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Abstract. By the Central Element Theorem of Linial and Saks, it 
follows that for the problem of (generalised) sea.rching in posets, the 
information-theoretic lower bound of log N comparisons (where N is 
the number of order-ideals in the poset) is tight asymptotically. We ob­
serve that this implies that the problem of (generalised) sorting in posets 
has complexity 9( n . log N) (where n is the number of dements in the 
poset). We present schemes for (efficiently) transforming a randomised 
generation procedure for central dements (which often exists for some 
classes ofposets) into randomised proceduresfor approximatdy coUDting 
ideals in the poset and for testing if an a.rbitrary element is central. 

1 Introduction 

In this paper we are concemed with the general problem of searching and 80rting 
ordered data structures and some related isues and problems that arise in this 
context. In the general situation, we are given a partially-ordered data structure 
modelled by a poset P, and a storage function f : P - R such that p :Sp q implies 
f(P) ~ f(q). We may think of the elements of the poset as data locations where 
real numbers are stored consistent with the poset ordering. 

In the searching problem, fust considered by Linial and Saks, [5], we are 
given areal number a and asked to locate it in the poset (if it is present) 
with a minimum number of comparisons of the form a :s f(P) or a = f(P), 
for pEP. They showed that the direct information-theoretic lower bound of 
10gN (where N is the number of ideals in P can indeed be attained if one can 
locate so-called central·elements (section 2) in the poset. Hence for the problem 
of searching ordered data structures, the search for central elements assumes 
central importance. They went on to prove a deep theorem which asserted that 
etlery poset in fact possesses such central elements. Their proof was, however, 
non-constructive and the quest ion of whether such elements can actually be 
found constructively was left open. 

The sorting problem for general. posets is: given a finite set P and and UR­

known partial order :s on P, determine the partial order using a minimum 
number of comparisons of the form p :s q for p, q E P. The central elements 



again play a key role. Given a procedure to obtain central elements, the sort­
ing problem for posets with n elements and having a total of N ideals can be 
solved with O(n log N) comparisons. Moreover, we demonstrate an information­
theoretic lower-bound of il( n log N) for this problem. 

Faigle et al show an intimate connection between the problem of generat­
ing central elements and the problem of counting ideals in the poset [2]. The 
latter problem is known to be #P-complete in general [6] . We strengthen this 
connection by extending it in a probabilistic setting. One of our motivations is 
to investigate if randomisation helps in solving the approximate version of this 
#P-complete problem as it indeed does in some other well known cases, [4, 1]. 
We oifer some progress in this direction although the complete solution still 
appears distant. In particular, we prove that it is possible to amplify the cor­
rectness prob ability of a probabilistic procedure that outputs central elements 
with probability greater than 1/2. 

The paper is organised as follows. Section 2 introduces some basic definitions 
and concepts. In section 3, we consider the problem of generalised sorting in 
posets and give matching upper and lower bounds for the problem (at least 
non-constructively). In section 4, we pursue the intimate relation between the 
problem of generating central elements and the problem of counting ideals in 
posets, first observed in [2], but in a randomised setting. We give schemes 10 
efficiently transfrom a probabilistic algorithm for generating central elements 
into one for approximately counting ideals. In turn, we show how to use this 
approximate counting of ideals to bootstrap the original generating procedure 
into one with a strongly amplified probability of generating a eentral element. 
Finally, in seetion 5, we dose by listing some avenues for further research. 

2 Definitions and Preliminaries 

Let P := (P, $) be a finite poset. A subset 1 of P is called an order-idealor 
simply, ideal of P if it is downwards-cIosed: y $ z E 1 implies y E 1. We denote 
the total number of ideals of P by Np, and the number of ideals containing a 
given element z E P by Np(z). 

For 6 > 0, an element z E P is called 6-central. in P if 

6 $ Np(z)/Np $ 1- 6. 

3 Generalised Searching and Sorting in Posets 

Let P := (P, $) be a poset and 1 : P - R be an order-preserving map. The 
searching problem for P is: given a E R, determine if there is a pEP such tnat 
1(P) = a using as few comparisons of the form I(z) = a or I(z) $ a for z E P 
as possible. This is dearly a generalisation of the usual search problem in linear 
orders. 

A direct information-theoretic argument shows that log N comparisons are, 
in general, necessary [5] . Linial and Saks [5], showed that O(logN) comparisons 
are also sufficient. This is achieved via their remarkable 



Theorem 1 (Central Element Theorem, [5]). In every finite poset P, there 
emts a 8-central element c such that 

N(c) 
8 '5: N(P) '5: 1 - 8 

where 8 ~ 80 := :1{3 -log25) ~ 0.17. 

Briefly, at any stage, searching for Cl: in a sub-poset Q of P, we always compare 
Cl: with a 8o-central element in the Q (which is guarenteed to exist by the above), 
and then, depending on the result of the comparison, pass to the appropriate 
sub-poset of Q. This search procedure clearly makes O(log N) comparisons in 
the worst case. 

For a poset P := (P, '5:) where Pisa known finite set, but $ is unknown, 
the sorting problem is to determine the relation '5: using as few compansons of 
the form :r $ y for :r, y E P. This is clearly a generalisation of the usual sorting 
problem in linear orders. 

Theorem2 (Generalised Sorting in Posets). 4 Let P := (P, '5:) be a partial 
order with P a known finite set, but $ unknown. Then the number 0/ compansons 
needed to determine the relation '5: is 8(IPI·logN) where N is the number 0/ 
ideals in P. 

Proof The upper bound follows easily from the corresponding bound for the 
search problem. Given P := {Pt. ... , Pft}, we successively determine the posets 
Pi := (Pi, $i), where Pi := {PI,··· ,Pi} and $i is $ restricted to Pi, for 1 '5: 
i '5: n. Knowing the poset Pi we determine the poset Pi+1 by inserting Pi+1 in 
the correct position relative to Pi using the search procedure from above. This 
requires O(logN(Pi» = O(logN) comparisons at each stage,giving a total of 
O(lPI·log N) comparisons overall. 

Observe that n+ 1 $ N $ 2ft . We denote by PN the set of partial orders with 
n elements and at most N ideals. An algorithm which solves the general sorting 
problem is a ternary tree. Each node (apart from the leaves) has tree branchings 
corresponding to the possible results ($, >, 11) of a comparison. Therefore we 
need at least lo~ IPNI questions to sort all posets in PN. 

In the fo11owing we show that lo~ IPNI = D(nlogN). This is obvious if 
N $ n2 since PN contains a11 n! many linear orders. Otherwise (N > n2 ) we 
consider a subclass SN OfPN and show that it contains at least 2n(n logN) posets. 

Let m = I,N, I = L::aJ. We partition the ground set V into I subsets 
Vi, V2, ... VI of cardinality m and one subset Vo of cardinality n-ml. The subclass 
SN consists of all partial orders which contain the relations :r < y if:r E Vi, y E Vj 
and i +2 $ j. 

To show that SN ~ PN we remark that each ideal I of a partial order in 
SN is determined by its maximal elements. If j is the greatest index such that 
I contains an element y of Vj then y is a maximal element of I and all other 

4 Theorem 2 was also obtained iDdependently by Hahnah Baumgarten (personal 
communication). 



maximal elements of I can be chosen from the set Vi U Vi-i. Hence each poset 
in SN contains at most ::. 22m ~ N ideals. 

Now we have to count the number of posets in SN. The relations between 
the elements of Vi and the elements of Vi+l are undetermined for each i and can 
be chosen independently. Therefore there are at least (2m)m(I-1)(2m)n-ml = 
2m(n-m) posets in SN. Since m = lo~N ~ ~ we get the lower bound 2n (nlogN). 

Remark. 1. By a result of Shannon, a tree with arity a and Ileaves has average 
path length at least log 1/ loga [8]. This, together with a result ofYao, implies 
that the lower bound holds also for randomized algorithms [10]. 

2. Both the previous propositions are existence results since they require the 
use of 6-central elements, and the proof oe [5] merely asserts the existence 
of such elements without showing how to find them explicitly. For special 
classes of posets, algorithms are known to produce such central elements 
explicitly and then this yields constructive results[9, 2]. 

3. Faigle and Turan present in [3] an explicit sorting algorithm for general 
posets that uses O(min{w(P),logn}nlogN) comparisons where w(P) de­
notes the width of the poset P. Their incremental algorithm determines in 
each round i a minimum chain cover of the suborder Pi, which is already 
known and inserts a new element (whose relations to the elements in Pi 
are undetermined) into each chain. We remark that insertion into achain 
of length m requires at most 210g(m + 1) + 1 comparisons (one needs two 
binary searches in a chain C if the new element is not comparable with all 
elements of Cl. By Dilworth's theorem there are at most w(P) such chains 
and hence the algorithm needs at most 

1 
C(P) = 271 w(P)(2 + log(n + w(P)) -logw(P)) 

comparisons. Since w(P) ~ log N and n ~ N we can bound the number of 
comparisons by 

C(P) = O(min{w(P),logn}nlogN). 

4 Central Elements and Ideal Counting 

For the searching and sorting problems on posets, it is clear that central elements 
playa key role - if one an find central elements efficiently,then the two problems 
can be solved with an optimal number of comparisons. 

In [2], the authors presented evidence to the effect that the problem offinding 
central elements explicitly may be a difficult one for general posets. Specifically, 
they showed that given an efficient algorithm to generate a central element in a 
poset, one can obtain an efficient algorithm to approximately count the number 
of ideals in the poset. Provan and Ball, [6] show that the problem of ezactly 
counting the number of ideals in a poset is #P-complete. 



In this section, we pursue the relation between the problem of generating 
central elements and the ideal-counting problem furt her, specifically, in a ran­
domised setting. The motivation is two-fold. First, for some classes of posets, 
there are easy or even trivial ways of generating a central element with high 
probability. Second, we would like to explore if randomisation helps in signifi­
cantly reducing the complexity of the approximation version of a #P-complete 
problem, as indeed it demonstrably does in some well-documented cases, [4, 1]. 

We begin with a simple lemma which was also used in [2]. 

Lemma 3. 

1. I/P:= PI x··· X Pn , then N(P) = N(PI) x··· x N(Pn ). 

e. For any poset P, let P, denote the lifted poset consisting 0/ an anti-chain 0/ 
I elements below P (in the terminology 0/ [el, this is the series composition 
0/ an anti-chain 0/ I elements and P). Then, 

N(P,) = N(P) + 2' - 1 

{
Np(X) i/xEP 

Np,(x) = N(P)+2'-1 -1 i/x E P, \ P 

Corollary4. Let P, P, be as in lemma 3 and N = N(P). Then tor any 6> 0, 

1. i/2' < rl := 1~~6(N -1) then only elements from P can be 6-central/or P" 
e. i/2' > r2 := 1:;6 N + 1 then onlyelements /rom P, \ P can be 6-central/or 

P,. 

For 1 such that rl < 2' < r2 elements from both P and P, \ P can be cen­
tral(Figure 1). 

Proo/. From lemma 3 it follows that if x E P, \ P is 6-central for P, then 

N(P) + 2'-1 -1 
N(P) + 2' _ 1 :5 1 - 6 

This establishespart 1. Similarly we can prove the second part. 

Proposition 5. Given any 6 > 0 and a probabilistic procedure A(P) that gen­
erates elements from P such that P[A(P) is 6-centra~ ~ ~, there is at > 0 that 
depends only on 6, and a probablistic procedure B(P) that outputs a number N 
such that P[1/t:s N /N(P):S t] ~ 1-1/4IP1 • Moreover i/ A ruM in polynomial 
time so does B. 



central elements only in P 

/ 
(2Ö/l-2o)(N-l) 

Fig. 1. Central Elements of P, 

Algorithm B(P) 

1-0 
repeat 

1-1+ 1 
if 2" > l:::! * 21P1 then return T and QU IT I . 

central elements only in P\P 
1 

= (l-%)N + 1 

1* Thlsis to malre sure tha.t .A always halts in polynomial time *1 

forever 

Run .A(P,) 2m + 1 times. Let Ai denote the output of the ith tun. 

if Hi I Ai e P }I$ m then 
return 2' ud QU IT 

Fig. 2. Algorithm B for approximating the number of ideals 

Proof. We claim that the algorithm deseribed in figure 2 does the job. Invok­
ing corollary 4 if ~ < rl only elements from P can be 6-central. Hence with 
probability at least t.A returns an element from P, \ P. Then using a stan­
dard oomputation (see lemma 3.4 in [7] for instance), ODe can show that the 
probability that procedure B outputs any specific2

' 
< rl is at most i(~r. It 

follows that P[B(P) > rl] ~ 1 - (f1ogrl1H(~)m. Similarly,one can show that 
P[B(P) < 2'"2] ~ 1 - !J~)m. Then choosing t = 2(1;') and appropriate m (for 
eKaDlple, m = 4\P12 + 1/(1- 26) suffices) the proposition is satisfied. Note that 



the running time of 8 is polynomial if that of Ais. 

Approximations to ideal counts can be dramatically improved by using the 
first construction in Lemma 3. Applying algorithm 8 to the poset P$ (for appro­
priately chosen s) as in [2], we observe that the output satisfies the inequalities 
l/t ::; (N /N(P))$ ::; t with the stated high probability. Choosing s to make 
tl/· ::; 1 + { and t- 1/$ ~ 1 - e, we obtain the claimed amplification: 

Theorem 6. Given a probabilistic procedure A(P) that generates elements from 
P such that P[A(P) is 6-centraij ~ ~, and a > 0, there is a probabilistic algo­

rithm Ca(P) that outputs a number N such that P[l - a ::; N / N(P) ::; 1 + a] > 
1-1/2IP). 

M oreover if A runs in polynomial time so does C. 

This accurate ideal-countingprocedure can be employed to construct a pro­
cedure that with over-whelming prob ability accepts when an arbitrary element 
in poset is sufficiently central, and rejects when the element is not, starting 
with a procedure that generates a central element with high probability. More 
precisely, 

Proposition 7. Gäven any 6 > 0 and a probabilistic procedure A( P) that gener­
ates elements /rom P such that P[A(P) is 6-centra~ ~ ~, for any 60 , e > 0 one 
can construct a procedure V(P, z) such that 

- z is (60)-central ~ P[V(P,z) = 1] ~ 1-1/2IP1 , 
- z is not (60 - e)-central ~ P[V(P, z) = 1] < 1/2IP1 . 

Proof Our procedure V applies procedure Ca(P) (with a = e/20 which is ob­
tained from the procedure · A as above) to estimate the i4eals containing the 
given element z, N(z) and to estimate the total number of ideals, N(P). It re­
turns 1 iff the ratio of these two numbers is between (60 - ß) and 1 - (60 - ß) 
that is if it deems element z to be (60 - ß)-central where ß = e/5. 

Note: Actually, the procedure does not work correctly with high probability 
only for elments z such that (60 - e) ::; N(z)/N(P) ::; (60 - ß) or 1- (60 - ß) ::; 
N(z)/N(P) ::; 1- (60 - e). 

Interestingly, this test procedure enables one to bootstrap · the original gen­
eration procedure to construct one with a strongly amplified probability of gen­
erating a central element. 

Theorem 8. Given any 6, e > 0 and a procedure A(P) that outputs elements of 
P with P[A(P) is 6-centra~ > 3/4, one can construct a procedure E(P) such that 
P[E(P) is (60 - e )-centra~ > 1-1/2IP1 , for any 60 such that there are 60-central 
elements in P. Moreover, iJ A runs in polynomial time so does E. 

Proof Procedure E applies the test 1) to all elements of P and outputs the first 
element for which V returns 1. 

One can show that with very high probability, this procedure returns an element 
that is (60 - e )-central. 



5 Conclusions and Open Problems 

For the dass of posets of constant height, an element chosen uniformlyat random 
is central with same constant prob ability . It remains to be seen if this probability 
can be amplifiedto be bounded away hom ~ and ifthis can be extended to simple 
probabilistic algorithms for other dasses of posets. 

Alternatively, do there exist probabilistic approximation schemes to count the 
number of ideals in posets? In particular can the approach via rapidly- mixing 
Markov chains from [4, 1] be applied to this problem? 

An interesting property of the central element problem is that for some dasses 
of posets it seems easier to probabilistically generate central elements than to 
test if a given element is central. It is an open question when the existence of a 
probabilistic generation procedure implies the existence of a probabilistic testing 
procedure. In particular, is this the case for the central element problem? 
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