. To simplify notation, we write in the following again t for the
reparameterized transformation tπ, and Pr for the induced distribution πPr.

According to the transformation theorem for integrals, the density of the trans-
formed distribution t(Pr) is given by

f t(x) := f(t−1(x))/ |Jt(t
−1(x)) | (x ∈ Dn−1), (12)

where Jt is the Jacobian matrix of t. We have to show that f t = f .
For this, we first evaluate the Jacobian. With a := 1 + (r − 1)x1 the partial

derivatives of t are

∂ti
∂xj

=























r/a2 i = j = 1
0 i = 1, j 6= 1
−(r − 1)xj/a

2 i 6= 1, j = 1
1/a i = j 6= 1
0 1 6= i 6= j 6= 1
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The Jordan matrix, thus, is in lower triangular form, and its determinant is the
product of the main diagonal elements:

|Jt(t
−1(x)) |= r/an. (13)

For x ∈ Dn−1 we can write with b := r + (1 − r)x1 (= −a + r + 1):

t−1(x) = r/b(x1/r, x2, . . . , xn−1). (14)

Thus

f(t−1(x)) = cn

[

(1 −
x1

b
−

n−1
∑

i=2

r

b
xi)

rn−2

bn−1

n−1
∏

i=1

xi

]−1

= cn

[

rn−1

bn
(
b

r
−

x1

r
−

n−1
∑

i=2

xi)
n−1
∏

i=1

xi

]−1

= cn

[

rn−1

bn
(1 −

n−1
∑

i=1

xi)

n−1
∏

i=1

xi

]−1

, (15)

where the last equality follows from (b − x1)/r = 1 − x1.
With (13) and (14):

|Jt(t
−1(x)) |=

r

(1 + (r − 1)x1/b)n
=

rbn

(b + (r − 1)x1)n
=

bn

rn−1
. (16)

From (12),(15) and (16) now f t = f follows.
The uniqueness assertion of the theorem follows from general results on the

uniqueness of invariant measures (Halmos 1950, Sec.60,Theorem C). For a straight-
forward application of these results it is only necessary to realize that ∆n is a lo-
cally compact Hausdorff space, and that the condition Pr(A) < ∞ for compact A
entails that Pr is regular (Cohn 1993, Proposition 7.2.3). �

Lemma 4.8 Let A ∈ A. There exists a unique A′ ∈ orb(A) with chm(A′) = u.

Proof: In the following we denote with 〈x,y〉 the scalar product of vectors in Rn.
Assume that no tr ∈ Tn with chm(trA) = u exists. Let

ε := inf{‖chm(tA) − u‖ | t ∈ Tn}.

The infimum here is attained for some t ∈ Tn, i.e. there exists B ∈ orb(A) with
‖chm(B) − u‖ = ε > 0. Let c := chm(B). We show that there exists tr ∈ Tn

with ‖chm(trB) − u‖ < ε.
Consider the function p 7→ 〈c − u,p〉 on ∆n. The subset of ∆n with 〈c −

u,p〉 = d for a constant d ∈ R is the intersection of ∆n with a hyperplane that is
orthogonal to c − u. Figure 3 shows as dashed lines several such hyperplanes for
different values of d.
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With 〈u,p〉 = 1/n for all p ∈ ∆n one obtains 〈c−u,u〉 = 0, and 〈c−u, c〉 =
〈c, c〉 − 1/n > 0. We show that there exists a set {r(δ) | δ ∈ [1/2, 2]} of
parameters of transformations in Tn such that tr(1) is the identity transformation,
and

f(δ) := 〈c − u, chm(tr(δ)B)〉

is decreasing in δ with f ′(1) < 0. It follows that the parametric curve δ 7→
chm(tr(δ)B) is as shown in Figure 3, i.e. it intersects the ε-ball around u, which
then contradicts the definition of B.

Define

I− := {i ∈ {1, . . . , n} | ci − ui ≤ 0} I+ := {i ∈ {1, . . . , n} | ci − ui > 0},

and

r(δ)i :=

{

δ i ∈ I−

1/δ i ∈ I+

From the definition of r(δ) it is immediate that 〈c−u, tr(δ)p〉 is decreasing in
δ for all p ∈ ∆n.

We next show that also the derivative of 〈c − u, tr(δ)p〉 with respect to δ is
negative for all p.

Let p ∈ ∆n be fixed, and define

a :=
∑

i∈I−

pi, b :=
∑

i∈I+

pi, c :=
∑

i∈I−

(ci − ui)pi, d :=
∑

i∈I+

(ci − ui)pi.

Then

〈c − u, tr(δ)p〉 =
δc + d/δ

δa + b/δ
,
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and

∂

∂δ
〈c − u, tr(δ)p〉 = 2

δ(cb − da)

(δ2a + b)2
. (17)

Since both I− and I+ are nonempty, and ci − ui < 0 for at least one i ∈ I−,
one obtains a > 0, b > 0, c < 0, d > 0. It follows that (17) is negative for all δ
and p.

We now transfer these pointwise results for single p to the function f(δ). By
the definition of the center of mass and the linearity of the scalar product

f(δ) =

∫

tr(δ)B
〈c − u,p〉dH(p)/H(tr(δ)B).

From the invariance of H under the tr(δ) it follows that the normalizing factor
ν := 1/H(tr(δ)B) is a constant that does not depend on δ, and that

∫

tr(δ)B
〈c − u,p〉dH(p) =

∫

B
〈c − u, tr(δ)p〉dH(p). (18)

Since ∂
∂δ 〈c − u, tr(δ)p〉 is uniformly continuous as a function of (p, δ) on B ×

[1/2, 2], we can move the differentiation into the integration, and obtain

∂

∂δ
f(δ) = ν

∫

B

∂

∂δ
〈c − u, tr(δ)p〉dH(p).

The integrand here is strictly negative at δ = 1. With H(B) > 0 it follows that
∂
∂δf(δ)(1) < 0. �
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