
New techniques for exact and approximate
dynamic closest-point problems

Sanjiv Kapoor∗ Michiel Smid†

August 22, 1995

Abstract

Let S be a set of n points in IRD. It is shown that a range tree can be used to
find an L∞-nearest neighbor in S of any query point, in O((log n)D−1 log log n)
time. This data structure has size O(n(log n)D−1) and an amortized update time
of O((log n)D−1 log log n). This result is used to solve the (1 + ϵ)-approximate
L2-nearest neighbor problem within the same bounds (up to a constant factor
that depends on ϵ and D). In this problem, for any query point p, a point q ∈ S
is computed such that the euclidean distance between p and q is at most (1+ ϵ)
times the euclidean distance between p and its true nearest neighbor. This is
the first dynamic data structure for this problem having close to linear size and
polylogarithmic query and update times.

New dynamic data structures are given that maintain a closest pair of S.
For D ≥ 3, a structure of size O(n) is presented with amortized update time
O((log n)D−1 log log n). The constant factor in this space (resp. time bound) is of
the formO(D)D (resp. 2O(D2)). ForD = 2 and any non-negative integer constant
k, structures of size O(n log n/(log log n)k) (resp. O(n)) are presented having
an amortized update time of O(log n log log n) (resp. O((log n)2/(log log n)k)).
Previously, no deterministic linear size data structure having polylogarithmic
update time was known for this problem.

∗Department of Computer Science, Indian Institute of Technology, Hauz Khas, New Delhi 110016,
India. E-mail: skapoor@cse.iitd.ernet.in. The research on this work started when this author
visited the Max-Planck-Institut für Informatik.

†Max-Planck-Institut für Informatik, Im Stadtwald, D-66123 Saarbrücken, Germany. E-mail:
michiel@mpi-sb.mpg.de. This author was supported by the ESPRIT Basic Research Actions Pro-
gram, under contract No. 7141 (project ALCOM II).

1

1 Introduction

Closest-point problems are among the basic problems in computational geometry. In
such problems, a set S of n points in D-dimensional space is given and we have to store
it in a data structure such that a point in S nearest to a query point can be computed
efficiently, or we have to compute a closest pair in S, or for each point in S another
point in S that is closest to it. These problems are known as the nearest-neighbor
problem, the closest pair problem, and the all-nearest-neighbors-problem, respectively.
In the dynamic version of these problems, the set S is changed by insertions and
deletions of points.

It is assumed that the dimension D ≥ 2 is a constant independent of n. More-
over, distances are measured in the Lt-metric, where 1 ≤ t ≤ ∞ is a fixed real
number. In this metric, the distance dt(p, q) between the points p and q is defined

as dt(p, q) =
(∑D

i=1 |pi − qi|t
)1/t

if 1 ≤ t < ∞, and for t = ∞ it is defined as

d∞(p, q) = max1≤i≤D |pi − qi|.
The planar version of the nearest-neighbor problem can be solved optimally, i.e.,

with O(log n) query time using O(n) space, by means of Voronoi diagrams. (See [15].)
In higher dimensions, however, the situation is much worse. The best results known
are due to Clarkson [7] and Arya et al.[1]. In [7], a randomized data structure is
given that finds a nearest-neighbor of a query point in O(log n) expected time. This
structure has size O(n⌈D/2⌉+δ), where δ is an arbitrarily small positive constant. In [1],
the problem is solved with an expected query time of O(n1−1/⌈(D+1)/2⌉(log n)O(1)) using
O(n log log n) space.

It seems that in higher dimensions it is impossible to obtain polylogarithmic query
time using O(n(log n)O(1)) space. Moreover, even in the planar case there is no dynamic
data structure known that has polylogarithmic query and update times and that uses
O(n(log n)O(1)) space.

Therefore, it is natural to ask whether the approximate nearest-neighbor problem
allows more efficient solutions. Let ϵ > 0. A point q ∈ S is called a (1+ϵ)-approximate
neighbor of a point p ∈ IRD, if dt(p, q) ≤ (1 + ϵ)dt(p, p

∗), where p∗ ∈ S is the true
nearest-neighbor of p.

This approximate neighbor problem was considered in Bern [5] and Arya et al.[1, 2].
In the latter paper, the problem is solved optimally: They give a deterministic data
structure of size O(n) that can find a (1 + ϵ)-approximate neighbor in O(log n) time,
for any positive constant ϵ. At this moment, however, no dynamic data structures are
known for this problem.

In this paper, we first show that for the L∞-metric, the nearest-neighbor problem
can be solved efficiently. To be more precise, we show that the range tree (see [12,
14, 15, 25]) can be used to solve this problem. As a result, we solve the L∞-neighbor
problem with a query time of O((log n)D−1 log log n) and an amortized update time
of O((log n)D−1 log log n), using O(n(log n)D−1) space. For the static version of this
problem, the query time is O((log n)D−1) and the space bound is O(n(log n)D−2).

Using this result, we give a data structure that solves the approximate L2-neighbor
problem, for any positive constant ϵ, within the same complexity bounds. (The con-
stant factors depend on D and ϵ.)

2

mode dimension update time w/a space reference

insertions D ≥ 2 log n w n [17, 18]
deletions D ≥ 2 (log n)D a n(log n)D−1 [23]

fully dynamic D ≥ 2
√
n log n w n [16, 20]

fully dynamic D ≥ 2 (log n)D log log n a n(log n)D [22]
fully dynamic D ≥ 3 (log n)D−1 log log n a n this paper
fully dynamic 2 log n log log n a n log n/(log log n)k this paper
fully dynamic 2 (log n)2/(log log n)k a n this paper

Table 1: Deterministic data structures for the dynamic closest pair problem. In the
last two lines, k is an arbitrary non-negative integer constant. All bounds are “big-oh”
with constant factors that depend on the dimension D and, in the last two lines, on
D and k. The update times are either worst-case (w) or amortized (a).

We also consider the dynamic closest pair problem. Note that the static version
has been solved already for a long time. Several algorithms are known that compute
a closest pair in O(n log n) time, which is optimal. (See [4, 10, 15, 19].) The dynamic
version, however, has been investigated only recently. In Table 1, we give an overview of
the currently best known data structures for maintaining a closest pair under insertions
and/or deletions of points. For an up-to-date survey, we refer the reader to Schwarz’s
Ph.D. Thesis [17].

Note that all data structures of Table 1 are deterministic and can be implemented
in the algebraic computation tree model. If we add randomization to this model,
then there is a data structure of size O(n) that maintains a closest pair in O((log n)2)
expected time per update. (See Golin et al.[9].)

In this paper, we give new deterministic data structures for the dynamic closest
pair problem. These structures are based on our solution to the L∞-neighbor problem,
data structures for maintaining boxes of constant overlap, and a new transformation.
Given any dynamic closest pair data structure having more than linear size, this trans-
formation produces another dynamic closest pair structure that uses less space. The
complexity bounds of the new structures are shown in the last three lines of Table 1.
The results of the last two lines are obtained by applying the transformation repeatedly.
Note that we obtain the first linear size deterministic data structure that maintains a
closest pair in polylogarithmic time.

Finally, we consider the all-nearest-neighbors problem. Again, in the planar case,
the problem can be solved using Voronoi diagrams. For the D-dimensional case,
Vaidya [24] has given an optimal O(n log n) time algorithm that computes the Lt-
neighbor for each point of S. No non-trivial solutions seem to be known for main-
taining for each point its nearest-neighbor. One of our data structures (not the ones
mentioned in Table 1) for maintaining the closest pair basically maintains the L∞-
neighbor of each point in S. As a result, we get a data structure of size O(n(log n)D−1)
that maintains for each point in S its L∞-neighbor in O((log n)D−1 log log n) amortized
time per update.

We want to remark here that all our algorithms use classical and well-understood
data structures, such as range trees, segment trees, and skewer trees. Moreover, we

3

apply the well known technique of fractional cascading ([6, 14]) several times.
The rest of this paper is organized as follows. In Section 2, we recall the definition

of a range tree. This data structure is used in Section 3 to solve the L∞-neighbor
problem. In Section 4, we give the data structure for solving the approximate L2-
nearest neighbor problem.

Our first data structure for maintaining the closest pair stores a dynamically chang-
ing set of boxes that are of constant overlap, i.e., there is a constant c such that each
box contains the centers of at most c boxes in its interior. We have to maintain such
boxes under insertions and deletions such that for any query point p ∈ IRD, we can
find all boxes that contain p. In Section 5, we give two data structures for this prob-
lem. The first one is based on segment trees. (See [13, 15].) Therefore, its size is
superlinear. We also give a linear size solution having a slightly worse update time in
the planar case. This solution is based on skewer trees. (See [8, 21].)

In Section 6, we use the results obtained to give a new data structure that main-
tains the closest pair in a point set. This structure has size O(n(log n)D−1) and an
amortized update time of O((log n)D−1 log log n). It immediately gives the dynamic
data structure for the all-L∞-nearest-neighbors problem. In Section 7, we give the
transformation that reduces the size of a dynamic closest pair structure. Applying
this transformation repeatedly to the structure of Section 6 gives the new results men-
tioned in Table 1. Some concluding remarks are given in Section 8.

2 Range trees

In this section, we recall the definition of a range tree. See [12, 13, 15, 25]. The
coordinates of a point p in IRD are denoted by pi, 1 ≤ i ≤ D. Moreover, we denote
by p′ the point (p2, . . . , pD) in IRD−1. If S is a set of points in IRD, then we define
S ′ := {p′ : p ∈ S}. We note that S ′ is to be considered as a multiset, i.e., elements
may occur more than once.

The range tree: Let S be a set of n points in IRD. A D-dimensional range tree for
the set S is defined as follows. For D = 1, it is a balanced binary search tree, storing
the elements of S in sorted order in its leaves.

For D > 1, it consists of a balanced binary search tree, called the main tree, storing
the points of S in its leaves, sorted by their first coordinates. For each internal node
v of this main tree, let Sv be the set of points that are stored in its subtree. Node v
contains a pointer to the rightmost leaf in its subtree and (a pointer to) an associated
structure, which is a (D − 1)-dimensional range tree for the set S ′

v.

Hence, a 2-dimensional range tree for a set S consists of a binary tree, storing the
points of S in its leaves sorted by their x-coordinates. Each internal node v of this
tree contains a pointer to the rightmost leaf in its subtree and (a pointer to) a binary
tree that stores the points of Sv in its leaves sorted by their y-coordinates.

Let p be any point in IRD. Consider the set {r ∈ S : r1 ≥ p1}, i.e., the set of all
points in S having a first coordinate that is at least equal to p’s first coordinate. Using
the range tree, we can decompose this set into O(log n) canonical subsets:

4

Initialize M := ∅. Starting in the root of the main tree, search for the leftmost
leaf storing a point whose first coordinate is at least equal to p1. During this search,
each time we move from a node v to its left son, add the right son of v to the set M .
Let v be the leaf in which this search ends. If the point stored in this leaf has a first
coordinate that is at least equal to p1, then add v to the set M .

Lemma 1 The set M of nodes of the main tree that is computed by the given algorithm
satisfies

{r ∈ S : r1 ≥ p1} =
∪
v∈M

Sv.

Moreover, M is computed in O(log n) time.

Range trees can be maintained under insertions and deletions of points such that
each binary tree that is part of the structure has a height logarithmic in the number
of its leaves. The update algorithms use dynamic fractional cascading. For details,
we refer the reader to Mehlhorn and Näher [14]. In the next theorem, we state the
complexity of the range tree.

Theorem 1 A D-dimensional range tree for a set of n points has O(n(log n)D−1)
size and can be maintained in O((log n)D−1 log log n) amortized time per insertion and
deletion.

3 The L∞-neighbor problem

Recall the following notations. For any point p = (p1, p2, . . . , pD) ∈ IRD, we denote by
p′ the point (p2, . . . , pD) in IRD−1. If S is a set of points in IRD, then S ′ = {p′ : p ∈ S}.
Finally, if v is a node of the main tree of a range tree storing a set S, then Sv denotes
the set of points that are stored in the subtree of v.

Let S be a set of n points in IRD. We want to store this set into a data structure
such that for any query point p ∈ IRD, we can find a point in S having minimal
L∞-distance to p. Such a point is called an L∞-neighbor of p in S.

Let q be an L∞-neighbor of p in the set {s ∈ S : s1 ≥ p1}. We call q a right-L∞-
neighbor of p in S. Similarly, a point r is called a left-L∞-neighbor of p in S, if it is
an L∞-neighbor of p in the set {s ∈ S : s1 ≤ p1}. In order to guarantee that both
neighbors always exist, we add the 2D artificial points (a1, . . . , aD), where all ai are
zero, except for one which is either ∞ or −∞, to the set S. Note that none of these
points can be L∞-neighbor of any query point.

The data structure that solves the L∞-neighbor problem is just a D-dimensional
range tree storing the points of S and the artificial points. In Figure 1, our recursive
algorithm is given that finds an L∞-neighbor of any query point in IRD.

We prove the correctness of this query algorithm. It is clear that the algorithm
is correct in the 1-dimensional case. So let D ≥ 2 and assume that the algorithm is
correct for smaller values of D. The following lemma turns out to be useful.

Lemma 2 Let p ∈ IRD and let q be its right-L∞-neighbor in S. Let w be any node in
the main tree of the range tree such that q ∈ Sw and p has a first coordinate that is at

5

Algorithm Neighbor(p, S,D) (* returns an L∞-neighbor of p in S *)
begin
1. Assume D = 1.

qL := maximal element in the 1-dimensional range tree that is less than p;
qR := minimal element in the 1-dimensional range tree that is at least

equal to p;
if |p− qR| ≤ |p− qL| then return qR else return qL fi;

2. Assume D ≥ 2.
2a. Compute a right-L∞-neighbor:

Stage 1. Compute the set M of nodes of the main tree, see Lemma 1.
Number these nodes v1, v2, . . . , vm, m = |M |, where vi is closer to
the root than vi−1, 2 ≤ i ≤ m.

Stage 2. (* one of the sets Svi contains a right-L∞-neighbor of p *)
C := ∅; i := 1; stop := false;
while i ≤ m and stop = false
do x′ := Neighbor(p′, S ′

vi
, D − 1);

r := the point stored in the rightmost leaf of the subtree of vi;
if d∞(p′, x′) > |p1 − r1|
then C := C ∪ {x}; i := i+ 1
else v := vi; stop := true
fi

od;
if stop = false
then qR := a point of C having minimal L∞-distance to p;

goto 2b
fi;

Stage 3. (* the set C ∪ Sv contains a right-L∞-neighbor of p *)
while v is not a leaf
do w := left son of v;

x′ := Neighbor(p′, S ′
w, D − 1);

r := the point stored in the rightmost leaf of the subtree of w;
if d∞(p′, x′) > |p1 − r1|
then C := C ∪ {x}; v := right son of v
else v := w
fi

od;
qR := a point of C ∪ Sv having minimal L∞-distance to p;

2b. Compute a left-L∞-neighbor:
In a completely symmetric way, compute a left-L∞-neighbor qL of p;

2c. if d∞(p, qR) ≤ d∞(p, qL) then return qR else return qL fi
end

Figure 1: Finding an L∞-neighbor.

6

most equal to the first coordinate of any point in Sw. Let r be the point of S that is
stored in the rightmost leaf of w’s subtree. Finally, let

N := |{x ∈ Sw : |pj − xj| ≤ |p1 − r1|, 2 ≤ j ≤ D}|.

If N = 0, then q′ is an L∞-neighbor of p′ in the (D − 1)-dimensional set S ′
w.

Proof: The proof is by contradiction. So let s be a point in Sw such that s′ is an L∞-
neighbor of p′ in the set S ′

w and assume that d∞(p′, s′) < d∞(p′, q′). Let δ := |p1 − r1|.
Since q and s are elements of Sw, we have |p1 − q1| ≤ δ and |p1 − s1| ≤ δ. Since

N = 0, there is a j, 2 ≤ j ≤ D, such that |pj−qj| > δ. Therefore, d∞(p, q) = d∞(p′, q′).
Similarly, there is a k, 2 ≤ k ≤ D, such that |pk − sk| > δ and, hence, d∞(p, s) =
d∞(p′, s′). This implies that d∞(p, s) < d∞(p, q), i.e., q is not a right-L∞-neighbor of
p in S. This is a contradiction.

We analyze part 2a of the algorithm. As we will see, this part computes a right-
L∞-neighbor of p. Consider the nodes v1, . . . , vm that are computed in Stage 1. We
know that

{r ∈ S : r1 ≥ p1} =
m∪
i=1

Svi .

Hence, one of the sets Svi contains a right-L∞-neighbor of p.
Note that each point in Svi−1

has a first coordinate that is at most equal to the
first coordinate of any point in Svi , 2 ≤ i ≤ m.

Lemma 3 If the variable stop has value false after the while-loop of Stage 2 has been
completed, then the set C contains a right-L∞-neighbor of p in S.

Proof: Let i, 1 ≤ i ≤ m, be an index such that the set Svi contains a right-L∞-
neighbor q of p. We consider what happens during the i-th iteration of the while-loop.
Let x and r be the points that are selected in this iteration. Since d∞(p′, x′) > |p1−r1|,
it is clear that the value of the integer

N := |{y ∈ Svi : |pj − yj| ≤ |p1 − r1|, 2 ≤ j ≤ D}|

is zero. Then, Lemma 2 implies that q′ is an L∞-neighbor of p′ in S ′
vi
. Hence,

d∞(p′, x′) = d∞(p′, q′). Since d∞(p′, x′) = d∞(p, x) and d∞(p′, q′) = d∞(p, q), it follows
that d∞(p, x) = d∞(p, q). This proves that x is a right-L∞-neighbor of p. Since x is
added to C during this iteration, the proof is completed.

Lemma 4 If the variable stop has value true after the while-loop of Stage 2 has been
completed, then the set C ∪ Sv contains a right-L∞-neighbor of p in S.

Proof: Consider the integer i such that during the i-th iteration of the while-loop the
variable stop is set to the value true. Then v = vi.

We distinguish two cases. First let j ≥ i+1 and assume that the set Svj contains a
right-L∞-neighbor q of p in S. Consider what happens during the i-th iteration of the
while-loop. Let x and r be the points that are selected during this iteration. Moreover,

7

let δ := |p1 − r1|. Since |p1 − x1| ≤ δ and d∞(p′, x′) ≤ δ, we have d∞(p, x) ≤ δ. Since
q ∈ Svj , we have

d∞(p, q) ≥ q1 − p1 ≥ r1 − p1 = δ.

This implies that d∞(p, x) ≤ d∞(p, q). Hence, x is also a right-L∞-neighbor of p. Since
x ∈ Sv, the claim of the lemma follows.

Next let 1 ≤ j ≤ i and assume that the set Svj contains a right-L∞-neighbor of p
in S. If j = i, then we are done. If j < i, then in the same way as in the proof of
Lemma 3, it follows that such a neighbor is added to C during the j-th iteration of
the while-loop. This completes the proof.

Lemma 5 During the while-loop of Stage 3, the set C ∪ Sv contains a right-L∞-
neighbor of p in S.

Proof: The previous lemma implies that the claim holds before the while-loop is
entered. Consider an iteration and assume that C ∪ Sv contains a right-L∞-neighbor
of p. (We consider C as it is at the beginning of this iteration.) Let x and r be the
points that are selected during this iteration. Moreover, let wl (resp. wr) be the left
(resp. right) son of v.

First assume that d∞(p′, x′) > |p1−r1|. We have to show that C∪{x}∪Swr contains
a right-L∞-neighbor of p. Since the set C ∪ Swl

∪ Swr contains a right-L∞-neighbor
of p, we only have to consider the case where the set Swl

contains such a neighbor.
In this case, it follows in the same way as in the proof of Lemma 3 that point x is a
right-L∞-neighbor of p. Since this point is added to C during this iteration, the claim
follows.

It remains to consider the case where d∞(p′, x′) ≤ |p1 − r1|. Now we have to show
that the set C ∪ Swl

contains a right-L∞-neighbor of p. Assume that Swr contains
such a neighbor. As in the proof of the previous lemma, it follows that x is also a
right-L∞-neighbor of p. But, x is an element of Swl

. This completes the proof.

Lemmas 3 and 5 imply that point qR which is computed in part 2a is a right-L∞-
neighbor of p in S. Similarly, point qL computed in part 2b is a left-L∞-neighbor of p.
This proves that the point that is returned in part 2c is an L∞-neighbor of p. Hence,
algorithm Neighbor(p, S,D) is correct.

Lemma 6 For D ≥ 2, the running time of algorithm Neighbor(p, S,D) is bounded by
O((log n)D−1).

Proof: Let Q(n,D) denote the running time on a set of n points in IRD. It is clear
that Q(n, 1) = O(log n). Let D ≥ 2. Consider part 2a. Stage 1 takes O(log n) time.
The while-loop in Stage 2 takes time O(Q(n,D − 1) log n). If stop = false after this
loop, then O(|C|) = O(log n) time is needed to select the point qR. Hence, Stage 2
takes time O(Q(n,D− 1) log n). Stage 3 takes the same amount of time. Part 2b can
be analyzed in the same way. Clearly, part 2c takes only constant time. This proves
that Q(n,D) = O(Q(n,D − 1) log n), implying that Q(n,D) = O((log n)D).

Now consider the planar case. The algorithm follows a path in the main tree and
locates the y-coordinate of the query point in the associated structure—a binary search

8

tree—of some of the nodes on this path. It is well known that layering or fractional
cascading (see [6, 15]) can be applied to improve the query time from O((log n)2) to
O(log n), i.e., Q(n, 2) = O(log n). As a result, the query time for the D-dimensional
case, where D ≥ 2, is improved to O((log n)D−1).

Hence, we have a data structure for the L∞-neighbor problem that has a query
time of O((log n)D−1) and that uses O(n(log n)D−1) space. We can improve the space
bound by noting that the planar version can be solved by means of the L∞-Voronoi
diagram. (See Lee [11].) That is, the planar L∞-neighbor problem has a solution
with a query time of O(log n) using only O(n) space. As a result, the D-dimensional
problem can be solved with a query time of O((log n)D−1) using O(n(log n)D−2) space.

Until now, we only considered the static version of the problem. We saw in The-
orem 1 that range trees can be maintained under insertions and deletions of points.
Therefore, our solution that is based on the range tree only can be used for the dy-
namic problem. Because of dynamic fractional cascading, the query time increases by
a factor of O(log log n). This proves the following result.

Theorem 2 Let S be a set of n points in IRD. There exists a data structure of size
O(n(log n)D−2) that, given a query point p ∈ IRD, finds an L∞-neighbor of p in S in
O((log n)D−1) time.

For the dynamic version of the problem, there is a structure of size O(n(log n)D−1)
having O((log n)D−1 log log n) query time and O((log n)D−1 log log n) amortized update
time.

Remark: Let c be a positive integer. The range tree can also be used to compute
the c L∞-neighbors of a query point. The algorithm is basically the same. If c is a
constant, the query time remains the same as in the above theorem.

4 The approximate L2-neighbor problem

We mentioned in the introduction that the L2-nearest-neighbor problem is hard to
solve exactly. Therefore, it is natural to consider a weaker version of the problem.

Let S be a set of n points in IRD and let ϵ > 0 be a fixed constant. For any
point p ∈ IRD, we denote by p∗ its L2-neighbor in S, i.e., p∗ is a point of S such
that d2(p, p

∗) = min{d2(p, q) : q ∈ S}. A point q ∈ S is called a (1 + ϵ)-approximate
L2-neighbor of p if d2(p, q) ≤ (1 + ϵ)d2(p, p

∗).
We want to store the set S in a data structure such that for any query point p ∈ IRD

we can find a (1 + ϵ)-approximate L2-neighbor of it.

Let p ∈ IRD and let q be an L∞-neighbor of p in S. Let δ := d∞(p, p∗) and
consider the D-dimensional axes-parallel box centered at p having sides of length 2δ.
Clearly, q lies inside or on the boundary of this box. Therefore, d2(p, q) ≤

√
D · δ.

Since δ = d∞(p, p∗) ≤ d2(p, p
∗), we infer that d2(p, q) ≤

√
D · d2(p, p∗), i.e., q is a√

D-approximate L2-neighbor of p.
This shows that we can solve the

√
D-approximate L2-neighbor problem using the

results of the previous section.

9

We extend this solution. First note that the L∞-metric depends on the coordinate
system: If we rotate the (XY)-system, then the L∞-metric changes. The L2-metric,
however, is invariant under such rotations. We store the set S in a constant number
of range trees, where each range tree stores the points according to its own coordinate
system. Then given p, we use the range trees to compute L∞-neighbors in all coor-
dinate systems. As we will see, one of these L∞-neighbors is a (1 + ϵ)-approximate
L2-neighbor of p.

Let (Fi) be a family of orthonormal coordinate systems all sharing the same origin.
The coordinates of any point x in the system Fi are denoted by xi1, xi2, . . . , xiD.
Moreover, di,∞(·, ·) denotes the L∞-distance function in Fi. Assume that for any
point x in D-dimensional space there is an index i such that for all 1 ≤ j ≤ D,

0 ≤ xij ≤ xiD ≤ (1 + ϵ)xij, (1)

i.e., in Fi all coordinates of x are non-negative and almost equal. Note that the family
(Fi) is independent of the set S.

In Yao [26], it is shown how such a family consisting of O((c/ϵ)D−1) coordinate
systems can be constructed. (Here, c is a constant.) In the planar case, such a family
is easily obtained: Let 0 < ϕ < π/4 be such that tanϕ = ϵ/(2 + ϵ). For 0 ≤ i < 2π/ϕ,
let Xi (resp. Yi) be the directed line that makes an angle of i · ϕ with the positive
X-axis (resp. Y -axis). Then, Fi is the (XiYi)-coordinate system.

To prove that (1) holds for this family, let x be any point in the plane and let γ be
the angle that the line segment x⃗ between the origin and x makes with the positive
X-axis.

First assume that π/4 ≤ γ < 2π. Let i := ⌊(γ − π/4)/ϕ⌋ and let γi be the angle
between x⃗ and the positive Xi-axis. Then γi = γ − i · ϕ and this angle lies in between
π/4 and π/4 + ϕ. Therefore, the coordinates xi1 and xi2 of x in Fi satisfy

xi2/xi1 = tan γi ≥ tanπ/4 = 1

and

xi2/xi1 = tan γi ≤ tan(π/4 + ϕ) =
1 + tanϕ

1− tanϕ
= 1 + ϵ.

If 0 ≤ γ < π/4, then we take i := ⌊(7π/4+ γ)/ϕ⌋. In this case, γi = 2π− i · ϕ+ γ and
this angle lies in between π/4 and π/4 + ϕ. This proves that xi2/x1 lies in between 1
and 1 + ϵ.

Hence, the family (Fi) satisfies the assumptions made in (1). Moreover, the number
of coordinate systems is at most

1 +
2π

ϕ
= 1 +

2π

arctan ϵ/(2 + ϵ)
= O(1/ϵ).

The data structure for approximate L2-neighbor queries: For each index i, let
Si denote the set of points in S with coordinates in the system Fi. The data structure
consists of a collection of range trees; the i-th range tree stores the set Si.

10

Finding an approximate L2-neighbor: Let p ∈ IRD be a query point. For each
index i, use the i-th range tree to find an L∞-neighbor q(i) of p in Si. Report an
L∞-neighbor that has minimal L2-distance to p.

Lemma 7 The query algorithm reports a (1 + ϵ)-approximate L2-neighbor of p.

Proof: Consider an exact L2-neighbor p∗ of p. Let i be an index such that the
coordinates of p∗ − p in Fi satisfy

0 ≤ pij − p∗ij ≤ piD − p∗iD ≤ (1 + ϵ)(pij − p∗ij), 1 ≤ j ≤ D.

Let q be the point that is reported by the algorithm. Since d2(p, q) ≤ d2(p, q
(i)), it

suffices to prove that d2(p, q
(i)) ≤ (1 + ϵ)d2(p, p

∗).
Let B be the D-dimensional box centered at p with sides of length 2di,∞(p, p∗) that

are parallel to the axes of Fi. Since q(i) is an L∞-neighbor of p in Si, this point must
lie inside or on the boundary of B. It follows that

d2(p, q
(i)) ≤

√
D · di,∞(p, p∗).

Note that di,∞(p, p∗) = piD − p∗iD. Moreover,

(d2(p, p
∗))2 =

D∑
j=1

(pij − p∗ij)
2 ≥

D∑
j=1

(
piD − p∗iD
1 + ϵ

)2

=
D

(1 + ϵ)2
(di,∞(p, p∗))2.

Hence,

d2(p, q
(i)) ≤

√
D · di,∞(p, p∗) ≤

√
D · 1 + ϵ√

D
· d2(p, p∗) = (1 + ϵ)d2(p, p

∗).

This proves the lemma.

Hence, we have solved the (1+ϵ)-approximate L2-neighbor problem. The complex-
ity of our solution follows immediately from Theorem 2. We have proved the following
theorem.

Theorem 3 Let S be a set of n points in IRD and let ϵ be a positive constant. There
exists a data structure of size O(n(log n)D−2) that, given a query point p ∈ IRD, finds
a (1 + ϵ)-approximate L2-neighbor of p in S in O((log n)D−1) time.

For the dynamic version of the problem, there is a data structure with a query time
of O((log n)D−1 log log n) and an amortized update time of O((log n)D−1 log log n) that
uses space O(n(log n)D−1).

In all complexity bounds, the constant factor is proportional to (c/ϵ)D−1 for some
fixed c.

11

5 The containment problem for boxes of constant

overlap

A box is a D-dimensional axes-parallel cube, i.e., it is of the form

[a1 : a1 + δ]× [a2 : a2 + δ]× . . .× [aD : aD + δ],

for real numbers a1, a2, . . . , aD and δ > 0. The center of this box is the point (a1 +
δ/2, a2 + δ/2, . . . , aD + δ/2).

Let S be a set of n boxes in IRD that are of constant overlap, i.e., there is an
integer constant cD—possibly depending on the dimension—such that each box B of
S contains the centers of at most cD boxes in its interior. (Here, we also count the
center of B itself. Note that many boxes may have their centers on the boundary
of B.)

We want to store these boxes in a data structure such that for any query point
p ∈ IRD, we can find all boxes that contain p. Note that we distinguish between “being
contained in a box” and “being contained in the interior of a box”. The following
lemma shows that a point p can be contained in only a constant number of boxes.

Lemma 8 Any point p ∈ IRD is contained in at most 21+D2
cD boxes of S.

Proof: The proof is by induction on D. So let D = 1. Assume w.l.o.g. that p = 0.
Let S+ be the set of all boxes of S whose centers are positive. Let b1, b2, . . . , bm be the
centers of the boxes in S+ that contain p. Assume w.l.o.g. that b1 = max{bi : 1 ≤ i ≤
m}. The interior of the box having b1 as its center contains all centers bi, 1 ≤ i ≤ m.
Hence, the constant overlap property implies that m ≤ c1, i.e., point p is contained in
at most c1 boxes of S+.

By a symmetric argument, point p is contained in at most c1 boxes of S whose
centers are negative. It remains to consider the boxes having p as their centers. The
constant overlap property directly implies that there are at most c1 such boxes.

This proves that there are at most 3c1 boxes in the entire set S that contain p.
Now let D ≥ 2 and assume the lemma holds for dimension D − 1. Again, we

assume w.l.o.g. that p is the origin. Let S+ be the set of all boxes of S whose centers
have positive coordinates. We will show that there are at most cD boxes in S+ that
contain p.

Let b1, b2, . . . , bm be the centers of the boxes in S+ that contain p. Assume w.l.o.g.
that

δ := d∞(p, b1) = max{d∞(p, bi) : 1 ≤ i ≤ m}.

Let B be the box of S+ having b1 as its center. We claim that d∞(b1, bi) < δ for
1 ≤ i ≤ m. Indeed, let 1 ≤ j ≤ D. The j-th coordinate bij of bi satisfies 0 < bij ≤ δ.
As a result, |b1j − bij| < δ. This proves the claim.

Since B contains p, it has sides of length at least 2δ. Therefore, since each center
bi has L∞-distance less than δ to b1, these centers are contained in the interior of B.
Then, the constant overlap property implies that m ≤ cD.

This proves that p is contained in at most cD boxes of S+. By a symmetric ar-
gument, p is contained in at most cD boxes of S that have their centers in a fixed

12

D-dimensional quadrant. Hence, p is contained in at most 2DcD boxes whose centers
have non-zero coordinates.

Let S0 be the set of all boxes in S whose centers have zero as their first coordinate.
Consider the set S ′

0 of (D − 1)-dimensional boxes obtained from S0 by deleting from
each box its first coordinates. The constant overlap property for S0 implies that the
boxes of S ′

0 are also of constant overlap, with constant cD. Hence, by the induction
hypothesis, point p′ = (p2, . . . , pD) is contained in at most 21+(D−1)2cD boxes of S ′

0.
These boxes of S ′

0 correspond exactly to the boxes of S0 that contain p.
Hence, at most 21+(D−1)2cD boxes of S0 contain p. It follows from a symmetric

argument that for each 1 ≤ i ≤ D, point p is contained in at most 21+(D−1)2cD boxes
whose centers have zero as their i-th coordinate.

To summarize, we have shown that there are at most

2DcD +D 21+(D−1)2cD ≤ 21+D2

cD

boxes of S that contain p. This completes the proof.

In the next two subsections, we shall give two solutions for the box containment
problem.

5.1 A solution based on segment trees

We start with the one-dimensional case. Let S be a set of n intervals [aj : bj], 1 ≤ j ≤
n, that are of constant overlap with constant c.

The one-dimensional structure: We store the intervals in the leaves of a balanced
binary search tree T , sorted by their right endpoints. The leaves of this tree are
threaded in a doubly-linked list.

The query algorithm: Let p ∈ IR be a query element. Search in T for the leftmost
leaf containing a right endpoint that is at least equal to p. Starting in this leaf, walk
along the leaves to the right and report all intervals encountered that contain p. Stop
walking as soon as 4c intervals have been reported, or c intervals have been encountered
that do not contain p.

Lemma 9 The above data structure solves the one-dimensional containment problem
in a set of n intervals of constant overlap in O(n) space with a query time of O(log n).
Intervals can be inserted and deleted in O(log n) time.

Proof: The complexity bounds are clear; we only have to prove that the query algo-
rithm is correct. Clearly, all intervals that are reported contain p. It remains to show
that all intervals containing p are reported.

Let v be the leaf of T in which the search for p ends. The algorithm starts in v
and walks to the right. First note that all leaves to the left of v store intervals that
do not contain p. We know from Lemma 8 that there are at most 4c intervals that
contain p. Hence, after 4c intervals have been reported, the algorithm can stop. Now
assume that in leaf w, we encounter the c-th interval that does not contain p. All c

13

encountered intervals that do not contain p lie completely to the right of p. If there
is a leaf to the right of w whose interval contains p, then this interval contains these
c intervals. By the constant overlap property, such a leaf cannot exist. This proves
that the algorithm can stop in leaf w, i.e., if it has encountered c intervals that do not
contain p.

We next consider the D-dimensional case, where D ≥ 2. Let S be a set of n boxes
in IRD that are of constant overlap with constant cD. The data structure is a segment
tree for the intervals of the first coordinates of the boxes. (See [13, 15].) The nodes of
this tree contain appropriate associated structures.

If B = B1 ×B2 × . . .×BD is a box in IRD, then B′ denotes the box B2 × . . .×BD

in IRD−1. Similarly, S ′ denotes the set {B′ : B ∈ S}. Recall that we use a similar
notation for points.

The D-dimensional structure for D ≥ 2: Let a1 < a2 < . . . < am, where m ≤ 2n,
be the sorted sequence of all distinct endpoints of the intervals of the first coordinates
of the boxes in S. We store the elementary intervals

(−∞ : a1), [a1 : a1], (a1 : a2), [a2 : a2], . . . , (am−1 : am), [am : am], (am : ∞)

in this order in the leaves of a balanced binary search tree, called the main tree.
Each node v of this tree has associated with it an interval Iv being the union of the
elementary intervals of the leaves in the subtree of v. Let Sv be the set of all boxes
B = B1 × B2 × . . . × BD in S such that B1 spans the interval associated with v but
does not span the interval associated with its father node, i.e. Iv ⊆ B1 and If(v) ̸⊆ B1,
where f(v) is the father of v.

Each node v of the main tree contains (a pointer to) an associated structure for the
set Sv: Partition this set into Svl, Svc and Svr, consisting of those boxes of Sv whose
centers lie to the left of the “vertical” slab Iv × IRD−1, in or on the boundary of this
slab, and to the right of this slab, respectively.

The associated structure of v consists of three recursively defined (D−1)-dimensional
structures for the sets S ′

vl, S
′
vc and S ′

vr.

Remark: The interval Iv may be open, half-open or closed. Therefore, the boundary
of the slab Iv × IRD−1 does not necessarily belong to this slab.

The query algorithm: Let p = (p1, p2, . . . , pD) ∈ IRD be a query point. Search in
the main tree for the elementary interval that contains p1. For each node v on the
search path, recursively perform a (D− 1)-dimensional query with the point p′ in the
three structures that are stored with v.

At the last level of the recursion, a one-dimensional query is performed in a binary
search tree. In this tree, the algorithm stops if it has reported 21+D2

cD boxes of S
that contain p, or if it has encountered cD boxes of S that do not contain p. (If in this
tree cD boxes that do not contain p have been encountered, then the algorithm only
stops at this level of the recursion. If, on the other hand, overall 21+D2

cD boxes that
contain p have been reported, then the entire query algorithm stops.)

The correctness proof of this algorithm uses the following lemma.

14

Lemma 10 Let x and y be real numbers, let p ∈ IRD and let i, 1 ≤ i ≤ D − 1, be
an integer such that x ≤ pi ≤ y. Let A = [a1 : a1 + α] × . . . × [aD : aD + α] and
B = [b1 : b1+β]× . . .× [bD : bD +β] be two boxes such that ai ≤ x, ai+α ≥ y, bi ≤ x,
bi + β ≥ y, bD > pD and bD + β ≤ aD + α. Finally, assume that p is contained in A.
Then,

1. aD < bD + β/2 < aD + α,

2. if one of the following three conditions holds,

(a) x ≤ ai + α/2 ≤ y and x ≤ bi + β/2 ≤ y,

(b) ai + α/2 < x and bi + β/2 < x,

(c) ai + α/2 > y and bi + β/2 > y,

then ai < bi + β/2 < ai + α.

Proof: The right inequality of the first assertion follows easily: bD + β/2 < bD + β ≤
aD + α. Since p is contained in A, we have aD ≤ pD. Therefore, aD ≤ pD < bD <
bD + β/2. This proves 1.

Before we prove 2, observe that bD + β ≤ aD + α < bD + α. It follows that β < α.
Assume that case 2(a) applies, i.e., x ≤ ai + α/2 ≤ y and x ≤ bi + β/2 ≤ y. Since

bi + β/2 ≤ y ≤ ai + α and bi + β/2 ≥ x ≥ ai, we only have to show that ai ̸= bi + β/2
and bi + β/2 ̸= ai + α.

Assume that ai = bi + β/2. Then, x = ai = bi + β/2. First note that α/2 ≤
y− ai = y− x. Since β/2 = bi + β− (bi + β/2) ≥ y− (bi + β/2) = y− x, we infer that
α ≤ β. This is a contradiction and, hence, ai < bi + β/2.

Next assume that bi + β/2 = ai + α. Then, y = bi + β/2 = ai + α and in a similar
way we can prove that α ≤ β. Therefore, bi + β/2 < ai + α.

Next consider case 2(b), i.e., assume that ai + α/2 < x and bi + β/2 < x. Since
bi + β/2 < x ≤ y ≤ ai +α, we only have to show that ai < bi + β/2. We prove this by
contradiction. So, assume that ai ≥ bi + β/2. Then, α/2 = ai + α/2− ai < x− ai ≤
x − (bi + β/2) = x − bi − β/2. Since bi + β ≥ y ≥ x, we get x − bi ≤ β. Therefore,
α/2 < x− bi − β/2 ≤ β − β/2 = β/2, i.e., α < β. This is a contradiction and, hence,
we have proved that ai < bi + β/2.

Case 2(c) can be treated in the same way as case 2(b).

Lemma 11 The query algorithm is correct.

Proof: It is well known that the set of all boxes B = B1× . . .×BD such that p1 ∈ B1

is exactly the union of all sets Sv, where v is a node on the search path to p1. Hence,
we only have to consider the nodes on this search path.

Let v be a node on the path to p1. We know that p1 is contained in the first interval
of each box of Sv. Hence, we have to find all boxes in Sv whose last D − 1 intervals
contain (p2, . . . , pD). We claim that the recursive queries in the three structures stored
with v find these boxes. By Lemma 8, there are at most 21+D2

cD boxes that contain p.
Hence, at the last level of the recursion, the query algorithm can stop as soon as it
has reported this many boxes. It remains to prove that, at the last level, the query
algorithm can stop if it has encountered cD boxes that do not contain p.

Consider such a last level. That is, let v1, v2, . . . , vD−1 be nodes such that

15

1. v1 = v,

2. vi is a node of the main tree of one of the three structures that are stored with
vi−1,

3. vi lies on the search path to pi.

The algorithm makes one-dimensional queries with pD in the three structures—binary
search trees—that are stored with vD−1.

Consider one such query. The algorithm searches for pD. Let r be the leaf in which
this search ends. Starting in r, the algorithm walks along the leaves to the right.
During this walk, it encounters boxes that do or do not contain p. Assume that in leaf
s, the cD-th box is encountered that does not contain p. We have to show that the
algorithm can stop in s. That is, we must show that all leaves to the right of s store
boxes that do not contain p.

Assume this is not the case. Then, there is a box

A = [a1 : a1 + α]× [a2 : a2 + α]× . . .× [aD : aD + α]

that is stored in a leaf to the right of s and that contains p. Let

B(j) = [bj1 : bj1 + βj]× [bj2 : bj2 + βj]× . . .× [bjD : bjD + βj], 1 ≤ j ≤ cD,

be the encountered boxes between r and s that do not contain p. We shall prove that
A contains the centers of all these boxes in its interior. This will be a contradiction.

Let 1 ≤ j ≤ cD. Since the leaf of A lies to the right of the leaf of B(j), we know
that bjD + βj ≤ aD + α.

Let 1 ≤ i ≤ D − 1 and let x ≤ y be the boundary points of the interval Ivi . Then,
x ≤ pi ≤ y, because pi ∈ Ivi . Moreover, we know that Ivi is contained in the i-th
interval of A and B(j), i.e., ai ≤ x, ai + α ≥ y, bji ≤ x and bji + βj ≥ y. Finally, since
the leaf of B(j) is equal to leaf r or lies to the right of it, we know that pD ≤ bjD + βj.
Since B(j) does not contain p, this implies that bjD > pD. (Note that the i-th interval
of B(j) contains pi, 1 ≤ i ≤ D − 1.)

The definition of our data structure implies that the i-th coordinates of the centers
of A and B(j) are either both on the boundary or contained in Ivi , or both are less than
x, or both are larger than y. Therefore, all requirements of Lemma 10 are satisfied
and we conclude that ai < bji + βj/2 < ai + α.

Since i was arbitrary between one and D − 1, and since Lemma 10 also implies
that aD < bjD + βj/2 < aD +α, we have proved that the center of B(j) is contained in
the interior of A. This completes the proof.

We analyze the complexity of the D-dimensional structure. Let M(n,D) denote
the size of the data structure. It is well known that the first interval of a box in S
is stored in the associated structure of O(log n) nodes of the main tree. This implies
that M(n,D) = O(M(n,D − 1) log n). Since M(n, 1) = O(n), we get M(n,D) =
O(n(log n)D−1). Using presorting, the structure can be built in O(n(log n)D−1) time.

Let Q(n,D) denote the query time. Then Q(n, 1) = O(log n). The query algorithm
performs (D−1)-dimensional queries in each of the O(log n) nodes on the search path.

16

As a result, the query time satisfies Q(n,D) = O(Q(n,D − 1) log n), which solves to
O((log n)D). By applying fractional cascading (see [6]) in the 2-dimensional case, we
decreaseQ(n, 2) to O(log n). This improves the query time toQ(n,D) = O((log n)D−1)
for D ≥ 2.

By applying standard techniques, the data structure can be adapted to handle
insertions and deletions of boxes. (See [13, 14].) Because of dynamic fractional cas-
cading, the query time increases by a factor of O(log log n), whereas the size only
increases by a constant factor. The amortized update time is O((log n)D−1 log log n).

We summarize our result.

Theorem 4 Let S be a set of n boxes in IRD of constant overlap. There exists a data
structure of size O(n(log n)D−1) such that for any point p ∈ IRD, we can find all boxes
of S that contain p in O((log n)D−1) time. This static data structure can be built in
O(n(log n)D−1) time.

For the dynamic version of the problem, the query time is O((log n)D−1 log log n)
and the size of the structure is O(n(log n)D−1). Boxes can be inserted and deleted in
O((log n)D−1 log log n) amortized time.

5.2 A solution based on skewer trees

In this section, we give a linear space solution to the box containment problem. This
solution is based on skewer trees, introduced by Edelsbrunner et al. [8]. (See also
Smid [21] for a dynamic version of this data structure.)

Let S be a set of n boxes in IRD that are of constant overlap with constant cD. For
D = 1, the data structure is the same as in the previous subsection.

The D-dimensional structure for D ≥ 2: If S is empty, then the data structure is
also empty. Assume that S is non-empty. Let γ be the median of the set

{(a1 + b1)/2 : [a1 : b1]× [a2 : b2]× . . .× [aD : bD] ∈ S},

and let ϵ be the largest element that is less than γ in the set of all elements a1,
(a1 + b1)/2 and b1, where [a1 : b1] × . . . × [aD : bD] ranges over S. Let γ1 := γ − ϵ/2
and let σ be the hyperplane in IRD with equation x1 = γ1.

Let S<, S0 and S> be the set of boxes [a1 : b1] × . . . × [aD : bD] in S such that
b1 < γ1, a1 ≤ γ1 ≤ b1 and γ1 < a1, respectively. The D-dimensional data structure
for the set S is an augmented binary search tree—called the main tree—having the
following form:

1. The root contains the hyperplane σ.

2. The root contains pointers to its left and right sons, which are D-dimensional
structures for the sets S< and S>, respectively.

3. The root contains (a pointer to) an associated structure for the set S0: Partition
this set into S0l and S0r, consisting of those boxes in S0 whose centers lie to the
left of the hyperplane σ, and to the right of σ, respectively.
The associated structure of the root consists of two (D − 1)-dimensional struc-
tures for the sets S ′

0l and S ′
0r.

17

Remark: By our choice of γ1, the hyperplane σ does not contain the center of any
box in S. Moreover, each of the sets S< and S> has size at most n/2. The set S0 may
have size n. The height of the data structure is defined as the height of its main tree.
It follows that the structure has height O(log n).

The query algorithm: Let p = (p1, p2, . . . , pD) ∈ IRD be a query point. Let σ :
x1 = γ1 be the hyperplane stored in the root of the main tree. Recursively perform a
(D− 1)-dimensional query with the point p′ in the two structures that are stored with
the root.

If p1 < γ1 (resp. p1 > γ1), then recursively perform a D-dimensional query with p
in the left (resp. right) subtree of the root, unless this subtree is empty, in which case
the algorithm stops.

At the last level of the recursion, a one-dimensional query is performed in a binary
search tree. In this tree, the algorithm stops if it has reported 21+D2

cD boxes of S that
contain p, or if it has encountered cD boxes of S whose last intervals do not contain
pD, or if it has encountered 21+D2

cD boxes of S that do not contain p but whose last
intervals contain pD.

The correctness proof is similar to the one of Subsection 5.1. Again, we start with
a technical lemma.

Lemma 12 Let p ∈ IRD and let σi : xi = γi, 1 ≤ i ≤ D − 1, be hyperplanes in IRD.
Let A = [a1 : a1 + α]× . . . × [aD : aD + α] and B = [b1 : b1 + β] × . . . × [bD : bD + β]
be two boxes such that bD > pD and bD + β ≤ aD + α. Assume that p is contained
in A. Finally, assume that ai + α/2 < γi ≤ ai + α and bi + β/2 < γi ≤ bi + β for all
1 ≤ i ≤ D − 1.

Then ai < bi + β/2 < ai + α for all 1 ≤ i ≤ D.

Proof: We start with i = D. It follows directly that bD + β/2 < bD + β ≤ aD + α.
Since p is contained in A, we have aD ≤ pD. Therefore, aD ≤ pD < bD < bD + β/2.

Let 1 ≤ i ≤ D − 1. Then bi + β/2 < γi ≤ ai + α. It remains to show that
ai < bi + β/2. Assume that bi + β/2 ≤ ai. Then, β/2 = bi + β − (bi + β/2) ≥
γi − (bi + β/2) ≥ γi − ai > α/2, i.e., β > α. But, since bD + β ≤ aD + α < bD + α, we
also have β < α. This is a contradiction.

Lemma 13 The query algorithm is correct.

Proof: It is clear that the algorithm branches correctly. Hence, we only have to
consider the last level of the recursion. Since there are at most 21+D2

cD boxes that
contain p, the algorithm can stop as soon as it has reported this many boxes. It remains
to prove that, at the last level, the query algorithm can stop if it has encountered cD
boxes whose last intervals do not contain pD, or if it has encountered 21+D2

cD boxes
that do not contain p but whose last intervals contain pD.

Consider such a last level. That is, let v1, v2, . . . , vD−1 be nodes such that

1. v1 is a node of the main tree,

18

2. vi is a node of the main tree of one of the two structures that are stored with
vi−1,

3. vi lies on the search path to pi.

Let σi : xi = γi be the hyperplane that is stored with vi, 1 ≤ i ≤ D − 1.
The algorithm makes one-dimensional queries with pD in the two structures—

binary trees—that are stored with vD−1. Consider one such query. The algorithm
searches for pD. Let r be the leaf in which this search ends. Starting in r, the
algorithm walks along the leaves to the right. Assume that in leaf s, the cD-th box
is encountered whose last interval does not contain pD, or the (21+D2

cD)-th box is
encountered that does not contain p but whose last interval contains pD. We will
prove that all leaves to the right of s store boxes that do not contain p.

Assume this is not the case. Then, there is a box

A = [a1 : a1 + α]× [a2 : a2 + α]× . . .× [aD : aD + α]

that is stored in a leaf to the right of s and that contains p. Let

B(j) = [bj1 : bj1 + βj]× [bj2 : bj2 + βj]× . . .× [bjD : bjD + βj]

be the encountered boxes between r and s that do not contain p.
The definition of our data structure implies that for each 1 ≤ i ≤ D−1, the centers

of A and the B(j)’s lie on the same side of the hyperplane σi. Moreover, these boxes
intersect σi. We assume w.l.o.g. that for all 1 ≤ i ≤ D − 1, ai + α/2 < γi ≤ ai + α,
and for all j and all 1 ≤ i ≤ D − 1, bji + βj/2 < γi ≤ bji + βj.

There are two possible cases. First assume that the last intervals of cD boxes B(j)

do not contain pD. Consider such a box B(j). Since the leaf of this box is equal to
leaf r or lies to the right of it, we must have pD ≤ bjD + βj. Hence, pD < bjD. Also,
since the leaf of A lies to the right of the leaf of B(j), we have bjD + βj ≤ aD + α.
Hence, all requirements of Lemma 12 are satisfied. We conclude that the center of
B(j) is contained in the interior of A. This proves that the interior of A contains more
than cD centers, namely its own center and the centers of cD boxes B(j). This is a
contradiction.

The second case is where 21+D2
cD boxes B(j) do not contain p but their last intervals

contain pD. We claim that the point q := (γ1, γ2, . . . , γD−1, pD) is contained in A and in
all these B(j)’s. To prove this, first note that aD ≤ pD ≤ aD+α, because A contains p.
Consider any of these boxes B(j). By our assumption, bjD ≤ pD ≤ bjD + βj. Our
assumptions also imply that ai ≤ γi ≤ ai+α and bji ≤ γi ≤ bji+βj for all 1 ≤ i ≤ D−1.
Hence, there are more than 21+D2

cD boxes that contain q. This contradicts Lemma 8.

The complexity analysis is similar to that of the previous subsection. Since the
main tree has height O(log n), the query time is bounded by O((log n)D). In the planar
case, we can apply fractional cascading to improve the query time to O(log n). Then,
the query time for the D-dimensional case is improved to O((log n)D−1). It is easy to
see that the data structure has size O(n) and that it can be built in O(n log n) time.
(See [8] for details.)

19

We can adapt the data structure such that it can also handle insertions and dele-
tions of boxes. Since the algorithms and their running times are exactly the same as
in [21], we refer the reader to that paper for the details. Because of dynamic fractional
cascading, the query time increases by a factor of O(log log n), whereas the size only
increases by a constant factor. The amortized update time is O((log n)2 log log n).

We summarize our result.

Theorem 5 Let S be a set of n boxes in IRD of constant overlap. There exists a data
structure of size O(n) such that for any point p ∈ IRD, we can find all boxes of S that
contain p in O((log n)D−1) time. This static data structure can be built in O(n log n)
time.

For the dynamic version of the problem, the query time is O((log n)D−1 log log n)
and the size of the structure is O(n). Boxes can be inserted and deleted in amortized
time O((log n)2 log log n).

6 Maintaining the closest pair

In this section, we apply the results obtained so far to maintain a closest pair of a
point set under insertions and deletions. Let S be a set of n points in IRD and let
1 ≤ t ≤ ∞ be a real number. We denote the Lt-distance between any two points p
and q in IRD by d(p, q). The pair P,Q ∈ S is called a closest pair of S if

d(P,Q) = min{d(p, q) : p, q ∈ S, p ̸= q}.

We introduce the following notations. For any point p ∈ IRD, box (p) denotes the
smallest box centered at p that contains at least (2D + 2)D points of S \ {p}. In
other words, the side length of box (p) is twice the L∞-distance between p and its
(1 + (2D + 2)D)-th (resp. (2D + 2)D-th) L∞-neighbor, if p ∈ S (resp. p ̸∈ S).

Let N(p) be the set of points of S \{p} that are contained in the interior of box (p).
Note that N(p) has size less than (2D + 2)D. In fact, N(p) may even be empty.

Our data structure is based on the following lemma.

Lemma 14 The set {(p, q) : p ∈ S, q ∈ N(p)} contains a closest pair of S.

Proof: Let (P,Q) be a closest pair of S. We have to show that Q ∈ N(P). Assume
this is not the case. Let δ be the side length of box (P). Since Q lies outside or on the
boundary of this box, we have d(P,Q) ≥ δ/2.

Partition box (P) into (2D + 2)D subboxes with sides of length δ/(2D + 2). Since
box (P) contains at least 1 + (2D + 2)D points of S, one of these subboxes contains at
least two points. These two points have distance at most D · δ/(2D+2) < δ/2, which
is a contradiction, because (P,Q) is a closest pair of S.

The set {box (p) : p ∈ S} is of constant overlap: each box contains the centers
of at most (2D + 2)D boxes in its interior. These centers are precisely the points of
N(p) ∪ {p}. This fact and the above lemma suggest the following data structure.

20

The closest pair data structure:

1. The points of S are stored in a range tree.

2. The distances of the multiset {d(p, q) : p ∈ S, q ∈ N(p)} are stored in a heap.
With each distance, we store the corresponding pair of points. (Note that both
d(p, q) and d(q, p) may occur in the heap.)

3. The points of S are stored in a dictionary. With each point p, we store a list
containing the elements of N(p). For convenience, we also call this list N(p).
With each point q in N(p), we store a pointer to the occurrence of d(p, q) in the
heap.

4. The set {box (p) : p ∈ S} is stored in the dynamic data structure of Theorem 4.
This structure is called the box tree.

It follows from Lemma 14 that the pair of points that is stored with the mini-
mal element of the heap is a closest pair of S. The update algorithms are rather
straightforward.

The insertion algorithm: Let p ∈ IRD be the point to be inserted. Assume w.l.o.g.
that p ̸∈ S.

1. Using the range tree, find the (2D + 2)D L∞-neighbors of p in S. The point
among these neighbors having maximal L∞-distance to p determines box (p).
The neighbors that are contained in the interior of box (p) form the list N(p).

2. Insert p into the range tree and insert the distances d(p, q), q ∈ N(p) into the
heap. Then, insert p—together with the list N(p)—into the dictionary. With
each point q in N(p), store a pointer to d(p, q) in the heap. Finally, insert box (p)
into the box tree.

3. Using the box tree, find all boxes that contain p. For each reported element
box (q), q ̸= p, that contains p in its interior, do the following:

(a) Search in the dictionary for q. Insert p into N(q), insert d(q, p) into the
heap and store with p a pointer to d(q, p).

(b) If N(q) has size less than (2D + 2)D, then the insertion algorithm is com-
pleted. Otherwise, if N(q) has size (2D + 2)D, let r1, . . . , rl be all points
in N(q) that have maximal L∞-distance to q. For each 1 ≤ i ≤ l, delete
ri from N(q) and delete d(q, ri) from the heap. Finally, delete box (q) from
the box tree and insert the box centered at q having r1 on its boundary as
the new box (q).

The deletion algorithm: Let p ∈ S be the point to be deleted.

1. Delete p from the range tree. Search for p in the dictionary. For each point q in
N(p), delete the distance d(p, q) from the heap. Then, delete p and N(p) from
the dictionary. Finally, delete box (p) from the box tree.

21

2. Using the box tree, find all boxes that contain p. For each reported element
box (q), do the following:

(a) If p lies in the interior of box (q), then search in the dictionary for q, delete
p from N(q) and delete d(q, p) from the heap.

(b) Using the range tree, find the 1+(2D+2)D L∞-neighbors of q. Let box 0(q)
be the smallest box centered at q that contains these neighbors. If box (q) =
box 0(q), then the deletion algorithm is completed.

(c) Otherwise, if box (q) ̸= box 0(q), let r1, . . . , rl be all points that are contained
in the interior of box 0(q) but that do not belong to N(q) ∪ {q}. For each
1 ≤ i ≤ l, insert ri into N(q), insert d(q, ri) into the heap and store with
ri a pointer to d(q, ri). Finally, delete box (q) from the box tree and insert
box 0(q), being the new box (q).

It is easy to verify that these update algorithms correctly maintain the closest
pair data structure. During these algorithms, we perform a constant number of query
and update operations in the range tree, the box tree, the heap and the dictionary.
Therefore, by Theorems 2 and 4, the amortized update time of the entire data structure
is bounded by O((log n)D−1 log log n). We have proved the following result.

Theorem 6 Let S be a set of n points in IRD and let 1 ≤ t ≤ ∞. There exists
a data structure of size O(n(log n)D−1) that maintains an Lt-closest pair of S in
O((log n)D−1 log log n) amortized time per insertion and deletion. The constant factor
in the space (resp. update time) bound is of the form O(D)D (resp. 2O(D2)).

Consider again our data structure. The box box (p) that is associated with point p
contains an L∞-neighbor of p in S \ {p}. Therefore, the data structure can easily be
adapted such that it maintains for each point in S its L∞-neighbor.

Corollary 1 Let S be a set of n points in IRD. There exists a data structure of size
O(n(log n)D−1) that maintains an L∞-neighbor of each point in S. This data structure
has an amortized update time of O((log n)D−1 log log n).

7 A transformation for reducing the space com-

plexity

The closest pair data structure of the previous section uses more than linear space.
This raises the question if the same update time can be obtained using only linear
space. In this section, we show that for D ≥ 3, this is indeed possible. For D = 2, we
will obtain a family of closest pair data structures.

Note that we have a linear space solution for maintaining the set {box (p) : p ∈ S}.
(See Theorem 5.) For the L∞-neighbor problem, however, no linear space solution
having polylogarithmic query and update times is known. Hence, in order to reduce
the space complexity, we should avoid using the range tree.

22

We will give a transformation that, given any dynamic closest pair data structure
having more than linear size, produces another dynamic closest pair structure that
uses less space.

The transformed data structure is composed on two sets A and B that partition
S. The set B is contained in a dynamic data structure. To reduce space, B is a subset
of the entire set and contains points involved in o(n) updates only.

Let DS be a data structure that maintains a closest pair in a set of n points in IRD

under insertions and deletions. Let S(n) and U(n) denote the size and update time
of DS , respectively. The update time may be worst-case or amortized. We assume
that S(n) and U(n) are non-decreasing and smooth in the sense that S(Θ(n)) =
Θ(S(n)) and U(Θ(n)) = Θ(U(n)). Finally, let f(n) be a non-decreasing smooth
integer function. such that 1 ≤ f(n) ≤ n/2.

Let S ⊆ IRD be the current set of points. The cardinality of S is denoted by n. Our
transformed data structure will be completely rebuilt after a sufficiently long sequence
of updates. Let S0 be the set of points at the moment of the most recent rebuilding
and let n0 be its size at that moment.

As in the previous section, for each p ∈ IRD, box (p) denotes the smallest box
centered at p that contains at least (2D + 2)D points of S \ {p}. The set of all points
of S \ {p} that are in the interior of this box is denoted by N(p). If p ∈ S0, then
box 0(p) denotes the smallest box centered at p that contains at least (2D+2)D points
of S0 \ {p}.

The transformed closest pair data structure:

1. The set S is partitioned into sets A and B such that A ⊆ {p ∈ S : p ∈ S0 ∧
box (p) ⊆ box 0(p)}.

2. The distances of the multiset {d(p, q) : p ∈ A, q ∈ N(p)} are stored in a heap.
With each distance, we store the corresponding pair of points.

3. The boxes of the set {box 0(p) : p ∈ S0} are stored in a list, called the box list.
With each element box 0(p) in this list, we store a bit having value true if and
only if p ∈ A. Moreover, if p ∈ A, we store with box 0(p) the box box (p).

4. The boxes of the set {box 0(p) : p ∈ S0} are stored in the static data structure of
Theorem 5. This structure is called the box tree. With each box in this structure,
we store a pointer to its occurrence in the box list.

5. The points of S are stored in a dictionary. With each point p, we store a bit
indicating whether p belongs to A or B. If p ∈ A, then we store with p

(a) a pointer to the occurrence of box 0(p) in the box list, and

(b) a list containing the elements of N(p). For convenience, we also call this
list N(p). With each point q in N(p), we store a pointer to the occurrence
of d(p, q) in the heap.

23

6. The set B is stored in the dynamic data structure DS . This structure is called
the B-structure.

First we prove that this data structure indeed enables us to find a closest pair of
the current set S in O(1) time.

Lemma 15 Let δ be the minimal distance stored in the heap and let δ′ be the distance
of a closest pair in B. Then, min(δ, δ′) is the distance of a closest pair in the set S.

Proof: Let (P,Q) be a closest pair in S. We distinguish two cases.
Case 1: At least one of P and Q is contained in A.

Assume w.l.o.g. that P ∈ A. Since box (P) contains at least 1 + (2D + 2)D points
of S, it follows in the same way as in the proof of Lemma 14 that Q is contained
in the interior of this box. Hence, Q ∈ N(P) and, therefore, the distance d(P,Q) is
stored in the heap. Clearly, the heap only contains distances of the current set S.
Therefore, δ = d(P,Q). Moreover, since d(P,Q) is the minimal distance in S, we have
d(P,Q) ≤ δ′. This proves that d(P,Q) = min(δ, δ′).
Case 2: Both P and Q are contained in B.

Since d(P,Q) is the minimal distance in S and since the heap only stores distances
between points of the current set S, we have δ′ = d(P,Q) and d(P,Q) ≤ δ. Therefore,
d(P,Q) = min(δ, δ′).

Initialization: At the moment of initialization, S = S0 = A and B = ∅. Us-
ing Vaidya’s algorithm [24], compute for each point p in S its 1 + (2D + 2)D L∞-
neighbors. The point among these neighbors having maximal L∞-distance to p de-
termines box (p) = box 0(p). The neighbors (except p itself) that are contained in the
interior of this box form the list N(p). It is clear how the rest of the data structure
can be built. Note that each element box 0(p) in the box list has a bit with value true.

Now we can give the update algorithms. If a point p of S0 is deleted, it may be
inserted again during some later update operation. If this happens, p is assumed to
be a new point, i.e., it is assumed that p does not belong to S0 again. In this way, an
inserted point always belongs to B.

The insertion algorithm: Let p ∈ IRD be the point to be inserted. Assume w.l.o.g.
that p ̸∈ S.

1. Insert p into the dictionary and store with p a bit saying that p belongs to B.
Then, insert p into the B-structure.

2. Using the box tree, find all boxes that contain p. For each reported element
box 0(q), follow the pointer to its occurrence in the box list. If the bit of box 0(q)
has value true, then check if p is contained in the interior of box (q). If so, do the
following:

(a) Search in the dictionary for q. Insert p into N(q), insert d(q, p) into the
heap and store with p a pointer to d(q, p).

24

(b) If N(q) has size less than (2D + 2)D, then the insertion algorithm is com-
pleted. Otherwise, let r1, . . . , rl be all points of N(q) that are at maximal
L∞-distance from q. For each 1 ≤ i ≤ l, delete ri from N(q) and delete
d(q, ri) from the heap. Finally, replace box (q)—which is stored with box 0(q)
in the box list—by the box centered at q having r1 on its boundary, being
the new box (q).

It is easy to verify that this algorithm correctly maintains the data structure. Note
that since A ⊆ {p ∈ S : p ∈ S0 ∧ box (p) ⊆ box 0(p)}, all boxes box (q), q ∈ A, that
contain p are found in Step 2.

The deletion algorithm: Let p ∈ S be the point to be deleted.

1. Search for p in the dictionary. If p ∈ B, then delete p from this dictionary and
from the B-structure.

Otherwise, if p ∈ A, follow the pointer to box 0(p) in the box list and set its bit
to false. Moreover, for each point q in N(p), delete the distance d(p, q) from the
heap. Then, delete p from the dictionary.

2. Using the box tree, find all boxes that contain p. For each reported element
box 0(q), follow the pointer to its occurrence in the box list. If the bit of box 0(q)
has value true, then check if p is contained in box (q). If so, do the following:

Set the bit of box 0(q) to false. Search in the dictionary for q. For each point r in
N(q), delete d(q, r) from the heap. Then, delete the pointer from q to box 0(q),
delete the list N(q), and store with q a bit saying that it belongs to B. Finally,
insert q into the B-structure.

This concludes the description of the update algorithms. In order to guarantee a
good space bound, we occasionally rebuild the data structure:

Rebuild: Recall that n0 is the size of S at the moment we initialize the structure.
After f(n0) updates have been performed, we discard the entire structure and initialize
a new data structure for the current S.

We analyze the complexity of the transformed data structure. First note that the
initial and current sizes n0 and n are proportional: Since f(n0) ≤ n0/2, we have
n ≤ n0 + f(n0) ≤ 3n0/2 and n ≥ n0 − f(n0) ≥ n0/2.

The total size of the heap, the box list, the box tree and the dictionary is bounded
by O(n + n0) = O(n). Consider the B-structure. Initially, this structure is empty.
With each insertion, we insert one point into it, whereas with each deletion at most
a constant number of points are inserted. (See Lemma 8 for the constant. Note that
cD = (2D + 2)D.) Therefore, the B-structure stores O(f(n0)) = O(f(n)) points and
it has size O(S(f(n))).

During each update operation, we perform a constant number of queries and up-
dates in the various parts of the structure. Therefore, by Theorem 5, O((log n)D−1 +
U(f(n))) time is spent per update, in case the data structure is not rebuilt.

25

Consider the initialization. We can compute for each point its 1 + (2D + 2)D L∞-
neighbors in O(n0 log n0) time. (See [24].) By Theorem 5, the static box tree can
also be built in O(n0 log n0) time. It is clear that the rest of the data structure can
be built within these time bounds. Hence, the entire initialization takes O(n0 log n0)
time. Since we do not rebuild during the next f(n0) updates, the initialization adds

O

(
n0 log n0

f(n0)

)
= O((n log n)/f(n))

to the overall amortized update time. This proves:

Theorem 7 Let DS be any data structure for the dynamic closest pair problem. Let
S(n) and U(n) denote the size and update time of DS, respectively. Let 1 ≤ f(n) ≤ n/2
be a non-decreasing integer function. Assume that S(n), U(n) and f(n) are smooth.

We can transform DS into another data structure for the dynamic closest pair
problem having

1. size O(n+ S(f(n))), and

2. an amortized update time of O((log n)D−1 + U(f(n)) + (n log n)/f(n)).

Corollary 2 Let S be a set of n points in IRD, D ≥ 3, and let 1 ≤ t ≤ ∞.
There exists a data structure of size O(n) that maintains an Lt-closest pair of S in
O((log n)D−1 log log n) amortized time per insertion and deletion.

Proof: We apply Theorem 7 twice. Let DS be the data structure of Theorem 6,
i.e., S(n) = O(n(log n)D−1) and U(n) = O((log n)D−1 log log n). Moreover, let f(n) =
n/((log n)D−2 log log n). Then, Theorem 7 gives a closest pair structure DS ′ of size
S ′(n) = O(n log n/ log log n) having U ′(n) = O((log n)D−1 log log n) amortized update
time. Applying Theorem 7 to DS ′ with f ′(n) = n log log n/ log n proves the corollary.

Corollary 3 Let S be a set of n points in the plane and let 1 ≤ t ≤ ∞. For any
non-negative integer constant k, there exists a data structure

1. of size O(n log n/(log log n)k) that maintains an Lt-closest pair of S at a cost of
O(log n log log n) amortized time per insertion and deletion,

2. of size O(n) that maintains an Lt-closest pair of S in O((log n)2/(log log n)k)
amortized time per insertion and deletion.

Proof: The proof is by induction on k. For k = 0, the result claimed in 1. follows
from Theorem 6. Let k ≥ 0 and let DS be a closest pair data structure having size
S(n) = O(n log n/(log log n)k) and update time U(n) = O(log n log log n). Applying
Theorem 7 with f(n) = n(log log n)k/ log n gives a closest pair structure of size O(n)
having O((log n)2/(log log n)k) amortized update time.

On the other hand, applying Theorem 7 to DS with f(n) = n/ log log n gives a
closest pair structure of size O(n log n/(log log n)k+1) with an amortized update time
of O(log n log log n).

26

8 Concluding remarks

We have given new techniques for solving the dynamic approximate nearest-neighbor
problem and the dynamic closest pair problem. Note that for the static version of the
first problem an optimal solution—having logarithmic query time and having linear
size—is known. (See [2].) It would be interesting to solve the dynamic problem within
the same complexity bounds and with a logarithmic update time.

For the dynamic closest pair problem, we obtained several new results. We first gave
a data structure that improved the best structures that were known. Then we applied
a general transformation to improve this solution even further. Note that if we apply
this transformation several times, as we did, then we maintain a hierarchy of data
structures similar to the logarithmic method for decomposable searching problems.
(See [3].) It would be interesting to know if the ideas of this transformation can be
applied to other problems. Finally, we leave as an open problem to decide whether
there is an O(n) space data structure that maintains the closest pair in O(log n) time
per insertion and deletion.

References

[1] S. Arya and D.M. Mount. Approximate nearest neighbor queries in fixed dimen-
sions. Proc. 4th Annual ACM-SIAM Symp. on Discrete Algorithms, 1993, pp.
271-280.

[2] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, A. Wu. An optimal algo-
rithm for approximate nearest neighbor searching. Proc. 5th Annual ACM-SIAM
Symp. on Discrete Algorithms, 1994, pp. 573-582.

[3] J.L. Bentley. Decomposable searching problems. Inform. Proc. Lett. 8 (1979), pp.
244-251.

[4] J.L. Bentley and M.I. Shamos. Divide-and-conquer in multidimensional space.
Proc. 8th Annual ACM Symp. Theory of Computing, 1976, pp. 220-230.

[5] M. Bern. Approximate closest-point queries in high dimensions. Inform. Proc.
Lett. 45 (1993), pp. 95-99.

[6] B. Chazelle and L.J. Guibas. Fractional cascading I: A data structuring technique.
Algorithmica 1 (1986), pp. 133-162.

[7] K.L. Clarkson. A randomized algorithm for closest-point queries. SIAM J. Com-
put. 17 (1988), pp. 830-847.

[8] H. Edelsbrunner, G. Haring and D. Hilbert. Rectangular point location in d di-
mensions with applications. The Computer Journal 29 (1986), pp. 76-82.

[9] M. Golin, R. Raman, C. Schwarz and M. Smid. Randomized data structures for the
dynamic closest-pair problem. Proc. 4th Annual ACM-SIAM Symp. on Discrete
Algorithms, 1993, pp. 301-310.

27

[10] M. Golin, R. Raman, C. Schwarz and M. Smid. Simple randomized algorithms for
closest pair problems. Proc. 5th Canadian Conf. Computational Geometry, 1993,
pp. 246-251.

[11] D.T. Lee. Two-dimensional Voronoi diagrams in the Lp-metric. J. ACM 27
(1980), pp. 604-618.

[12] G.S. Lueker. A data structure for orthogonal range queries. Proc. 19th Annual
IEEE Symp. Foundations of Computer Science, 1978, pp. 28-34.

[13] K. Mehlhorn. Data Structures and Algorithms, Volume 3: Multi-Dimensional
Searching and Computational Geometry. Springer-Verlag, Berlin. 1984.

[14] K. Mehlhorn and S. Näher. Dynamic fractional cascading. Algorithmica 5 (1990),
pp. 215-241.

[15] F.P. Preparata and M.I. Shamos. Computational Geometry, an Introduction.
Springer-Verlag, New York, 1985.

[16] J.S. Salowe. Enumerating interdistances in space. International Journal of Com-
putational Geometry & Applications 2 (1992), pp. 49-59.

[17] C. Schwarz. Data structures and algorithms for the dynamic closest pair problem.
Ph.D. Thesis. Universität des Saarlandes, Saarbrücken, 1993.

[18] C. Schwarz, M. Smid and J. Snoeyink. An optimal algorithm for the on-line closest
pair problem. Proc. 8th ACM Symp. on Computational Geometry, 1992, pp. 330-
336.

[19] M.I. Shamos and D. Hoey. Closest-point problems. Proc. 16th Annual IEEE Symp.
Foundations of Computer Science, 1975, pp. 151-162.

[20] M. Smid. Maintaining the minimal distance of a point set in less than linear time.
Algorithms Review 2 (1991), pp. 33-44.

[21] M. Smid. Rectangular point location and the dynamic closest pair problem. Proc.
2nd Annual International Symp. on Algorithms, Lecture Notes in Computer Sci-
ence, Vol. 557, Springer-Verlag, Berlin, 1991, pp. 364-374. Full version to appear
in Information and Computation.

[22] M. Smid. Maintaining the minimal distance of a point set in polylogarithmic time.
Discrete Comput. Geom. 7 (1992), pp. 415-431.

[23] K.J. Supowit. New techniques for some dynamic closest-point and farthest-point
problems. Proc. 1st Annual ACM-SIAM Symp. on Discrete Algorithms, 1990, pp.
84-90.

[24] P.M. Vaidya. An O(n log n) algorithm for the all-nearest-neighbors problem. Dis-
crete Comput. Geom. 4 (1989), pp. 101-115.

28

[25] D.E. Willard and G.S. Lueker. Adding range restriction capability to dynamic data
structures. J. ACM 32 (1985), pp. 597-617.

[26] A.C. Yao. On constructing minimum spanning trees in k-dimensional spaces and
related problems. SIAM J. Comput. 11 (1982), pp. 721-736.

29

