Max-Planck-Institut für Informatik
max planck institut
mpii logo Minerva of the Max Planck Society


On the average running time of odd-even merge sort

Rüb, Christine

MPI-I-95-1-010. April 1995, 16 pages. | Status: available - back from printing | Next --> Entry | Previous <-- Entry

Abstract in LaTeX format:
This paper is concerned with the average running time of Batcher's
odd-even merge sort when implemented on a collection of processors.
We consider the case where $n$, the size of the input,
is an arbitrary multiple of the number $p$ of processors used.
We show that Batcher's odd-even merge (for two sorted lists of length $n$ each)
can be implemented to run in time $O((n/p)(\log (2+p^2/n)))$ on the average,
and that odd-even merge sort can be implemented to run in time
$O((n/p)(\log n+\log p\log (2+p^2/n)))$ on the average.
In the case of merging (sorting), the average is taken over all possible outcomes
of the merging (all possible permutations of $n$ elements).
That means that odd-even merge and odd-even merge sort have an optimal
average running time if $n\geq p^2$. The constants involved are also
quite small.
References to related material:

To download this research report, please select the type of document that fits best your needs.Attachement Size(s):
MPI-I-95-1-010.pdfMPI-I-95-1-010.pdf9053 KBytes
Please note: If you don't have a viewer for PostScript on your platform, try to install GhostScript and GhostView
URL to this document:
Hide details for BibTeXBibTeX
  AUTHOR = {R{\"u}b, Christine},
  TITLE = {On the average running time of odd-even merge sort},
  TYPE = {Research Report},
  INSTITUTION = {Max-Planck-Institut f{\"u}r Informatik},
  ADDRESS = {Im Stadtwald, D-66123 Saarbr{\"u}cken, Germany},
  NUMBER = {MPI-I-95-1-010},
  MONTH = {April},
  YEAR = {1995},
  ISSN = {0946-011X},