Max-Planck-Institut für Informatik
max planck institut
mpii logo Minerva of the Max Planck Society


A lower bound for set intersection queries

Mehlhorn, Kurt and Uhrig, Christian and Raman, Rajeev

MPI-I-92-127. April 1992, 14 pages. | Status: available - back from printing | Next --> Entry | Previous <-- Entry

Abstract in LaTeX format:
We consider the following {\em set intersection reporting\/} problem.
We have a collection of initially empty sets and would like to
process an intermixed sequence of $n$ updates (insertions into and
deletions from individual sets) and $q$ queries (reporting the
intersection of two sets). We cast this problem in the
{\em arithmetic\/} model of computation of Fredman
and Yao and show that any algorithm that fits
in this model must take $\Omega(q + n \sqrt{q})$ to
process a sequence of $n$ updates and $q$ queries,
ignoring factors that are polynomial in $\log n$.
By adapting an algorithm due to Yellin
we can show that this bound
is tight in this model of computation, again
to within a polynomial in $\log n$ factor.
References to related material:

To download this research report, please select the type of document that fits best your needs.Attachement Size(s):
MPI-I-92-127.pdfMPI-I-92-127.pdf10024 KBytes
Please note: If you don't have a viewer for PostScript on your platform, try to install GhostScript and GhostView
URL to this document:
Hide details for BibTeXBibTeX
  AUTHOR = {Mehlhorn, Kurt and Uhrig, Christian and Raman, Rajeev},
  TITLE = {A lower bound for set intersection queries},
  TYPE = {Research Report},
  INSTITUTION = {Max-Planck-Institut f{\"u}r Informatik},
  ADDRESS = {Im Stadtwald, D-66123 Saarbr{\"u}cken, Germany},
  NUMBER = {MPI-I-92-127},
  MONTH = {April},
  YEAR = {1992},
  ISSN = {0946-011X},