Max-Planck-Institut für Informatik
max planck institut
mpii logo Minerva of the Max Planck Society


Rotations of periodic strings and short superstrings

Breslauer, Dany and Jiang, Tao and Jiang, Zhigen

MPI-I-96-1-019. June 1996, 13 pages. | Status: available - back from printing | Next --> Entry | Previous <-- Entry

Abstract in LaTeX format:
This paper presents two simple approximation algorithms for the shortest superstring problem, with approximation ratios $2 {2\over 3}$ ($\approx 2.67$) and $2 {25\over 42}$ ($\approx 2.596$), improving the best previously published $2 {3\over 4}$ approximation.
The framework of our improved algorithms is similar to that of previous algorithms in the sense that they construct a superstring by computing some optimal cycle covers on the distance graph of the given strings, and then break and merge the cycles to finally obtain
a Hamiltonian path, but we make use of new bounds on the overlap between two strings.
We prove that for each periodic semi-infinite string $\alpha = a_1 a_2 \cdots$ of period $q$, there exists an integer $k$, such that for {\em any} (finite) string $s$ of period $p$ which is {\em inequivalent} to $\alpha$, the overlap between $s$ and the {\em rotation}
$\alpha[k] = a_k a_{k+1} \cdots$ is at most $p+{1\over 2}q$.
Moreover, if $p \leq q$, then the overlap between $s$ and $\alpha[k]$ is not larger than ${2\over 3}(p+q)$. In the previous shortest superstring algorithms $p+q$ was used as the standard bound on overlap between two strings with periods $p$ and $q$.
References to related material:

To download this research report, please select the type of document that fits best your needs.Attachement Size(s):
MPI-I-96-1-019.psMPI-I-96-1-019.pdf136 KBytes; 198 KBytes
Please note: If you don't have a viewer for PostScript on your platform, try to install GhostScript and GhostView

URL to this document:
Hide details for BibTeXBibTeX
  AUTHOR = {Breslauer, Dany and Jiang, Tao and Jiang, Zhigen},
  TITLE = {Rotations of periodic strings and short superstrings},
  TYPE = {Research Report},
  INSTITUTION = {Max-Planck-Institut f{\"u}r Informatik},
  ADDRESS = {Im Stadtwald, D-66123 Saarbr{\"u}cken, Germany},
  NUMBER = {MPI-I-96-1-019},
  MONTH = {June},
  YEAR = {1996},
  ISSN = {0946-011X},