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Abstract

This cumulative habilitation thesis is based on five papers related to resolu-
tion decision procedures. Resolution is a well-known technique for first-order
theorem proving. It is complete, but it does not terminate in general, when
there exists no proof. In many cases, resolution can be modified in such a
way that it becomes a decision procedure for certain subclasses of first-order
logic. We have studied several aspects related to the use of resolution as de-
cision procedure. We obtained resolution decision procedures for the guarded
fragment with and without equality. We obtained a resolution-based deci-
sion procedure for the 2-variable fragment with equality. Building on this, we
also studied translations from modal logics into the guarded fragment. We
improved the standard relational translation of modal logics, so that more
modal logics can be translated into the guarded fragment. Finally, we showed
that a standard refinement, using a liftable order, can be used to obtain a
decison procedure for the E+-class, which was an open problem.
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1 Introduction

Logic made a major step in 1879, when Gottlob Frege published his 'Be-
griffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen
Denkens’, see [27]. In this paper, which marks the start of modern logic,
Frege introduced a formal language, (which he called Begriffsschrift), in which
mathematical statements can be formally stated, and also formally proven.
(without any resort to intuition)

The reasons for the development of mathematical logic around 1900 were
the problems that arose when mathematics moved attention towards truly
abstract notions, like for example general functions, general sequences and
sets. For those abstract mathematical structures, intuitive reasoning turned
out problematic. (For example, Frege started his research on logic when he
tried to analyze the notion of sequence)

In the beginning of the twentieth century, various systems had been devel-
oped as foundational instrument, see [27]. The largest work in this direction
was the Principia Mathematica [22], in which properties of cardinals and or-
dinals were formalized. In later volumes, the integers, the rationals, and the
reals were introduced, and some of their properties were formally proven.

Once one has a formal calculus in which mathematical proofs can be
verified, the next natural question is: Is there a mechanical method for finding
those proofs? Unfortunately, this question was answered with 'no’ around
1930. There do exist algorithms that are guaranteed to find a proof if there
exists one, but there exists no algorithm that is guaranteed to report an
answer in the case that no proof exists. But still one can try to find an
algorithm that searches for a proof and that is guaranteed to find a proof
if there exists one. This became particularly interesting when computers
became generally available, in the second half of the twentieth century.

For many applications, establishing that no proof exists is equally im-
portant as finding a proof, and an algorithm that can only stop on positive
answers is not enough. Examples of such applications are question answer-
ing from a database, or anaphora resolution in natural language processing:
A user asking for all flights from A to B also wants to receive an answer,
when there is no such flight. In anaphora resolution, deduction can be used
for deciding possible references of anaphora. Consider the discourses "After
the Titanic hit the iceberg, it sank’, or ’After the Titanic hit the iceberg,
it slowly melted’. In order to determine what ’it’ refers to, one needs to be
able to reason with background knowledge. If one knows that ships don’t
melt, and icebergs don’t sink, then the reference of ’it’ can be determined in
both cases. In order to be of practical use, the system that reasons with the
background knowledge needs to terminate.



For sets of formulas that can formalize integers, there exists no terminat-
ing proof search strategy. Fortunately for many applications, it is sufficient
to consider weaker sets of formulas. For many of those, it turns out that
there exist terminating algorithms. Often, one can also give a guarantee on
the time needed to find or not-find a proof.

In the papers on which this habilitation thesis is based, we studied the use of
resolution as a decision procedure. Resolution is a frequently used method
for automated proof search, which can be used for full first-order logic. As
a consequence, resolution does not terminate in general. We study modifi-
cations of resolution that can be used as decision procedures for subsets of
first-order logic, and try to give upper bounds on the time/space of the proof
search.

Resolution was introduced by Robinson in [21]. It makes use of a normal
form for first-order logic, which is called clausal normal form. The advantage
of the normal form is that, once the formula is transformed into this normal
form, a relatively simple calculus, consisting of only a few rules can be used.
The complete procedure takes the following form: First, the formula (or set
of formulas) is transformed into clausal normal form. There are different
ways to do this, which are optimized for different types of problems.

When the formula is in clausal normal form, it consists of a set of formulas
of a very simple form, which is called clause. Using a few, relatively simple
rules, consequences of these clauses are derived, which are also clauses. When
a special clause, the empty clause, is derived, one knows that the original set
of clauses was provable. Because the new clauses can in turn take part in
derivations, there is no guarantee that this process will end.

Since its introduction, there have been many improvements of resolution,
mostly with the purpose of improving resolution for general-purpose theorem
proving. There have been improvements on the strategies for transforming
a formule into CNF, see [2, 20]. Various restrictions of resolution have been
developed that preserve completeness [23, 3]. In addition, deletion strategies
have been developed: Under certain conditions, when a new clause is derived,
which is logically implied by existing clauses, it can be deleted from the
database, see [4].

Until now, resolution and its extensions to equality, are still the most suc-
cessful technique for general first-order theorem proving, although for certain
classes of problems other techniques, like semantic tableaux, or instantiation
based methods are emerging. (See for example [5, 19, 13])

The topic of this habilitation thesis is the usage of resolution as a decision
procedure. The possibility of using resolution as a decision procedure was
first considered in [18]. Joyner showed that certain restrictions of resolution,
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which are closely related to those used for improving efficiency, can also be
used to turn resolution into a decision procedure. The research on resolution
decision procedures was continued by the authors of [12], who were able to
give various decision procedures for natural subsets of first-order logic. This
habilitation thesis builds strongly on [12]. In [6], an open problem of [12] was
solved. In Section 2.4 of this thesis, another one is addressed.

2 Paper Overview

This cumulative habilitation thesis is based on five of my publications since
1999. The five papers are related to the use of resolution as decision proce-
dure. I will shortly introduce each of the five papers:

2.1 Deciding the Guarded Fragments by Resolution

In this paper resolution decision procedures for the guarded fragment and
the loosely guarded fragment are given. The guarded fragment is a decidable
fragment of first-order logic that was introduced by Johan van Benthem,
Hainal Andréka, and Istvan Németi in [1]. Their was to ’identify the modal
fragment of first-order logic’. We first give the definition:

Definition 2.1 A first-order formula is in the guarded fragment if
1. The formula contains no function symbols,

2. Every universal quantification has form VT A — F, where A is an atom,
containing at least all free variables of A and F.

3. Every existential quantification has form 3T ANF, where A is an atom,
containing at least the free variables of A and F.

4. The formula contains no equality.

The original definition of the guarded fragment contained no equality. Later
it was shown in [15] that the guarded fragment remains decidable when equal-
ity is added, as long as equality is not used as a guard. In the next section, we
give a resolution decision procedure for the guarded fragment with equality.
The relevance of the guarded fragment lies in the fact that formulas from
many modal logics (including e.g K and B) can be translated into it.

For example, the modal formula O(A A $B) can be translated into

vy ( R(z,y) — Aly) A3z ( R(y,2) AB(2) ) ).



By a carefully chosen clause transformation, formulas from the guarded frag-
ment can be translated into clauses of the following form:

Definition 2.2 A clause is guarded if
1. the clause is ground, or

2. it contains a negative, function free literal which contains all variables
of the clause, and every non-ground, functional term in the clause con-
tains all variables of the clause.

In the second case, a negative literal which contains all variables is called
guard of the clause.

First-order, guarded formulas can be translated into guarded clauses by
an appropriately chosen clause transformation. First the formula has to be
transformed into NNF as standard. After that, new predicates a(7) are
introduced for subformulas of form VZ A — F. Here 7 are the free variables
of V A — F. Obviously, 7 C T. For the «(y), defining formulas of form
VT A — a(y) — F are added.

In the paper, the following ordering refinement is introduced for the
guarded fragment:

Definition 2.3 We define the order < on atoms from A < B iff either
1. The variables of A are a strict subset of the variables of B, or

2. the deepest occurrence of a variable in A s strictly less deep than the
deepest occurrence of a variable in B.

The order < is extended to literals in the usual way:

A < B implies - A< B, A<-B, -A<-B.

The following example gives a few guarded and non-guarded clauses. In the
guarded clauses, the literals that can be resolved upon are marked with a
star.

Example 2.4
guarded clauses non-guarded clauses
—p(X, X, V)"V q(X) Vp(Y, X), »(f(X,Y)) Vq(X,Y),
(X, Y) V q(X. F(X,Y))", (X, Y) V(X f(Y)),
—p(s(0),5(0))" v p(0,0)". p(X,Y)Vq(X,Y, Z).



It can be shown that the resolution strategy preserves the form of the clauses,
and that the variable depth of the clauses does not increase. As a conse-
quence, only a finite set of clauses can be derived from a given initial clause
set. It is also shown that this strategy is complete for guarded clauses.

Although the guarded fragment contains the translations of some modal
logics, there are also quite a few modal logics, which cannot be straightfor-
wardly translated into the guarded fragment. Examples are temporal modal
logics able to express that some formula P is true everywhere between two
moments of time x and z, like in Vy B(x,y) A B(y, z) — P(y). Here B(z,y)
means that x is before y. In order to express such properties, Van Benthem
introduced the loosely guarded fragment in [26] and showed that it is decid-
able.

Definition 2.5 The loosely guarded fragment is the following fragment of
first-order logic.

(1) The formula contains no function symbols. (2) Every universal quan-
tification has form VT Ay A---NA, — F, where Ay \---NA, is a conjunction
of atoms, s.t. for every pair of variables o, 3, for which o € T and [ a free
variable of in Ay, ..., Ay, F, it must be the case that o and (3 occur together
in one of the A;, 1 < i < p. (3) Every ezistential quantification has form
3 Ay N NA,NF, with the same conditions as under (3). (4) The formula
contains no equality.

The following clause fragment corresponds to the loosely guarded fragment:

Definition 2.6 A clause is loosely guarded if (1) either it is ground, or
(2a) it contains a set of negative literals {—Ay, ..., A, }, which are function
free and each pair of variables occurring in the clause, occurs together in one
of the A;, and (2b) every non-ground, functional term contains all variables
of the clause.

Definition 2.6 should be read as 1V (2a A 2b).
In the paper, the loosely guarded fragment is decided by the following (ad-
mittedly complicated) selection strategy:

e Factoring is always permitted.

e In clauses of Form 1, only literals containing terms of maximal depth
can be resolved upon.

e In clauses of Form 2 which contain non-ground functional terms, reso-
lution is allowed only upon literals containing a non-ground functional
term at maximal depth.



e Non-ground clauses without non-ground, functional terms can only be
used in special, hyperresolution-like inferences: Write the clause in the
form: {=Ay,...,—2A,} UR, where {—=A;,...,2A,} is a loose guard. If
there are clauses

RyU[B:i],...,R,U[ B, ],

which are ground or have non-ground, functional terms, in which the
B; can be resolved upon, and there exists a most general unifier O,
such that B1© = 4,0, ..., B,0 = B,0, then construct a partition

[_|A,1’...’_|A;71]U[_|A/1,’...’_|AZ//]Ofl:_|A1’""_|A

»]

and the corresponding partition

{RUl[B],...,R,U[B,] JU{R/U[B/],...,R»U[By,] }of
{RiU[B],....,R,U[ B, ] },

s.t. the partial hyperresolvent
RXU---URXNU[-AS, ..., A7, Y ]URY.

has no non-ground, functional term at a position that is deeper than the
positions at which non-ground, functional terms occur in the premisses
R{U[BY],...,RU[ B ].

It is shown that this complicated strategy is complete and that it always
terminates. In particular, it is proven that a partition as required by the last
rule, always exists.

The original goal of [1] was more ambitious than identifying some frag-
ment containing the translation of some modal logics. What the authors
actually wanted was to characterize exactly the modal fragment of first-order
logic. We come back to this in Section 2.3.

2.2 A Superposition Decision Procedure for the Guarded
Fragment with Equality

The paper presents a modification of the strategy of the previous section,
such that it can decide the guarded fragment with equality. The order <
of Definition 2.3 is non-liftable (not preserved under substitution). As a
consequence, it cannot be combined with paramodulation without loosing
completeness. However, the clause fragment of Definition 2.2 is larger than
necessary, because in clauses originating from clausification, there are no



nested function symbols. We showed that if one restricts the nesting depth
to one, then one can use a liftable order and selection.

The guarded fragment with equality is obtained by dropping Condition 4
in Definition 2.1. Different from [15], we allow equality to act as guard. An
example of a clause that is guarded by equality, is Vz ( x = = — p(z) ). Be-
cause r =~ x is a tautology, this is equivalent to allowing unguarded quantifi-
cation over a single variable. Guarded clauses with equality can be translated
into the following clause fragment:

Definition 2.7 A clause c is a guarded clause with equality if it has one of
the following three forms:

1. ¢ is a ground clause and contains no nested function symbols,
2. ¢ contains one variable and no function symbols, or

3. every functional subterm in ¢ contains all variables of ¢ and ¢ contains
a negative literal without function symbols, which contains all variables

of c.

Note that in the third case, it is not required that the clause contains more
than one variable. A clause with one variable may contain function symbols,
but then it has to contain a guard as well. It can be checked that Defini-
tion 2.7 is equivalent to Definition 4.2 in [14]. On one hand, Definition 2.7 is
more general than Definition 2.2, because it allows equalities and unguarded,
one-variable clauses. On the other hand, it does not allow nesting of func-
tional symbols.

The decision strategy for guarded clause sets is an instance of superpo-
sition with selection. Superposition is a restriction of paramodulation, in
which orders are used not only for determining which literals in a clause can
be used, but also for determining in which direction equalities can be used.
Selection makes it possible to overrule the ordering, as long as a negative
literal is selected.

Definition 2.8 A simplification order is a strict, total order < on ground
terms satisfying the following conditions:

o < is well-founded.
e < is preserved in contexts: If t1 < to, then T[t1] < T[t].

Definition 2.9 A selection function X is a function from clauses to clauses,
s.t. if for some clause ¢, 3(c) is not the empty clause, then all literals in
Y(c) are negative, and %(c) C c.

If 3(c) # [ ], we say that ¥ has selected the literals in %(c).
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When ¥(c) is empty, the order determines which literals in the clause can
be used. Otherwise, only the literals in 3(c) can be used. In [3], it was shown
that superposition (combined with some other rules) is complete for every
combination of a selection function ¥ and simplification order < . In [14], it is
shown that the following order and simplification order cause superposition
to terminate on the guarded fragment with equality:

Definition 2.10 Selection function X is defined as follows: If ¢ is a guarded
clause of Type 3, and ¢ does not contain function symbols, then ¥(c) contains
the guards of c. Otherwise, ¥(c) is empty.

The order < on terms and literals is defined as follows: For terms ty,t,
define t1 < ty if to contains function symbols, while t; does not. Similarly,
for literals A, B, define A < B if B contains function symbols, while A does
not.

It is shown that standard orders (like KBO or RPO) can be tuned in such a
way that they fullfil the conditions of Definition 2.10. The essential property
of the strategy is that eligible literals and terms always contain all variables
of the clause in which they occur.

It is also shown that the complexity of the decision procedure is optimal.
Since the strategy preserves the clause format of Definition 2.7, the complex-
ity of the procedure can be estimated by determining the number of guarded
clauses that is possible over a given signature:

Theorem 2.11 Assume a signature containing p predicate symbols (includ-
ing equality) with mazimal arity a,, containing f function symbols with maz-
imal arity ay, and containing c constants.

Then Definition 2.7 allows

¢+ a, function free terms,

c+ap+ flc+ap)* terms,
plc+a, + f(c+ a,)™)*™ atoms,

3wletap+flctan)™) )P o1ayses.

The last number is doubly exponential in the signature and corresponds to
the lowerbound of [15].



2.3 Deciding Regular Grammar Logics with Converse
through First-Order Logic

One of the original motivations for introducing the guarded fragment, accord-
ing to [1], was to identify the modal fragment of first-order logic. Although
not a precise statement, it probably means that modal logics should be easily
translatable into it, that it should have a complexity comparable to the com-
plexities of modal logics, and that it should have good metalogical properties,
like modal logics have (as e.g. interpolation)

In [9], [10], we concentrate on one aspect, namely the decidability of
modal logics by translation into the guarded fragment. Using the standard
relational translation, modal formulas from logic K can be straightforwardly
translated into the guarded fragment as follows:

Definition 2.12 Let ¥ be a (multi)modal formula. We assume two fized
variables x and y. The relational translation t.q(v) of a modal formula
is defined as vy tie(V, z,y), where ty/3 in turn is recursively defined as
follows:

L4 trel

° trel _',lvb7 «, ﬁ) = trel(¢7 «, ﬁ)7

,3) = P(a),

L4 trel w A w2) - trel(’l/}h o ﬁ) A\ trel(’l/}% o ﬁ)
L4 trel w V w2) - trel(’l/}h o ﬁ) V trel(’l/}% o ﬁ)
o trel ,lvbl - ,QZ)Q) — trel(,@blaa /8) - trel(,le)Q) 7ﬁ)7

[
~

rel wl A w2> - trel<w17a ﬁ) — trel<w27a ﬁ)
trel < >?/1, « 5) = Elﬁ [ ( 75) /\trel@p?BuO‘) ]7
e ta(la]Y, a,8) =B [ Ru(a, B) = ta(¥, 5, ) |.

(P,
(
(
(
(
(
(
(

It is easily seen that the relational translation translates modal formulas into
the guarded fragment. In case one wants to translate a formula that belongs
to a modal logic different from K, one has to add the frame property to the
translation. For example, symmetry, which is required by modal logic B, has
frame property Vry R(x,y) — R(y,x), which is in the guarded fragment.
Unfortunately, there are many modal logics which have a low complexity,
but which have frame properties that cannot be translated into the guarded



fragment. If one wants to test satisfiability of a modal formula % in the
modal logic S4, then this has to be done by testing satisfiability of

tret(¥) AV R(w, w) A Vuywews | R(wy, wa) A R(ws, ws) — R(wy,ws) |.

The transitivity axiom is not in the guarded fragment. This can be shown
by observing that transitivity is not preserved by guarded bisimulation.

There have been quite a few attempts to extend the guarded fragment, in
order to be able to capture capture S4-like logics. For example, it has been
shown by Szwast and Tendera [24] that the guarded fragment remains decid-
able when transitivity axioms are added, as long as the transitive predicates
occur only in guards. In [16], it has been shown that it is possible to add
monotone fixed point operators to the guarded fragment. Modal logic S4 can
be translated into both fragments. Both fragments have the same complexity
as the guarded fragment. In our view, however, the fragments do not really
explain the low complexity of modal logic S4, because the principles used in
the decidability proofs and the resulting algorithms are much more complex
than those needed for S4. This is also reflected by the fact that there exist no
implementations of the guarded fragment with fixed points, or the guarded
fragment with transitive guards.

In [10] and [11], a different approach is chosen. Instead of adding the
axioms and extending the fragment, one can slightly modify the translation,
so that S4-formulas can be translated into the guarded fragment.

Definition 2.13 A multimodal formula v is in negation normal form if it
does not contain < and — is applied only on atoms.

Definition 2.14 Let ¢ be a multimodal formula in negation normal form.
We define the relational translation for S4, tss(v) as Ixy tsy(¢¥, x,y), where
ts4/3 in turn is recursively defined as follows:

® tgy ,B) =P(a),
e tsi(—p,, B) = ~P(a),

(P,
tsa(
o toa(U1 Athe) = tsa(tn, o, B) Atsa(t2, v, B),
s4(
(
(

S4 ’17/) va) _t54(,¢)17 7ﬁ)\/t5’4(¢27a7ﬁ)7
4< >¢7 aﬁ)—ﬂﬁ[ ( 75)/\%4(%@04)],

tsa([a]y, a,B) =
X(a) A
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Vaf [ X(a) — Ry(a, 5) — X(B) ] A (X is a new symbol)
Va [ X(a) — tsa(¥, o, f) |-

It can be easily checked that for every multimodal formula 1 in negation
normal form, the translation tg4(1)) is within the guarded fragment. It can
also be proven that v is satisfiable in S4 iff £54(¢)) is satisfiable in first-order
logic.

If t54(1)) has a first-order model, then one can replace the interpretations
of the relations R, by their transitive closures, and show that ) is true in this
model. Conversely, if S4 holds in a modal model in which the translations of
the relations R, are transitive, then one can extend it with interpretations
for the X-predicates that satisfy the axioms in the translation.

In [10] and [11], a sufficient condition on the frame condition of the logic
is given, which makes the translation possible. The characterization is based
on formal language theory. In multimodal logic, the accessibility relations
have form R,, where a originates from some indexing set 3. This set can be
viewed as an alphabet. Then paths in modal models correspond to words
over Y. Given a closure condition, one can construct for each relation R,, the
set of paths which will be included in R, by the closure. Using the language
analogy, one can view, for each relation R,, this set of paths as a formal
language. The sufficient condition is that the translation is possible if for
each a € ¥, this 'path language’ is regular.

In the case of 54, the logic is characterized by transitivity. With transitivy
and reflexivity, the set of paths that will be included in R, equals

{€, a,aa,aaa, aaaa, .. .}.

This language is regular and can be recognized by an automaton with a single
state X, which is initial and accepting state. The transition function consists
of a single transition under a, which cycles in X. The automaton is reflected
in the translation for tg4( [a]®), a,3):

X(a), Vaf [ X(a) = Ra(a,8) = X(0) ], Va[X(a)—=tu(y af)]

In general, a frame condition can be viewed as an inclusion condition of

form Ry, - ... R,, € Ry, where a € ¥, and ay - ... a, € X*. Using the
analogy with formal languages, the condition can be viewed as a grammar
rule a — aq - ... a,. This led us to the following definition:

Definition 2.15 A multimodal logic is a regular grammar logic (with con-
verse) if it can be expressed by a set of grammar rules S, s.t. for every symbol
a the set {w | a =% w} is reqular.
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In [10] and [11], it is shown that for every regular grammar logic a trans-
lation similar to the translation in Definition 2.14 can be obtained. This
makes it possible to obtain a decision procedure for regular grammar logics
with converse. As a consequence, the satisfiability problem for regular gram-
mar logics is in 2EXPTIME. For S4 this is worse than optimal, because 54
can be decided in PSPACE, but there are other regular grammar logics that
are 2EXPTIME-hard, so for those, the translation is optimal.

A remaining question is the question of finding a necessary condition on a
regular grammar logic under which a translation into the guarded fragment
is possible. With such a condition, it would be possible to determine for
a given grammar logic, whether an automaton-based translation into the
guarded fragment exists. This problem is still under investigation.

2.4 Deciding the E™-Class by an A Posteriori, Liftable
Order

In this paper, a technical problem related to the Et-class was solved. The
Et-class was introduced by Tanel Tammet in [25]. (It is also discussed on
pages 108-109 of [12]) Unlike the other fragments discussed in this habilita-
tion thesis, the Et-class is defined as a clause class, and it does not corre-
spond to a natural fragment of first-order logic. The E* class was obtained
by generalizing the form of the clauses that originate from clausifying formu-
las in the one-variable fragment with function symbols. This fragment was
shown decidable in [17]. Tammet called the clause fragment corresponding
to the one-variable fragment E, which explains the name E* for the general-
ization. The problem that we solved was stated as an open question in [12],
page 109. Before we can state it, some definitions are needed:

Definition 2.16 A literal is weakly covering if every non-ground, functional
term in the literal contains all variables that occur in the literal.

A clause c is in ET if all its literals are weakly covering and have ezxactly
the same set of variables.

A set of clauses is in E1 if all its clauses are in ET.

The definition of E* in [12] is slightly different from ours. There, for each
pair of literals in a clause, the sets of variables have to be either identical, or
disjoint. In case there are literals with disjoint sets of variables, the splitting
rule can be applied, and after that the resulting fragments are the same.

Example 2.17 The following literals are weakly covering:
p(f(X,Y),X), q(f(s(0), X)), p(X, f(Y,9(X,Y,5(5(0))))), p(s(X),s(X)).

12



The following are not:

p(f(s(X),s(Y))), p(f(X,Y),(X)).

The following clauses are in ET :

{ p(f(X,Y)), a(f(X,9(X,Y;5(0)) }, { ~¢(X), q(s(f(X,X))) }.

The question that we solved is whether a certain order can be used to decide
the E-class, when it is used a posteriori. We first define the order, then we
define what it means to be applied a posteriori.

Definition 2.18 We define the following order < on literals: A < B iff
1. The depth of A is strictly less than the depth of B,

2. and every variable that occurs in A has a deeper occurrence in B.

The <-order is called <4 in [12]. As usual, when counting depth, negation
symbols are not counted.

Definition 2.19 A posteriori ordered resolution and a posteriori ordered
factoring are defined as follows:

resolution: Let {A;} U Ry and {—As} U Ry be clausees which have no vari-
ables in common and s.t. Ay, Ay have most general unifier ©. If in
addition, A1© £ R10 and —As0 £ R0, then one may construct the
resolvent R0 U R,0.

factoring: Let {A1, A2} UR be a clause, s.t. that Ay, As have most general
unifier ©. If in addition, A1© £ [ A,© |U RO, then ony may construct
the factor {A10} U RO.

In order to see that a posteriori application of an order is stronger than a
priori application, consider the following example:

Example 2.20 Consider the following clause set, which is in E* :

{p(0,5%(0)) }, { —w(X,5%(0)), p(s(X),s*(0)) }.

Using < a priori, the first literal of the second clause can be resolved upon,
(because it is not strictly less deep than the second literal) and all clauses of
form [ p(s'(0),s%(0)) ], @ > 0 are derivable. Using < a posteriori, only the
following clauses are derivable:

{ p(s(0),5%(0)) }.  { =p(X,5%(0)), p(s*(X),s7(0) }, { p(s(0),5°(0)) }
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In the example, resolution with a priori application of <; does not enforce
termination, but resolution with a posteriori application of <; enforces ter-
mination. The main result of [8] is the following, which was posed as an open
question in [12].

Theorem 2.21 Let C be a set of clauses in E™. Using a posteriori ordered
resolution and factoring, the set of clauses that are derivable from C' is finite.

The relevance of this result lies in its contrast with the decision procedure
using non-liftable orders, which was given in my thesis [6]. Here it is easy
to prove completeness, because completeness of a posteriori ordered reso-
lution with liftable orders is a standard result. Using a non-liftable order,
termination is easy to prove, but then completeness is hard to prove.

2.5 A Resolution-Based Decision Procedure for the
Two-Variable Fragment with Equality

The paper presents a decision procedure for the two-variable fragment with
equality, which uses resolution, but in a more indirect way than the decision
procedures in Sections 2.1, 2.2 and 2.4. The decision procedure contains an
equality removal procedure that only works on formulas that are saturated
under resolution. After the removal of equality, resolution has to be used one
more time in order to obtain a decision procedure.

Definition 2.22 A first-order formula is in the two-variable fragment if the
formula contains no function symbols, and only two variables.

The input of the procedure is a formula in the two-variable fragment
of first-order logic, without function symbols, but possibly with equality.
Without loss of generality, one may assume that the formula contains only
binary and unary predicate symbols. In the first stage of the procedure,
equality is removed. This is done by saturating certain parts of the formula
under (a restricted form) of resolution. From the resulting formula, equality
can be removed without changing satisfiability of the formula. The result
is a formula, which is still in the two-variable fragment, but now without
equality. It can be decided either by a non-liftable order, as was described
in [7], or by indexed resolution, which is the procedure given in the paper.

We describe only the equality removal procedure, since that is the most
interesting part of the paper. The first step of the procedure consists in
transforming the formula into the followowing normal form:

14



Definition 2.23 A formula A is in conjunctive normal form if it has form
(L171 V-V Ll,ll) VANEIERIVAN (Lm71 V-V Lme),

with each L; ; a literal.
A formula F s in separation normal form if it has form F = a A 51 A
-+« A B, where a has form

Voy (x =y V A),

with A quantifier free, equality free, in conjunction normal form, and con-
taining no other variables than x,y.
Fach B; has one of the following two forms:

dx A; orVady (z sty AN A,

with each A; quantifier free, equality free, and in conjunction normal form.
In the first case, A; contains no other variable than x. In the second case, A;
contains no other variables than x and y.

Note that the term ’separation normal form’ is not used in the paper. The
formula Vzy (x ~ y V A) is equivalent to Vzy (z % y — A). Every two-
variable formula can be transformed into separation normal form by stan-
dard transformations. A subformula of form Vz3y A(z,y) can be replaced
by Vx [A(z,z) V Iy (z % y A A(z,y) ) ]. Similarly, a subformula of form
Vxy A(z,y) can be replaced by Vzy (z =y Vv A(x,y) ) A\Vz A(z, x).

If one has a formula Vxy A with A in conjunctive normal form, then A
can be viewed as a set of clauses, written in first-order notation, and one can
perform resolution on it. Similarly, in Vz3y(z % y A A;), one can view A;
like a set of clauses.

Definition 2.24 On a formula F in separation normal form, we allow the
following restricted form of resolution: The literals resolved upon must be
binary, and contain two distinct variables.

We allow this form of resolution at two places: First between two dis-
Junctions inside Yzy (x =~ y V A). The resolvent is added to this formula.
Second between a disjunction in Vry (x =~ y) V A and a disjunction in a
Vedy(z % y A A;). The resolvent has to be added to the A; of the second
formula.

It can be checked that this form of resolution is sound, and that it termi-
nates in finite time. After that, the procedure continues as follows:
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Theorem 2.25 Let F =a AP A---AB, be a formula in separation normal
form, that is closed under the resolution rules of Definition 2.24. Let F' =
o NGBy A\ B, be obtained from F by removing all disjunctions containing
a two-variable literal from «. Then F has a model if and only if F' has a
model.

In the resulting formula, after the disjunctions with a two-variable literal
have been removed, the only positive equality occurs in o’ which has form
Vay (x = yV A’). We know that A’ contains only unary literals, or binary
literals with a repeated variable. Hence we can write

A= (Ci(z)V Di(y) ) A+ A( Cl() V Din(y) ),

where each C} is a disjunction of unary atoms containing no other variable
than z, and each D; is a disjunction of unary atoms containing no other
variable than y. The equality can be rearranged as

o' =Vay (x=yVCi(z)VDi(y) ) A AVay (z =y V Cpu(z) V Din(y) ).
Introducing new constants ey, ..., e,,, this formula can be replaced by

o' =V Cy(x) VVy Di(y) VVz (Ci(z) Ve =~e )AVy ( Di(y)Vy~ep )

Vo Cp(x) VVY Dp(y) VY2 (Cp(z) Ve =en ) Ay ( Dn(y)Vy=en ).

At this point, one can introduce unary predicates E;(z) for z ~ e;. Uni-
formness of elements for which E;(z) holds can be ensured by the following
axioms, which are all in the 2-variable fragment: For a unary predicate P( )
(including the E;( ) predicates), one has Vay ( Ej(x) AE;(y)ANP(x) — P(y) ).
For a binary predicate P( , ), one has

Vay ( Ej(x) A P(z,y) — Vo, ( Ej(r) — P(a1,y) ),

and
Voy ( Ej(y) A P(z,y) — Yy ( Ej(y1) — P(x,m1) ).

In the resulting formula, there are only negative equalities left. For those, it
suffices to add the axiom Vzy x % y.

The result is a formula that is still within the two-variable fragment, but
which does not contain equality. It can be decided by non-liftable order (see
[7]), or by the variant of indexed resolution described in the paper.
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The guarded fragment is a fragment of first-order logic that has been introduced for two
main reasons: First, to explain the good computational and logical behavior of proposi-
tional modal logics. Second, to serve as a breeding ground for well-behaved process logics.
In this paper we give resolution-based decision procedures for the guarded fragment and
for the loosely guarded fragment (sometimes also called pairwise guarded fragment). By
constructing an implementable decision procedure for the guarded fragment and for the
loosely guarded fragment, we obtain an effective procedure for deciding modal logics
that can be embedded into these fragments. The procedures have been implemented in
the theorem prover Bliksem.

1. Introduction

The guarded fragment was inspired by two observations. First, many propositional modal
logics have very good computational and logical properties: their satisfiability problems
are decidable in polynomial space and exponential time; they have the (uniform) finite
model property, and the tree model property (Vardi, 1997); we have a solid understanding
of their expressive power in model theoretic terms, and they have various interpolation
and preservation properties. See (de Rijke, 1999).

Second, these modal logics can be translated into first-order logic, using a standard (re-
lational) translation based on the Kripke semantics. In this translation, a modal formula
A is translated by computing T(A, z,y), where z and y are two distinct first-order vari-
ables. T' is recursively defined as follows:

T(p,«, 3) = p(a) if p is an atom
T(_‘A7 a7 ﬂ) = _\T(A7 a7 /3)

T(AV B,a,8) = T(A o B)VT(B,a,p)
T(AANB,a,8) = T(A o B)ANT(B,a,ps)
T(A— B,a,) = T(Aap) — T(B,a,pj)
T(OA,0,8) = V3R(f) — T(A,5,a)]
T(0Aa,B) = 38Rl ) AT(AB0)

Here R is a binary relation symbol that denotes the accessibility relation. In case there
are additional restrictions on the accessibility relation, these can be explicitly added to
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the translation. The formula T'(A, z, y) means ’A holds in world « ’. In order to translate
’A is satisfiable’, one must compute JaxT(A, z,y).

The consequence of the translation above is that propositional modal logics can be seen
as fragments of first-order logic. The natural question that arises is: What makes these
fragments special? Or put differently, why do they have the pleasant computational and
logical properties noted above? Gabbay in (Gabbay, 1981) was the first to observe that
modal logics can be translated into the 2-variable fragment FO? of first-order logic,
which is decidable. (Indeed the translation given above uses only the variables x and y)
The fragment FO? with equality was first shown to be decidable in (Mortimer, 1975),
without giving an explicit complexity bound. In (Grédel et al., 1997) it was shown that
the satisfiability problem for the 2-variable fragment (with equality) is NEXPTIME-
complete. In (Grédel et al., 1997) an interesting account of the history of the fragment
can be found.

The decidability of FO? appears to be an explanation for the pleasant properties of
modal logics. We have a clear understanding of the expressive power of FO? in terms of
so-called pebble games (Immerman and Kozen, 1989). However on the negative side, FO?
is not finitely axiomatizable, it does not have the Craig interpolation property, and it does
not have the tree model property, unlike the modal logics it contains. For example, the
formula Vay[R(x,y)] does not have a tree-like model. In (Vardi, 1997) it is convincingly
argued that the tree model property is the reason for the good behavior of modal logics.
Recently, an alternative explanation for the good behavior of modal fragments of first-
order logic was put forward by Andréka et al. in 1998. Their observation is that in the
translation given above all quantifiers only occur relativized or guarded by the acces-
sibility relation. They called this fragment of first-order logic, in which all quantifiers
occur relativized, the guarded fragment. Clearly, the translation above translates modal
formulae into the guarded fragment.

At present, the guarded fragment is actively being investigated, both from a computa-
tional and from a logical point of view. It is known to be decidable and to have the
finite model property (Andréka et al., 1998). Its satisfiability problem is decidable in
double exponential time and it enjoys (a generalized form of) the tree model prop-
erty (Gradel, 1997). Because of this it is consistent with (Vardi, 1997) to use the guarded
fragment as explanation for the good behavior of modal logics.

Actually, the results in (Gréadel, 1997) were proven for the guarded fragment with equality.
(however equality cannot act as a guard) In (Ganzinger et al., 1999) it is shown that the
2-variable restriction of the guarded fragment remains decidable, when it is extended by
transitive relations. In (Gréadel and Walukiewicz, 1999), the guarded fragment is extended
with monotone fixed point constructors. It is shown that this extension does not increase
the complexity of the decision problem. Moreover, this extended fragment still satisfies
the tree model property.

Many familiar—and well-behaved—modal logics can be translated into the guarded frag-
ment. These logics include K, B, D, and recently also S4, K4 and S5 (de Nivelle, 1999b).
However, it seems that several important modal and temporal logics can not be trans-
lated into the guarded fragment, including the temporal logic with Since and Until. For
these reasons, a number of generalizations of the guarded fragment have been proposed,
the oldest of which is the so-called loosely guarded fragment (van Benthem, 1997). In this
fragment, more liberal guards are allowed than in the original guarded fragment. With
these liberal guards the operators Since and Until can be translated.

The aim of this paper is to present resolution decision procedures for both the guarded
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fragment and the loosely guarded fragment without equality. Recently, a superposi-
tion decision procedure for the guarded fragment with equality has been developed in
(Ganzinger and de Nivelle, 1999). Although the first-order fragment in that paper is more
general, the clause fragment had to be strongly restricted in order to make it possible to
include equality. For example, the clause fragment used here allows nesting of function
symbols, while this is not allowed in the other clause fragment. This makes that the
decidability results here and the decidability results in (Ganzinger and de Nivelle, 1999)
are incomparable at the clause level.

In order to decide the guarded fragment, we define guarded clauses, and show that first-
order guarded formulae can be translated into sets of guarded clauses. After that we show
that sets of guarded clause sets are decidable by an appropriate restriction of resolution.
The restriction that has to be used is based on a so-called ordering refinement. All of
the resolution theorem provers (SPASS (Weidenbach, 1997), OTTER (McCune, 1995),
and Bliksem (de Nivelle, 1999a)) support orderings. This makes that our strategy fits
very well into the standard framework of first-order resolution theorem proving. The
standard optimizations and implementation techniques can be reused for our decision
procedure, so we can expect our procedure to be technically efficient. Indeed, with an
effective resolution-based decision procedure, implementation has become feasible. The
strategy for the guarded fragment has been implemented in the theorem prover Bliksem
(de Nivelle, 1999a). We will also show that our decision procedure is theoretically optimal,
because it terminates in double exponential time.

In order to decide the loosely guarded fragment we define a similar notion of loosely
guarded clause. However, deciding sets of loosely guarded clauses is much harder than
deciding sets of guarded clauses. We need a non-trivial modification of hyperresolution on
top of the ordering refinement for this. In order to prove its completeness, an extension
of the resolution game turns out to be necessary.

The paper is organized as follows. Section 2 provides background material. After that, in
Section 3 we get to work and establish decidability of the guarded fragment by means of
ordered resolution. In Section 4 we use ordered resolution to decide the loosely guarded
fragment. The fifth and final section contains our conclusions and as well as some open
questions.

2. Background

We begin by defining the guarded fragment. After that we give some general background
on resolution strategies, normal from transformations, and covering literals. It should be
noted that we do not consider equality in this paper. For this we refer to (Ganzinger and
de Nivelle, 1999).

2.1. THE GUARDED FRAGMENT

DEFINITION 2.1. The guarded fragment (GF) is recursively defined as the following sub-
set of first-order logic without equality and function symbols.

1 T and L are in GF.
2 If a is an atomic formula, then a € GF.
8 If A, B € GF, then A, AVB, ANB, A— B, A+~ BeGF.
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4 Let A € GF, and let a be an atomic formula such that every free variable of A occurs
at least once among the arguments of a. Then ¥T(a — A) € GF and IT(aNA) € GF.
We also allow VZ(—-a V A) € GF.

The atoms a in Item 4 are called guards.

There are no conditions on the order in which the variables occur in the guards. It is also
allowed to repeat variables.

EXAMPLE 2.2. The following formulae are guarded:
Vayla(z,y) — (b(z,y) Ac(z) Ad(y, y))]-
Vayla(z, y,y, @) A (c(x) V ~Vz[aly, z) — d(y)])]-
The following formulae are not guarded:
Vayla(z) — a(f(x))].
Vay(a(z) — bz, y)).

Vayz[R(x,y) A R(y, z) — R(z, z)].

It is easily checked that for every modal formula A the translation 32T (A, x, y) is guarded.
T(A,z,y) is clearly function free. The set of free variables of T(B,a, ) is always in-
cluded in {a}. All quantifications in T'(A,z,y) have form VS[R(a, ) — T(B, 8, a)] or
A6[R(«, B) AT (B, 3, a)]. Since 8 occurs in R(«, 3) the quantifications are guarded.

2.2. RESOLUTION

We briefly review some elementary facts about resolution. We assume that the reader is
familiar with such notions as literals, clauses, and ground terms. We begin by defining
some complexity measures for terms, atoms, clauses, and literals. For convenience we
identify atoms and terms in the following recursive definitions. Let A be an atom/term.
The depth of A is recursively defined as follows:

1 If A is a variable, then Depth(A) = 1.
2 For a functional term/atom, Depth(f(t1,...,¢,)) equals the maximum of {1,1 +
Depth(t1),...,1+ Depth(t,)}.

The depth of a literal equals the depth of its atom. The depth of a clause ¢ equals the
maximal depth of the literals in ¢, or 0 for the empty clause.
The vardepth of a term/atom A is recursively defined as follows:

1 If A is ground, then Vardepth(A) = —1.
2 If A is a variable, then Vardepth(A) = 0.
3 In all other cases,

Vardepth(f(t1,...,t,)) = max{l + Vardepth(t1),..., 1+ Vardepth(t,)}.
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The vardepth of a literal equals the vardepth of its atom. The vardepth of a clause c equals
the maximal vardepth of a literal in ¢. The vardepth of the empty clause is defined as
—1.

If A is an atom, literal, or clause, then Var(A) is defined as the set of variables that occur
in A. Varnr(A) is defined the number of variables in A, i.e. as the cardinality of Var(A).
For a term/atom A, we define the complezity of A, written as #A, as the total number
of occurrences of function, constant, and variable symbols in A.

Next we introduce the ordered resolution rule. We assume that the reader is familiar
with most general unifiers (mgu’s); see (Chang and Lee, 1973) or (Leitsch, 1997).

DEFINITION 2.3. We define the ordered resolution rule, and factorization rule. Let C be
an order on literals.

Res Let {A1} U Ry and {—A2} U Ry be two clauses such that the following hold:

1 {A1} U Ry and {—A3} U Ry have no variables in common;
2 there is no A € Ry such that A1 C A;

3 there is no A € Ry such that Ay T A; and

4 Ay and As have an mgu ©.

Then the clause R1© U R20 is called a C-ordered resolvent of {41} U Ry and
{—|A2} U Rs.
Fact Let {A1, A2} UR be a clause, such that

1 there is no A € R such that A1 C A;
2 A1 and As have an mgu ©.

Then the clause {A1©} U RO is called a CT-ordered factor of {A1, A2} UR.

The order C is called liftable if it satisfies the following condition, for all literals A, B,
and for all substitutions ©,

AC B= AO C BO.
The combination of ordered resolution and factoring is complete, when the order is
liftable, see (Leitsch, 1997) for a proof. The order that we will use for the guarded
fragment does not satisfy this property.

We now define (unordered) hyperresolution. We mention hyperresolution here because
we will need a variant of it in the decision procedure for the loosely guarded fragment.

DEFINITION 2.4. Let {A1}URy, ..., {Ap}UR, be purely positive clauses. Let {—A}, ..., ~A}}U
{B1,...,By} be a mized clause, in which Bx,..., By are positive. Let © be the most gen-
eral unifier of the pairs

(A1, AY), ..., (4, A;).
Then the clause
Ri®U---UR,O0U{B0O,...,B,0}
18 a hyperresolvent.
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2.3. TRANSFORMATION TO CLAUSAL NORMAL FORM

Resolution works only on formulae of a restricted form. In order to be able to deal with
full first-order logic, we need a method of transforming first-order formulae into clause
sets. We give a collection of operators that can be used for this transformation. We define
all operators as working on sets of formulae rather than on formulae themselves, so that
operators can split one formula into different formulae. To start, here is a brief overview:

NNF(C) Bring C in negation normal form.

Struct(C) Replace certain subformulae by fresh atoms, and add equivalence definitions
for the new atoms.

Structy(C) Replace certain subformulae by fresh atoms, but add implications instead
of equivalences.

Sk(C) Replace every existentially quantified variable by a functional term, using a fresh
function symbol.

Cls(C) Factor C into a set of clauses.

The operator sequence NNF, Sk, Cls constitutes a complete transformation. It is possible
to insert Struct or Struct; before Cls.

DEFINITION 2.5. Let C = {Fy,...,F,} be a set of formulae. NNF(C) is obtained by
first replacing all occurrences of — and <, after that moving all =’s inwards as much as
possible, and by finally removing all double —’s.

In (Baaz et al., 1994) the structural transformation is defined by replacing all subfor-
mulae of a certain formula by fresh names, with defining formulae for the fresh names.
When such a tranformation has been applied, the original formula can always be re-
constructed, contrary to when the normal form has been obtained by factoring. For
this reason Baaz, Fermiiller and Leitsch have called these transformations structural. In
our decision procedures we will make use of structural transformations, but we will not
replace all subformulae. We will now give the operator Struct but specify later which
subformulae are going to be replaced.

DEFINITION 2.6. Let C = {Fy,..., F,} be a set of formulae. We define Struct(C) as the
result of making replacements of the following form: Let A be a subformula of one of the
F;. Let x1,...,x, be an enumeration of the free variables of A. Let a be a new predicate
name. Replace F;[A] by Fi[a(z1,...,2,)] and add

Var, ..o, &y [z, ..., 20) — A

to C.

If C is in negation normal form, then it is sufficient to use — instead of < in or-
der to obtain a satisfiability preserving transformation. Structy is defined by adding
Vo, ..., &y [a(z1,...,2,) — A] to C, instead of using equivalence.

DEFINITION 2.7. Let C = {Fy,...,F,} be a set of formulae in negation normal form.
We define the Skolemization Sk(C') as the result of making the following replacements:
As long as one of the F; contains an existential quantifier, write F; = F;[Jy A], where
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dy A is not in the scope of another existential quantifier. Let x1,...,x, be the univer-
sally quantified variables in the scope of which A occurs. Replace F;[Jy A] by F;[Aly :=
f(z1,...,x,)] |. Here we use the notation F;[y := t] to denote full first-order substitution.

There are more sophisticated ways for Skolemization leading to more general Skolem
terms, see (Ohlbach and Weidenbach, 1995), but we cannot use them for our present
purposes.

DEFINITION 2.8. Let C = {Fy,...,F,} be a set of formulae in NNF containing no exis-
tential quantifiers: The clausification of C, written as Cls(C), is the result of the following
replacements.

1 Replace AV (BAC) by (AVB)A(AVC).

2 Replace (ANB)V C by (AVC)A (BVC).

3 Replace Vx A by Az := X|, where X is a designated variable symbol not occurring
in A.

4 If one of the F; has form A A B, then replace it by A and B.

The result of Cls is of a set of clauses.
2.4. WEAKLY COVERING LITERALS

In this section we briefly introduce a class of literals that are called weakly covering liter-
als. They first appeared in (Tammet, 1990), and independently in the thesis of Fermiiller,
see (Fermiiller et al., 1993). Weakly covering literals are the basis of many of the classes
that are decidable by resolution, such as E™ and S™. Their usefulness is due to the fact
that when two weakly covering literals are unified, the result is not more complex than
the larger of them. We will shortly state the main facts.

DEFINITION 2.9. A literal is covering if every functional subterm of it contains all vari-
ables that occur in the literal. A literal is weakly covering if every non-ground, functional
subterm contains all variables of the literal.

We will not make use of covering literals, but we included the definition for the sake of
completeness. Covering and weakly covering literals are typically the result of Skolem-
ization, when the prefix ends in an existential quantifier. If a function free atom a(Z, y)
in the scope of quantifiers VZ3y is Skolemized, the result equals a(Z, f(T)), which is cov-
ering. If a(Z, y) contains functional ground terms, then the result is weakly covering. For
the proofs of the following facts we refer to (Fermiiller et al., 1993). We mention the facts
here so that we can refer to them when we need them in later sections.

THEOREM 2.10. Let A and B be weakly covering literals that have an mgu ©. Let C =
A© = BO. Then

1 C is weakly covering.
2 One of the following holds: Either Vardepth(C') < Vardepth(A4) and Varnr(C) <
Varnr(A), or Vardepth(C') < Vardepth(B) and Varnr(C) < Varnr(B).

30



Theorem 2.10 alone does not prevent unbounded growth of the unifier. This is because
of the fact that, although the variable depth of C' is bounded, C' may contain arbitrarily
large ground terms. The following controls this problem:

LEMMA 2.11. Let C = AO© = BO be a most general unifier of two weakly covering
literals. Let v be the mazimum of Vardepth(A) and Vardepth(B). Every ground term in
C occurring at a depth greater than or equal to v, occurs either in A or in B.

This restricts the introduction of new ground terms to ground clauses. This will turn out
sufficient for bounding the growth of unified terms.

What we have until now is not sufficient for bounding the side literals in resolved clauses.
Let R1© U R0 be a resolvent of {A;} U Ry and {—A3} U Ry. Theorem 2.10 states that
A;0 is weakly covering and bounded in variable depth, but we have said nothing about
the literals in R;0. First we state that the side literals are weakly covering, after that
we state that their variable depth is bounded.

THEOREM 2.12. Let A and B be literals which are both weakly covering. Let Var(A) C
Var(B), and let © be a substitution such that BO is weakly covering. Then AO is weakly
covering.

LEMMA 2.13. Let A and B literals, which are both weakly covering. Let Var(A)
Var(B), Vardepth(A) < Vardepth(B), and let © be a substitution. Then Vardepth(A©)
Vardepth(B®), and Var(A®) C Var(BO).

<
<

2.5. THE RESOLUTION GAME

The completeness proof of our strategy is based on the resolution game, which was
introduced in (de Nivelle, 1994) as a device for proving completeness of resolution with
non-liftable orders. We briefly introduce it here, but for a more elaborate description, see
(de Nivelle, 1994).

DEFINITION 2.14. A resolution game is an ordered triple G = (P, A, <), where

1 P is a set of propositional symbols,
2 Ais a set of attributes,
3 < is an order on (P U—-P) x A, where =P is defined as {-p |p € P}.

It must be the case that < is well-founded on (PU—-P)x A. The elements of (PU—-P) x A,
are called indexed literals. We will write a: A instead of (a, A). A clause of G is a finite
multiset of indexed literals of G.

Interpretations for a resolution game are defined in a standard manner, i.e., as proposi-
tional assignments. A clause is true in an interpretation if one of the literals that occurs in
it (ignoring the indices) is true. We now define resolution and factoring for the resolution
game. We need an explicit factoring rule even for propositional logic, because clauses are
multisets.

DEFINITION 2.15. Let G = (P, A, <) be a resolution game. Let ¢ be a clause of G. An
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indexed literal a: A is maximal in c, if for no indexed literal b: B in ¢, a:A < b:B. We
define resolution and factoring for G : Let ¢1 = [a: A1) Ur1: Ry and co = [~a: Ao] Ure: Ry
be clauses such that a: A1 and —a: Ao are maximal in their clauses. Then r1: R1Urs: Ry is
a resolvent of ¢c; and cy. The expressions ri: R; denote finite multisets of indexed literals.
Let ¢ = [a: Ay, a: As]Ur: R be a clause, such that a: Ay is maximal in ¢1. Then [a: A1]Ur: R
is a factor of c;.

Until now we have nothing unusual, as this is just lock resolution (Boyer, 1971). We now
define reductions, which distinguish the resolution game from lock resolution.

DEFINITION 2.16. Let ¢ be a clause of a resolution game G. A reduction of ¢ is obtained
by performing zero, or any finite number of the following actions: (1) Deleting an indexed
literal. (2) Replacing an indexed literal a: A1 by an indexed literal a: Ao with a: As < a: A;.

DEFINITION 2.17. Let C' be a set of clauses of a resolution game G = (P, A, <). A
saturation C' of C' is a minimal set for which (1) C C C. (2) For every resolvent c that
can be constructed from two clauses c1,co € 6, there is a reduction d of ¢ in C. (3) For
every factor ¢ that can be constructed from a clause ¢1 € C, there is a reduction d of c

i C.

The resolution game is different from lock or indexed resolution (Boyer, 1971), because
in lock resolution the resolvent inherits the indices from the parent clause without any
changes. In the resolution game the indices may change. The reason that this variant of
resolution is called resolution game, is that it can be seen as a game of two players: One
player, called the opponent, is trying to refute the clause set using ordered resolution
and factoring. The other player, called the defender, tries to disturb the opponent by
replacing clauses by reductions.

THEOREM 2.18. Let C' be a set of clauses of a resolution game G. The following two
statements are equivalent: (1) C is unsatisfiable. (2) Every saturation of C contains the
empty clause.

A complete proof can be found in (de Nivelle, 1994). In terms of games, Theorem 2.18
can be reformulated as follows: If C' is unsatisfiable, then the opponent has a winning
strategy, and if C is satisfiable, then the defender has a winning strategy.

3. The Guarded Fragment

In this section we give a decision procedure for the guarded fragment. Our decision
procedure is based on ordered resolution, as defined in Definition 2.3. It is common to
restrict the resolution rule by an ordering, but usually this is done to improve efficiency in
cases where a proof exists. However, certain orderings can be used to enforce termination
in cases where no proof exists.

We will illustrate this point with an example. Let C' be some clause set in which only
one variable X is used, all literals contain this variable X, and which contains no constant
symbols. So {p(X), ¢(s(X, X), X)} is allowed, but {p(s(X),0)} is not. Let C be an order
on literals that is defined by putting A T B iff Vardepth(A) < Vardepth(B). Then the
following hold:
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1 Every ordered resolvent or factor from C contains exactly one variable, and no
constants. Hence every derivable clause can be renamed such that it contains only
the variable X.

2 If © is the mgu of two literals A and B, each containing exactly one variable and
no constant symbol, then A© and BO are also such literals, and Vardepth(40) =
Vardepth(BO) is equal to Vardepth(A) or to Vardepth(B).

3 If Vardepth(A) < Vardepth(B), and © = {X := t} is a substitution, such that ¢ con-
tains exactly one variable and no constants, then Vardepth(A4©) < Vardepth(B©).

As a consequence, the clauses cannot become deeper, and cannot contain more than
one variable. Because the set of literals that can occur in the clauses is finite, the set
of derivable clauses is finite. Hence, the order C enforces termination. If one can show
the completeness of resolution with [, at least for this one-variable class, then one has a
decision procedure. This is straightforward because the order is liftable on the class under
consideration. Our decidability proofs below have the same structure as this example.

3.1. BasIcs

In order to be able to use resolution we need a notion of guardedness for clause sets, and a
way to translate guarded, first-order formulae into guarded clause sets. The translation is
not completely standard. Standard translations would transform guarded formulae into
non-guarded clauses.

The first step of the transformation is the transformation into NNF. This can be done
without problems, since all of the necessary replacements preserve the guarded fragment.
When the formula is in NNF, the guard condition for the existential quantifier is not nec-
essary anymore. This means that the guard condition in Definition 2.1 can be weakened
to positively occurring V-quantifiers, and negatively occurring 3-quantifiers, in the case
where one wants to decide satisfiability. For clause sets we define the following normal
form.

DEFINITION 3.1. A clause ¢ is called guarded if it satisfies the following conditions:

1 FEvery non-ground, functional term in ¢ contains all variables of c.
2 If ¢ is not ground, then there is a negative literal = A in ¢ that does not contain a
non-ground, functional term, and that contains all variables of c.

A clause set C is called guarded if its clauses are guarded.

The negative literal in item 2 of Definition 3.1 is the guard. Every ground clause is
guarded. The definition of a guarded clause given here differs from the definition in
(de Nivelle, 1998) but is equivalent. In (de Nivelle, 1998) the first condition was given as
two conditions: (1a) Every literal, containing non-ground functional terms contains all
variables of ¢, and (1b) every literal in ¢ is weakly covering. It is easily checked that 1a
and 1b is equivalent with (1).

EXAMPLE 3.2. The clause {p(0, s(0)),q(s(s(0)))} is guarded because it is ground. The
clause {—p(X),—q(X,Y),r(f(X,Y))} is guarded by the literal —¢(X,Y). The clause
{=p(X),~q(Y),r(f(X,Y))} is not guarded. Adding a literal —a(X,Y, X, X,Y) would
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result in a guarded clause. The clause {—p(Y, X), ¢(f(X), X,Y)} is not guarded. It cannot
be made guarded by adding literals. The empty clause is guarded.

Let us continue with the translation taking guarded formulae into guarded clause sets.
We need a variant of Struct, of Definition 2.6, which we will call Structy.

DEFINITION 3.3. Structy is the structural transformation that is obtained by replacing
the subformulae of the forms VT(a — A) or VZ(—a V A) with free variables 7, by some
fresh name a(y) and adding a defining formula of the form VTy (—aV-aV A). The latter
formula is equivalent with Vy(a — VT (a — A)).

EXAMPLE 3.4. The guarded formula
Jzn(x) AVyla(z,y) — —Fz(p(x, 2) A (Vo a(z, 2) — (b(z, 2) A c(z, x))))]
is translated as follows. First, NNF results in
Jzn(x) AVy [-a(z,y) VVz(—p(z, 2) V (Fz a(z, 2) A (2b(z, 2) V —c(z, 2)) )]
After that, Structy results in the following set of formulae
Jz [n(z) A a(z)], VYay|[-a(z,y)V -alz)V G(x)],
Vaz [-p(x,2) V —6(x) V (Fz a(z, 2) A (2b(z, 2) V —c(x, x)))].
Sk results in
n(c) Aa(e), Vay[-a(z,y)V -a(z) V B(z)]
Vaz [p(z, 2) V =B(x) V (a(f(z,2),2) A (2b(z, 2) V —e(f(, 2), f(z, 2)) )]

And finally, clausification results in

{n(c)}, {a(c>}7 {ﬁCL(Xv Y)’ ﬁO‘(‘Xv)a ﬁ(X)},
{ﬁp(Xv Z)v jﬁ(‘)()7 a(f(X’ Z)’ Z)},
{—\p(X, Z)a _‘B(X)7 _'b(Zv Z)7 _'C(f(Xv Z)v f(Xv Z))}

THEOREM 3.5. Let F' € GF. Then

1 F' = NNF(F) € GF,
2 F" = Structy(F') € GF, and
3 (Sk; Cls)(F") is a guarded clause set.

PrOOF. We consider the steps made in the transformation: The NNF is characterized by
a set of rewrite rules. Let ® = VT (a — A) or ® = 3T (a A A) be a guarded quantification.
® will remain guarded under each application of a rewrite rule inside A, since none
of the rewrite rules introduces a free variable. Similarly if ® occurs in the X or Y of
a rewrite rule (X op Y) = --- then A is copied without problems. The only possible
problem occurs when VZ (a — A) rewrites to VT (—a V A), but this case is covered by the
definition of the guarded fragment.

The next step is Structy. The defining formula VZy (—a V —a V A) is guarded, since
a is a guard, and A is not affected. Any quantification in which the replaced formula
VT (—a V A) occurs, remains guarded after replacement by «(y), because no new free
variables are introduced.
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In the result of Structy there are no nested, universal quantifications. Because of this,
every existential quantifier is in the scope of at most one universal quantification, which
is guarded. The result of the Skolemization is a formula in which all universal quantifiers
are guarded, and all functional terms are Skolem terms. They are either constants or
contain all variables of the guarded quantification in which they occur.

Clearly, at the end of this process the formulae VT (—a VV A) can be factored into guarded
clauses VT (ma V A1),...,VZ (-a V A,,). O

3.2. TERMINATION

As announced in the previous section, the first step towards our decidability result for
the guarded fragment will be to show that, with a suitable ordering, ordered resolution
terminates for the guarded fragment.

We will now define the order on literals. Although we will be using completely standard
ordered resolution, our order is non-standard.

DEFINITION 3.6. We define the following order C on literals.

1 AC B if Vardepth(A4) < Vardepth(B), or
2 AC B if Var(A) C Var(B).

Note that the inclusion in the second condition is strict. Strictly seen we cannot call
relation C an order because it is not transitive. However, C is an order within guarded
clauses, in particular it has the following property:

LEMMA 3.7. FEvery guarded clause ¢ has a C-mazximal literal, and every maximal literal
of ¢ contains all variables of c.

PROOF. If ¢ is ground, then every literal is maximal. If ¢ is non-ground, and does not
contain a non-ground functional term, then every guard is maximal, since it contains
all variables of ¢ and there are no deeper literals. If ¢ is non-ground, and does contain
non-ground, functional terms, then there are literals containing the deepest occurrence
of a non-ground, functional term. These literals must be maximal, because they contain
all variables of c.

If ¢ is non-grond there is a literal containing all variables of c¢. Because of this every
maximal literal must also contain all variables of c. O

The result that we aim to prove is that resolution and factoring, restricted by C, can
only derive a finite set of clauses from a guarded clause set, but first we prove that the
property of being guarded is preserved.

THEOREM 3.8. 1 If ¢1 and co are guarded clauses, and c is a T-ordered resolvent of
c1 and co, then c is guarded.
2 If c1 is a guarded clause, and c is a factor of c¢1, then c is guarded.

We show that derived clauses satisfy Definition 3.1. We first show Condition 1, then
Condition 2.
Claim 1 Condition 1 is preserved by resolution and factoring.
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PROOF. Let ¢; = {A1}UR; and ¢3 = {A2} U R resolve into ¢ = RO U R0, so O is the
mgu of A; and As. Because of the order [, the literals A; and As contain all variables
of their respective clauses. This ensures that A;© = A0 contains all variables of the
resolvent ¢. Because both A; and As are weakly covering, every non-ground functional
term in A;© contains all variables of 4,0 and hence of c.

Let t be a non-ground functional term in c¢. There are two possibilities:

1 There is a non-ground functional term w in ¢ or cg, such that ¢ = u©. W.lo.g.
assume that u occurs in ¢;. Then u contains all variables of A;. Because of this,
u© contains all variables of A10. Since A1© contains all variables of ¢, the term
t = u® contains all variables of c.

2 There is a variable V in ¢ or cg, such that ¢ is a subterm of VO. Assume w.l.o.g
that V occurs in ¢;. Then V' also occurs in A;. Hence ¢, being a subterm of VO,
occurs in A10. This makes that ¢ contains all variables of c.

Next let ¢ = {410} U RO be a factor of ¢; = {41, A3} U R. Analogous to the situation
with resolution, one of the literals Ay, A> contains all variables of ¢;. Assume it is A;.
The situation is the same as with resolution: 410 = A>0 contains all variables of c,
every non-ground functional term in A;© contains all variables of ¢, etc. However, case 2
is not possible here (there exists a variable V in ¢y, such that ¢ occurs in VO) because
the variable V' would occur in A;. This contradicts Vardepth(A4;0) < Vardepth(A4). U

Claim 2 Condition 2 is preserved.

PRrROOF. First we consider resolution. If both ¢;, ¢5 are ground, then c is also ground, and
hence satisfies Condition 2. If one of ¢, co is ground, then assume it is ¢;. Because A,
contains all variables of ¢o, and A50 is ground, the resolvent c is also ground in this case.
Now if both ¢; and ¢ are not ground, then let =G, =G5 be guards of ¢1,cs. In one of
c1, c2, the guard is not resolved upon, because guards are negative. We can assume that

A # Gy

1 If © does not assign a non-ground, functional term to any variable in A;, then
—(G10 is a guard of ¢, because =G10 does not contain any non-ground, functional
terms, and due to the fact that G; contains the same variables of Aj, the result
—(G10 contains all variables of A;©, which contains all variables of ¢, by the proof
of the first claim.

2 Otherwise, © assigns a non-ground, functional term to a variable in A;. This is
caused by the fact that A, contains a non-ground, functional term, which implies
that As # G3. Then © does not assign a non-ground, functional term to any
variable in Ay. This makes that -G2© can act as guard of ¢, by the same argument
as before.

The situation with factoring is the same. One of A;, As contains all variables of ¢;.
Because of this, the mgu © cannot assign a non-ground, functional term to a variable in
c1. This implies that every guard of ¢; is still a guard of ¢. O

In fact, one can prove that factoring without C also preserves the guarded fragment.
However, in case of resolution one really needs the C-order.
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LEMMA 3.9. Let C be a finite set of guarded clauses. Let v = Vardepth(C). Let k be the
maximal Varnr(c), for ¢ € C. Then for every C-derivable clause c the following holds:

1 Varnr(c) < k.
2 Vardepth(c) < v.

PROOF. We first prove the first fact. Let ¢ be the resolvent of ¢; and cs. If either of ¢; or
¢ is ground, then ¢ is ground by itself. If both ¢; and ¢o are non-ground, then ¢ contains
a guard —A, which is an instance of a guard of either ¢; or c;. We can assume that
Varnr(cy ), Varnr(cz) < k. Since every variable of ¢ occurs in = A, and Varnr(—A4) < k, we
immediately obtain Varnr(c) < k. The case where ¢ is obtained by factoring is immediate.
In order to prove the second fact, let ¢ be the resolvent of ¢; = {41} U Ry and ¢ =
{A2} U Ry. By induction there is no literal with Vardepth > v in ¢; or cz. Assume
that Vardepth(A;) > Vardepth(As). Let © be the unifier used. By Lemma 2.10 we
have Vardepth(A4;0) < Vardepth(4;). By Lemma 2.13, we have Vardepth(R,0) <
Vardepth(4;). It follows that Vardepth(R;© U R20) < v. The case where ¢ is obtained
by factoring is analogous. [

We would have the proof complete if we would have Depth(C) < Depth(C). Unfortu-
nately this is not the case, but it is possible to prove that no new ground terms are
introduced at positions that are deeper than Vardepth(C).

LEMMmA 3.10. 1 Let ¢ be a C-ordered resolvent of clauses ¢1 and co. Let v be the
greater of Vardepth(ci) and Vardepth(ce). Every ground term t that occurs at a

depth greater than or equal to v, occurs either in c1 or in cs.
2 Let ¢ be a factor of clause ¢1. Let v = Vardepth(cy). Every ground term occurring

i ¢ at a depth greater than or equal to v, occurs in cy.

PROOF. 1 Write ¢ = {41} U Ry, and ¢o = {— A2} U Rs. Let © be the mgu of A; and
As. We can assume, without loss of generality, that ¢ occurs in R10. There are two
possibilities:

(a) There is a variable V' in Ry, such that ¢ is a subterm of VO, or t = VO. When
this is the case, V occurs in Aj, at least as deep as in R;. This ensures that
t occurs in Aj, at a depth greater than or equal to v. Hence we can apply
Lemma 2.11, and it follows that ¢ occurs in Ay or As.

(b) There is a term w in Ry, such that ¢ = u©, and u is not a variable. If u is ground,
then we are done. If u is non-ground, then u contains variables at depth greater
than v. This implies that Vardepth(c;) > v, so this cannot occur.

2 The case where c is obtained by factoring is analogeous.
O

From Lemma 3.10 an upperbound on the depth of the derivable clauses can be easily
obtained. Let C' be the initial clause set. Let v = Vardepth(C) and let d = Depth(C).
Let ¢ be some derivable clause. Since every term occurring at depth > v occurs in C)| it
has a depth < d. Hence Depth(c) < v +d.

LEMMA 3.11. Let C' be a finite set of guarded clauses. Let C be its closure under C-
ordered resolution, and (unrestricted) factoring. Then C has finite size.
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PROOF. For each derivable clause, both the depth and the number of variables are
bounded. O

We will derive the exact complexity of the decision procedure in Section 3.4
3.3. COMPLETENESS

The final step in our proof of the decidability of the guarded fragment by means of
resolution consists of proving completeness of our ordered resolution method. The C-
order is non-liftable. Both cases in Definition 3.6 cause non-liftability:

1 p(s(0),X) C p(0,s(X)) and p(X,0) C p(s(X),s(0)). The substitution {X := 0}
results in a conflict.

2 Also p(X, X) C —~¢(X,Y) and —¢(X, X) C —p(X,Y). The substitution {X =Y}
results in a conflict.

Because of this we cannot refer to the standard result on the completeness of liftable
orders. Also the completeness results in (de Nivelle, 1994) do not apply because there
one of the following two conditions should have been met:

1 The order needs to satisfy the property A© C A, for non-renaming substitutions
©. Our order puts A(X) C A(s(X)), but A(s(X)) is an instance of A(X).

2 The literals in the clauses must have the same set of variables. The guarded clause
{—a(X,Y),b(X)} violates this condition.

Fortunately however, although guarded clauses do not satisfy Condition 2, it turns out
that the proof method that was used for Condition 2, can be applied to guarded clauses.
The proof is based on the resolution game. We need some technical preparation.

DEFINITION 3.12. A representation-indexed clause is a clause of the form c = {ay: Ay, . . .,

for which there exists a substitution O, such that A;© = a;, for all i. If for each vari-
able V' that does not occur in an A;, it is the case that VO = V., then we call © the
substitution of c¢. A literal order T can be extended to indexed literals as follows:

aAC bBiff AC B.

Using this we extend ordered resolution and ordered factoring to representation-indexed
clauses as follows:

Resolution: From {a: A1} Uri: Ry and {—a: A3} Urg: Ry derive r1: R1© U ry: Ry©.
Factoring: From {a: A1,a: A2} Ur: R derive {a: A10} Ur: RO.

In both cases © is the mgu. The literals resolved upon, and one of the literals factored
upon must be mazximal. Observe that the mgu always exists.

LEMMA 3.13. Let Cy be a set of representation-indezed clauses, that has a resolution

ap: Ay}

refutation, using some order . Let Ca be obtained from Cy by replacing each representation-

indezed clause {a1:A1,...,ap: Ap} by {A1,...,Ap}. Then Cy has a resolution refutation
using C .
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PROOF. One can delete the ground instance from every derivable representation-indexed
clause, and show that it is still derivable. O

We will construct a resolution game from a set of representation-indexed clauses. In order
to do this we define an operator [ | from representation-indexed clauses to indexed clauses
of the type used in the resolution game. Before we can define [ |, we need the following;:

DEFINITION 3.14. We assume that there is a fixed enumeration of the set of variables
{Xo, X1, X2,...}. A literal A is normal if the variable X1 occurs only after an occur-
rence of the variable X;. (When the literal is written in the standard notation). Every
literal A can be renamed into exactly one normal literal, which we call the normalization
of A. We write A for the normalization of A.

The literal p(Xo, X1, X32) is normal, but its renamings p(X1, Xo, X2) and p(X7, Xo, X3)
are not normal. If two literals are renamings of each other, they have the same normal-
ization.

LEMMA 3.15. Let C be the order of Definition 3.6. If AC B then AC B.

DEFINITION 3.16. Let © = {Vj :=t1,...,V, :=t,} be a substitution. The complexity of
O, written as #0O equals #t1 + - - - + #ty,.

DEFINITION 3.17. We define the following operator [ | on representation-indexed clauses.
Let {a1: A1, ... ,ap: Ay} be a representation-indexed clause. Let © be its substitution. Let
k = #06. Then

{ai: A1, ..., ap: Ap}]
equals the indexed clause
{ar:(k, A1), ... ap (k, Ap) Y.
The Ay, . .. ,Zp are the normalizations of the A1, ..., Ap.

LEMMA 3.18. Let ¢1 = {a1: A1, ...,ap: A, } be a representation-indexed clause. Let co =
{a1: 1%, ... ap: A2} be an instance obtained with substitution X, such that there exists
a substitution =, for which a; = A;X=. Let

[c1] = {a1: (k1, Ay, ..., ap: (k1, Ap)},
[CQ] = {0,12 (kQ, AlE), ey G,pi (kQ, APZ)}
Then either for all i, A;% = A;, or ks < k.

We are now ready for the completeness proof.

THEOREM 3.19. Ordered resolution, using T as defined in Definition 3.6, is complete
for guarded clause sets.

PROOF. Let C be an unsatisfiable guarded clause set. Let C' be the set of clauses that
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can be obtained from C' using C-ordered resolution, and C-ordered factoring. We show
that C' must contain the empty clause. Write C' = {¢1, ..., ¢, }. Let

@171, ey @1,11,

@n,la RS en,ln
be a list of substitutions such that the set of clauses
{6161,1; .. 5c1®1,l17 ety Cn®n,17 ey Cn®n,ln}

is propositionally unsatisfiable. Such a set exists because of Herbrand’s theorem. First we
construct a set Cp;, of representation-indexed clauses, using the Herbrand set. For each
¢i = {A1,..., Ay} and substitution O, ;, the set Cy;, contains the clause

{AlgiyjiAl, e ;Ap@i,j:Ap}-

Next we write Cpp, for the closure of Cj, under C-ordered resolution for representation-
indexed clauses. It is clear from Lemma 3.13 that if we can prove that C'p contains the
empty clause, then C' contains the empty clause. In order to prove that C;, does indeed
contain the empty clause, we define the following resolution game G = (P, A, <), and
initial clause set Cg:

1 The set P of propositional symbols equals the set of atoms that occur as a in the
elements a: A of Cpp.

2 The set A of attributes is constructed as follows: Let m be the maximal #0; ;. Let
L be the set of literals B for which there is an indexed literal a: A in one of the
Chhp, such that B is an instance of A, and a is an instance of B. Then A consists of
the pairs (¢, C), for which 0 < ¢ < m, and C is the normalization of a literal in L.
Observe that the set of attributes is finite.

3 The order < is defined from: ay: (i1, C1) < ag: (iz, C2) if

(a) i1 < ig, or
(b) (il =iy and Ci C OQ)

4 The initial clause set Cg equals { [c] | ¢ € Chsp}.

This completes the definition of the resolution game. We will complete the proof by
showing that the set

[Chi] = {[c] | ¢ is derivable from Cjs}

is a saturation of (P,.A, <). Then it follows from Theorem 2.18, that [C};] contains the
empty clause. From this it follows immediately that C},;, contains the empty clause.

It remains to show that [Cpp] is a saturation of (P, A, <). In order to do this we must
show that [Cp] contains a reduction of every factor/resolvent that is derivable from

[Cha)-
1 Let ¢; and co be clauses in [6%] with a resolvent c¢. There must exist clauses
dy,ds € Chp, such that ¢; = [d1], and ¢ = [da]. Write
di = {a:Al} Ury: Ry and doy = {ﬁaZAg} U re: Ro.
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O

Then we can write
c1 = {a:(k1, A} Ury:(k1, Ry) and co = {—a: (ka, A2)} U ro: (ko, Ra).
We use the notation r;: (k;, R;) for the side (indexed) literals. They have the form
[ri: (i, Rig)s - oo iy 2 (ki Ris)]-

Using Lemma 3.15, we obtain that the indexed literals a: A; and —a: As are maximal
in their respective clauses. Hence a resolvent

d=1r1:R1©Ury: RO

is possible, where © is the mgu. We will show that [d] is a reduction of c¢. Let X be
the substitution of the representation-indexed clause d. Let X1 be the substitution
of the representation-indexed clause

d10 ={a:A10} Ur;: R, 0.
Analogously let X9 be the substitution of the representation-indexed clause
d2® = {— a: A20} Ura: R2O.
By putting | = # X, we can write

[d] =17 (l, R1@) U ra: (l, RQ@)
Write ll = #21, ZQ = #EQ Then

(a) r1:(l1, R10) is a reduction of ry: (k1, R1), using Lemma 3.18.
(b) 72:(l2, R2©) is a reduction of ry: (k2, R2), using Lemma 3.18.
(C) l S ll and [ S 12.

Putting this together we obtain that [d] is a reduction of c.

Finally, in the second case, where a clause ¢; has a factor ¢ in [C,;] we can directly
apply Lemma 3.18.

The order C as we have defined it in Definition 3.6 is very basic, and it could be strength-
ened further to improve the efficiency, for example with an order on the predicate symbols.

THEOREM 3.20. Resolution + factoring, using C, together with the normal form trans-
formation of Theorem 3.5, is a decision procedure for the guarded fragment.

ProoF. Follows from Theorem 3.5, Lemma 3.11 and Theorem 3.19. O

3.4. COMPLEXITY

The complexity of our decision procedure is double exponentional. Gradel has shown
in (Grédel, 1997) that the decision problem for the guarded fragment is 2EXPTIME-
complete, so our procedure is theoretically optimal. First we give a general bound on the
time needed to compute a saturation.
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LEMMA 3.21. Let C be some clause set, let C be its closure under resolution and factor-
ing. Let S be some clause set, such that C C S. Let s be the mazimal size of a clause in
S. Let ¢ be the cardinality of S. Then C can be computed in time c(cs)? and space cs.

PRrOOF. The space complexity is dominated by the space that is needed to store C. The
space needed to store S equals at most ¢s, and this is also an upperbound for the size of
C.

In order to obtain a saturation, the algorithm has to systematically inspect all pairs of
clauses and to see if a resolvent or factor is possible. The cost is ¢s.cs 4+ ¢s, which is
dominated by (cs)?. The algorithm halts when no more clauses can be added. This is the
case after at most ¢ iterations. O

THEOREM 3.22. Let § be some signature. Let C be a set of guarded clauses over S,
possibly using variables. Let v be the mazimal vardepth of a clause in C, and let G be the
set of ground terms that occur in C. Let a be the mazimal arity of a predicate/function
symbol in S. Let n be the mazimum of (1) the total number of function symbols + the
mazximal arity of a guard + the size of G, and (2) the total number of 0-arity predicate
symbols. Then a saturation of C has at most size

on,a”)

)

and can be obtained in time
93(2n(*"))

Proor. Using Lemma 3.10, and Lemma 3.9, we know that at positions at depth v or
deeper, there are only ground terms from G. Hence we can treat the literals in the sat-
uration of C as if they have a depth of v + 1, and view the G as additional constants.
Define the following numbers:

a1 be the maximal arity of a predicate symbol,

az  be the maximal arity of a function symbol,

ny  be the total number of function symbols + the total nunber of constant symbols
+ the maximal arity of a guard.

ny  be the total number of predicate symbols

We begin by giving an estimation of the number of positions P(d) in a term, depen-
dent on its depth d. The second column in the table gives P(i) defined in terms of
P(i — 1). The third column gives explicit forms for P(i).

d

11 1,

2 1+a1P(1) 1+CL1,

3 1+a1P(2) 1+a;+ad?,

4 1+a1P3) 1+a1+a?+add
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So we get
P(d) = %ai = E ~ 0(ad™!), when a; > 1
i=0 el b o
The number of terms of depth d then can be estimated by
(m) 5.

We could write ny + 1 instead of ny because positions can be empty, when the term does
not use the full possible length, but in that case there is an operator that does not use
the full a1, which compensates for this.
A literal of depth d consists of a possible negation sign, followed by one predicate symbol,
followed by at most as terms with depth d — 1. The number of possible literals can be
estimated by
(adiz) a

2ng(ng + 7).
By remembering that n = Max(n1, n2), a = Max(a1,as), and putting d = v + 1, we can
estimate the number of possible literals as

o),
Then the set of possible clauses has at most size

2(2n ™),

Applying Lemma 3.21, we obtain the given space and time complexity. O

4. The Loosely Guarded Fragment

In this section we show that the loosely guarded fragment can also be decided by reso-
lution. The loosely guarded fragment is a generalization of the guarded fragment, which
has been introduced in (van Benthem, 1997). The guard no longer needs to be a single
literal as in the guarded fragment, but may consist of a group of literals satisfying certain
conditions. One of the main motivations behind the loosely guarded fragment is the fol-
lowing. Recall that one of the motivations behind the original guarded fragment was the
search for general fragments of first-order logic that could explain the good behavior of
modal and modal-like logics. An important and well-behaved temporal logic that escapes
the guarded fragment is temporal logic with the Since and Until operators. Recall that
the semantics of P Until @ is given by the following definition:

Jy (Rey A Qy ANVz (Rxz A Rzy — Pz)).

Clearly, this is not a guarded formula, but it does enjoy a special property: the variable
z occurs together with each of the other variables x and y in at least one atom in the
‘loose guard.” This special feature motivates the following definition.

DEFINITION 4.1. The loosely guarded fragment (LGF) is recursively defined as the fol-
lowing subset of first-order logic without equality and function symbols.

1 T and L are in LGF.
2 If A is an atom, then A € LGF.
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9 If A € LGF, then ~A € LGF.

4 If A, B € LGF, then AVB, ANB, A— B, A< B¢ LGF.

5 (a) Let A € LGF,
(b) let ay,...,a, be a group of atomic formulae,
(c) let T be a sequence of variables,
such that for every variable in T, and for every free variable of a1 A -+ Na, — A,
there is an a; containing them both. Then VZ(ay A --- A a, — A) € LGF, and
IZ(a1 A -+ Aap A A) € LGF. We also allow VZ(—aq1 V -+ V —a, V A) € LGF.

The definition of LGF can be weakened in the same way as GF, if one considers the
satisfiability problem. The guard condition is only necessary for positively occurring V-
quantifiers, and for negatively occurring 3-quantifiers. The guarded fragment is included
in the loosely guarded fragment.

EXAMPLE 4.2. The transitivity axiom
Veyz(R(x,y) A R(y,z) — R(z, z))

is not not loosely guarded, because an atom containing both x and z is missing. The
following formula, translating P Since @, is loosely guarded:

Jy(Ryx A Qy ANVz(Ryz A Rza — Pz)).
4.1. TRANSLATION TO CNF

The strategy that we will use for LGF is based on the strategy for GF. The transformation
to CNF will be almost the same, with an obvious adaption in Structy to handle loose
guards. The resolution strategy will be more involved, as will discuss in the next section.
We now introduce LGF for clauses, and the transformation.

DEFINITION 4.3. A clause set is called loosely guarded if its clauses are loosely guarded.
A clause ¢ is loosely guarded if it satisfies the following condition:

1 Every non-ground, functional term in ¢ contains all variables of c.

2 If c is non-ground, then there is a set of negative literals ~A,,...,—A, € c not
containing non-ground, functional terms, such that every pair X,Y of variables of
¢ occurs together in at least one of the —A;.

The conjunction of the atoms A; in Item 2 is the loose guard. A clause may have more
than one loose guard.

THEOREM 4.4. Using the following transformation, loosely guarded formulae can be trans-
lated into loosely guarded clause sets:

1 F' = NNF(F).
2 F" = (Structy)(F").
3 C = (Sk; Cls)(F").

(Here, Structy has been modified in the obvious way)
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PrOOF. The proof is analogous to the proof of Theorem 3.5. However, there is one inter-
esting aspect concerning Structy. Transformation Structy replaces universally quantified
subformulae VZ(-ay V -+ V —a, V A) with free variables § by a fresh atom «(y) and
introduces a definition

VZg(—ay V- -V oa, V oa(g) vV A).
Then the disjunction
—ai Ve Vooa, Voa(g)
is a loose guard. To see this, let v1,v9 be a pair of variables occurring in Ty. If either
v1 or ve is among the T, then v; and vs occur together in one of the —a;, because the

original quantification was loosely guarded. If both v; and v2 are not among the Z, then
they are both among the g, and then they occur together in —a(y). O

4.2. TERMINATION

The ordering strategy for loosely guarded clause sets is more complicated than the deci-
sion procedure for guarded clause sets. This is caused by problems that occur when we
have to select the literals of the loose guard. The completeness proof of Theorem 3.19
hinges on the fact that it is always possible to select a literal containing all variables
of the clause. This is not possible with loosely guarded clauses, because such a literal
may not exist, as for example in clause ¢y below. The obvious approach would be to use
the closest possible approximation of the strategy for the guarded fragment. When there
are literals with non-ground functional terms, prefer the literals with maximal Vardepth.
When there are no literals with non-ground functional terms, select the complete loose
guard and resolve it away using hyperresolution (see Definition 2.4). Unfortunately at
this point growth of Vardepth is possible, as can be seen from the following example:

ExaMPLE 4.5. The following clause is loosely guarded:

Co = {_‘al(X, Y), —|a2(Y, Z),_‘ag(Z,X), bl(X,Y),bQ(Y, Z),bg(Z,X)}

There are no non-ground functional terms, so the clause is a candidate for hyperresolu-
tion. It is possible to construct a hyperresolvent with the following clauses

a = {pi(A4),a1(s(A),s(A))},
2 = {=p2(B),a2(B,H(B))},
c3 = {ﬁp3(0)aa3(t(0)’c)}7

using the substitution
0 ={X,Y,B,C:=5(A),Z :=t(s(4))}.
The result equals

{=p1(4), p2(s(A4)), ~ps(s(A4)),
b1(s(A), 5(A)), ba(s(A),t(s(A))), bs(t(s(A)),s(A))},
which has a Vardepth of 2, which is too deep.
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Here is an explanation for the problem of Example 4.5. Clause ¢y can hyperresolve with
clauses ¢y and c3 using substitution

0={Y,B,X:=C,Z:=t(C)}.
The result equals:
Cpart = {ﬁal(ca C), ﬁp2(0), —P3 (0)7 b1(07 0)7 b2 (Ca t(C)), b3 (t(C)v C)}

This clause is loosely guarded, and it is not too deep. To obtain the final hyperresolvent
one needs to resolve upon the literal —a;(C,C). However, a;(C,C) is not the deepest
term in the clause, and when a; (C, C) is unified with a;(s(A4), s(A)) the literal b2(c, t(C))
grows into a Vardepth of 2. This means that our refinement should allow the construction
of cpqrt, but that it should block resolving cpqr+ With c;.

Instead of allowing the construction of full hyperresolvents, we allow the construction of
partial hyperresolvents that are not too deep. We will prove that whenever a hyperresol-
vent can be found using the loose guard, there exists a partial hyperresolvent which does
not grow in Vardepth and which is loosely guarded. In order to do this, we need to go into
details of how the mgu is constructed. For this purpose we repeat the following algorithm
for the construction of most general unifiers. It comes from (Fermiiller et al., 1993).

DEFINITION 4.6. The following algorithm decides whether or not two literals A and B
have a unifier. It constructs a most general unifier if there exists a unifier.

First, we define the notion of a minimal difference of two literals. Let A and B be two
literals, such that A # B. A minimal difference is a pair (A', B') that is the result of the
following decomposition:

1 Put A’ == A, and B’ :== B.
2 Aslong as A’ has the form p(t1,...,t,) and B’ has the form p(uq, ..., uy), replace
A’ by t; and B’ by uy, for an i, such that t; # u;.

Using this, the algorithm for computing mgu’s is defined as follows. Let A and B be the
terms to be unified. Put © := { }, the identity substitution.

1 If A= B, then © equals the most general unifier.
2 Aslong as A #+ B, let (A’, B") be a minimal difference. Then

(a) If (A', B’) has the form (p(ti,...,tn), q(u1,...,um)), with p # q, or n # m,
then report failure.

(b) If (A’, B') has the form (V,t), where V is a variable, V # t, but V' occurs in t,
then report failure.

(¢) If (A’, B’) has the form (t,V), where V is a variable, V # t, but V occurs in t,
then report failure.

(d) If (A’, B’) has the form (V,t) where V is a variable, and V does not occur in
t, then put A= A{V :=t}, B:=B{V:=t}, ©:=0 -{V :=t}.

(e) If (A, B’) has the form (t,V), where V is a variable, and V does not occur in
t, then put A := A{V :=t}, B:= B{V :=t}, ©:=0 - {V :=t}.

The procedure of Definition 4.6 is complete and sound. Up to renaming, the result does
not depend on the choice of the minimal difference. See (Fermiiller et al., 1993) for details.
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THEOREM 4.7. Assume that the literals Ay, ..., A, and By,..., B, and the substitution
O satisfy the following conditions:

1 All A; have no non-ground, functional terms.

2 For all X,Y € Var(Ay,...,A,) there is an A; such that X,Y € Var(A;).
3 All B; are weakly covering and have a non-ground, functional term.

4 Ifi# j, then By and B; have no overlapping variables.

5 There are no overlapping variables between the A; and the B;.

6 © is the mgu of (A1, B1),...,(An, Bp).

Then it is possible to find a permutation (1, ..., 7, ) with the following properties: Write
(AL ALY = (A, An))
and
(B,,....B.) = (By,,....Bx.).
There exists an m < n, such that, when ©' is the mgu of (A}, By),...,(Al,, B..), then
1 Varnr(B;0©') < Varnr(Bj), and Vardepth(B1©’) < Vardepth(B1).
2 For all i, with 1 <1i < m,
Var(B,©’) C Var(B1©’), and Vardepth(B,0’) < Vardepth(B;©’).
8 For all i, with 1 <1i < m,
Var(A,0’) = Var(B/©’), and Vardepth(A,0’) = Vardepth(B.0").

4 For all i, with 1 <i <m, both A;0®" and B[©®’" are weakly covering.
As a consequence, By limits the complexity of the result.

PRrROOF. Item 3 follows immediately from the fact that ©’ is a unifier. Before we can
establish items 1 and 2 we need the following notion. When a variable V' occurs as
Ai(...,V,...), and a term t as B;(...,t,...), we say that V is paired to t.

If all A;© are ground, then the theorem follows trivially. Otherwise, define the following
order C on variables V' that occur in the formulae A4, ..., A, and for which VO is not
ground:

XCY if X and Y occur together in an A;, as A;(...,X,...,Y,...),
and in the corresponding B; there is B;(...,T,...,U,...), with
Vardepth(T') < Vardepth(U).

Then the following property holds:
MAXVAR There exists a C-maximal variable in (Ay,..., A,)

To see that MAXVAR holds, argue as follows. If there does not exist a maximal variable
this is caused by the fact that there is a cycle as follows:
Wwocvic---cV, C W.
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We show that in this case there does not exist a unifier. The cycle is caused by literals
of the form:

AO(‘/O) V1)7 Al(‘/la ‘/2)) AQ(‘/Qa ‘/3)7 ey A;D(Vp) VO))
and
By (to, uo), Bi(t1,u1), Ba(ta, uz), ..., Bp(tp, up),

with Vardepth(¢;) < Vardepth(u;). Because the ¢; and u; are weakly covering, Vardepth(¢;0) <
Vardepth(u;0), (¢;0 and u;© need not be weakly covering, but that is not important)
Because u;© = V;410, for ¢ < p, and u,© = t,0 it follows that

Vardepth(t©) < Vardepth(t10) < --- < Vardepth(¢,0) < Vardepth(t,©),
which is impossible. This shows that MAXVAR holds.

We can now construct the permutation (71, ..., 7,). Let Z be a maximal variable under
the C-order. Define (71, ..., 7m,) as the following permutation:

1 Permute the (A;, B;) where A; contains Z before the (A;, B;), where A; does not
contain Z.

2 After that, sort the (A;, B;) by Vardepth(B;), putting the B; with the largest
Vardepth first.

Let m be the index of the last A; that contains Z. Then the pairs (A}, B/) have the
following property, for 1 < i < m,

MAXVARDEPTH If Z is matched to a term ¢ of B] in one of the (A}, B;), then
Vardepth(t) = Vardepth(B}).

Suppose for the sake of contradiction that there is a term w in B, for which Vardepth(u) >
Vardepth(t). There are three possibilities:

1 u is paired to Z. In that case ¢ and u have to be unified by ©, which is impossible
because Vardepth(t) = Vardepth(u) and because of the fact that ¢ and u are weakly
covering.

2 w is paired to another variable, which contradicts the C-maximality of Z, or

3 w is paired to a ground term. This would make u© ground. Since Vardepth(u) > 0,
it follows that u contains all variables of B]. But then B.O is ground, and this
contradicts the fact that Z© is non-ground.

Let ©" be the mgu of the pairs
(A}, BY), ..., (Al Bl).
We have to show that the permutation and ©’ have the desired properties 1 and 2. Write
Q' =% -%9-X3-24- 25, where Xy, ..., X5 are defined as follows.
(X1) X is the substitution that makes ground all variables in the A; that are paired to
a ground term. Z is not among these variables. Then:

1 Vardepth(B}X¥1) < Vardepth(B;) and Varnr(B}¥;) < Varnr(Bj]), because ¥;
does not affect the B..
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2 Vardepth(A}%;) < Vardepth(A4}), and Varnr(A;%) < Varnr(A}), because vari-
ables are replaced by ground terms.

(32) X9 ={Z :=t}, where t is a term of maximal Vardepth occurring in B1%;, and Z
is a C-maximal variable. It must be the case that Vardepth(¢) > 0, Vardepth(t) =
Vardepth(B{X;) = Vardepth(B]), and Vardepth(B}) > 0 by assumption. Because
of this ¢ contains all variables of Bf = B{¥1. X3 does not affect any of the B}¥q,
because Z occurs only in the A}. We now have

1 Var(B1X1X2) C Var(A;X13,), because every A¥1Y contains t.

2 Vardepth(A}¥1¥9) = Vardepth(B]), because ¢ is the only non-ground and
functional term in A3 %s.

3 Vardepth(B.X133) < Vardepth(A;¥1%,) = Vardepth(B]), because Vardepth(B;¥X1%2) =
Vardepth(B}).

(33) X3 is the unifier of ¢ with the remaining terms with which ¢ is paired. These are
the terms with which Z was paired. Since they are weakly covering, and maximal
in the Bf, we have the following:

1 Vardepth(A;¥13:%3) < Vardepth(A}X;¥2). This follows from Theorem 2.10,

2 Vardepth(B]¥1X,33) = Vardepth(tX1X2%3). This follows from Theorem 2.10,
and the fact that the terms with which ¢ is paired are the terms with maximal
Vardepth.

3 Var(B{ZlEgEg) Q Var(BiElngg).

(34) X4 is a substitution that replaces each of the remaining variables in the A} by one
of the terms with which it is paired. We have

Var(A;ElZgZ3E4) = Var(3221222324)
and
Vardepth(A4]X13233%,) < Vardepth(By).

(35) X5 is the remaining unification. Since X5 unifies terms with the same set of variables,
Y5 must assign either a variable, or a ground term to each variable, hence the depth
cannot increase.

The result follows by collecting all the inclusions and inequalities. [

Now that we have Theorem 4.7, we can define the strategy that we described in the
introduction:

DEFINITION 4.8. The decision procedure consists of the following derivation rules:

1 Let ¢ be a clause. If ¢ has a factor, then the construction of this factor is always
allowed.

2 Let ¢ = {A1} URy and co = {—A3} U Ry be clauses such that Ay and As are
unifiable. Construction of the resolvent is allowed if for each i = 1,2 one of the
following holds:

(a) c; is ground, or
(b) ¢; contains non-ground functional terms, and Vardepth(A;) is mazimal in c;.
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8 Let ¢ be non-ground and without functional terms. Write
c={-4,...,mA,} UR,
where —A1,...,0A, is a loose guard. If there are n clauses
c1 ={B1}URy,...,cn ={B,} UR,,
such that either

(a) for each i, either ¢; is ground or
(b) ¢; contains non-ground functional terms, and Vardepth(B;) is mazimal in c;,

and a hyperresolvent is possible, then construct a permutation (71, ...,m,), and an
m as in Theorem 4.7. Write

(AL, .. AL = (Arys -2, A,
(By,...,B.)=(Bry,-.-,Bx,),

(Ry,...,R.) = (Rny,-.,Rx,),
and construct a partial hyperresolvent as follows: From
{=41,...,-A4,, -A ..., mALJUR
and
{Bi}URY,....{B,,} UR,,
construct
{-4,,,,0,...,-A,0'} UR®'UR|®'U---UR, O

Making use of Theorem 4.7, the termination proof is analogous to the termination proof
for the guarded fragment.

LEMMA 4.9. Let ¢ be a loosely guarded clause. Let © be a substitution that does not assign
a non-ground functional term to any variable. Then cO© is loosely guarded. Moreover, for
every set of literals G C c that form a loose guard of ¢, the instantiation GO 1is a loose
guard of cO.

THEOREM 4.10. Let C be a loosely guarded clause set, let v = Vardepth(C). Every clause
that is derivable by the refinement of Definition 4.8 is loosely guarded, does not have a
Vardepth greater than v, and has a loose guard, that is an instance of a loose guard in a

clause of C.

PRrOOF. 1 Suppose that ¢ has been obtained by factoring from a parent clause c;. It
follows in the same way as in the proof of Theorem 3.8, that the substitution © does
not assign a non-ground, functional term to a variable in ¢;©. Then Lemma 4.9
can be applied, to obtain that c is loosely guarded and has a loose guard that is an
instance of a loose guard in c¢;. It follows immediately from the fact that © does

not assign non-ground functional terms that Vardepth(c1©) < Vardepth(c).
2 Let ¢ be obtained from c¢; and ¢y by binary resolution, using an mgu ©. One can
show in essentially the same way as in the proof of Theorem 3.8 that each non-
ground, functional term in ¢ contains all variables of ¢, and that Vardepth(c) <
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O

Vardepth(c;) or Vardepth(c) < Vardepth(cz). One also obtains that for one of ¢, co
the following holds: The substitution © does not assign a non-ground, functional
term to any of the variables in ¢;. This ensures that ¢ has a loose guard that is an
instance of a loose guard of ¢;.

Let

h=-Gi®U---U-G,0U{-4,,16,...,74,0} UROUROU---UR,,0
be obtained by partial hyperresolution from the following loosely guarded clauses:

c= {_'Ala' "a_'Am} U {_'Am+17" '7_‘An}URa

cp=-GiUR; U {Bl},

em = Gy U Ry U{Bn}.

with substitution ©. The —G; are the loose guards of clauses ¢;. We will show that
=10 is a loose guard of h. From Theorem 4.7, Part 1, we know that © does not
assign a non-ground functional term to a variable in c¢;. Therefore we can apply
Lemma 4.9 and we know that -G1© U R;0 U {B10} is a loosely guarded clause,
with loose guard —G10. Now all the B; contain all variables of their clauses c;.
From Theorem 4.7, Part 2, it follows that Var(B;0) C Var(B;0). This makes sure
that =G0 is a loose guard of h.

Next we must show that every non-ground functional term in h contains all variables
of h. Let t be a non-ground functional term in h. First consider the case where ¢
originates from one of the parents c;. If there is a variable V' in ¢;, such that VO = ¢,
then this variable occurs in B;. Since B;© is weakly covering (by Theorem 4.7,
Part 4), the result VO = ¢ contains all variables of h. If there is a term u in ¢;, such
that u© = ¢, then this term contains all variables of ¢;. Hence u® = t contains all
variables of ¢;©. The case where ¢ originates from ¢ is completely analogous.
Finally we show that Var(h) C Var(c;) and Vardepth(h) C Vardepth(c;). We
originally have

Var(c;) C Var(B;), Vardepth(c;) < Vardepth(B;).
This implies that
Var(c;0) C Var(B;0), Vardepth(c;©) < Vardepth(B;0).
From Theorem 4.7, Part 2, we have
Var(B,;0) C Var(B10), Vardepth(B;0) < Vardepth(B;0).
Combining this and applying Part 1 of Theorem 4.7 completes the proof.

It remains to show that the set of derivable clauses is finite and to obtain a complexity
bound. One can prove the analog of Lemma 3.10 in essentially the same way. This makes
it possible to apply Theorem 3.22 with the following modification: In point (1), one has
to replace 'the maximal arity of a guard’, by 'the maximal number of variables in a loose
guard’.

51



4.3. COMPLETENESS

The strategy for the loosely guarded fragment is more complex than the strategy for the
guarded fragment. The strategy is also non-liftable, but moreover, it does not have a
natural definition that uses orders. In order to prove its completeness we need to modify
the resolution game, such that it can handle the partial hyperresolution rule.

The closest existing approximation of what we need is A-ordered resolution with selection,
that occurs in (Bachmair and Ganzinger, 1994). We repeat the definition here.

DEFINITION 4.11. Let ¢ be a set of propositional clauses. Let T be an order on atoms.
Extend C to literals as follows:

AT B implies ~A,AC —B, B.

Let o be a function from sets of literals to sets of literals satisfying:

1 o(c) C ¢, for each clause c.
2 For each clause c, either o(c) contains all C-mazimal literals, or o(c) contains at
least one negative literal.

Having the selection function, when we construct the resolvent
{ﬁA} U Ry, {A} URs = Ry UR,,
we impose that condition that

~Aco({=AYUR,), Aco({A}URy).

EXAMPLE 4.12. Assume that a C b. Look at the clause ¢ = {a, b, —a, =b}. It is allowed to
have o(c) = {b}. It is not allowed to have o(c) = {a}. It is allowed to have o(c) = {—a},
or o(c) = {-b}.

It is not required to select a single literal, so it is allowed to have o(c) = {a,b},o(c) =
{—a,b}. In the propositional case, that we have defined here, it is always possible to
make o(c) a singleton. Hyperresolution can be seen as a special form of resolution with
selection, by always selecting exactly one negative literal, if there is one. Standard A-
ordered resolution can be obtained by always selecting consistent with [ .

It is shown in (Bachmair and Ganzinger, 1994) that this restriction of resolution is
complete, and that it can be combined with certain restrictions of paramodulation. The
relation to our strategy can best be explained by using Example 4.5. We would like to
use selection on clause ¢y to select the literals —aq (X,Y"), ma2(Y, Z), mas(Z, X), but this
is not possible, because it depends on the clauses c1, ¢, c3, which literals of the loosely
guard should be resolved away. There might be different clauses ¢}, ¢4, ¢5, for which other
literals should be selected. However in the completeness proof of resolution with selection
functions, the fact that the selection is made in advance, is not used. All that is used
there is that, if there is a clause {—az, ..., -a,} U R with one of the literals —aq, ..., —a,
selected, and for each ¢ there is a clause of the form {a;} U R;, with a; selected, then
there is at least one clause of the form {-ai,...,na;—1,aiy1,...,7ap} URU R;, for
some i. This can be ensured by selecting a fixed literal from the —a1, ..., na, in advance,
but it is not necessary. So we need a generalization of the results in (Bachmair and
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Ganzinger, 1994), with a non-liftable order, and without having to make the selection in
advance. For this we need to adapt the resolution game.

DEFINITION 4.13. We define the new resolution game as an ordered quadruple G =
(P,PA,=<,0). Here P is a set of propositional atoms, as before. PA is a set of indexed
atoms. It is not required that all pairs of a propositional symbol and an attribute do occur
in PA. Literals and indexed literals are as before. The order < is well-founded as before,
but it is defined on PA instead of (P U—P) x A. It is extended to indexed literals by

aA<bB= +:adA < b+tB.

A clause is a structure of the form cq & c,. Here cq is a finite multiset of atoms, and c,
s a finite multiset of indexed literals.

For a clause cg4 - c,, the selection function equals either ¢4 or ¢,. If o(cg F ¢r) = ¢4, we
say that cg is selected. In the other case we say that c, is selected. If c, is selected, the
clause cq 1= ¢, can be used for binary resolution and factoring. If c4 is selected, the clause
cg ¢ can be used for partial hyperresolution and factoring.

If ¢, is selected, then it must be the case that for every atom a in cq4, and for all indexed
literals a: A that can be built using a, there is an indexed literal b:B in c,, such that
a:A < b:B.

We have the following condition on atoms that occur in the left hand side: If an atom a
occurs in the left hand side of a clause cg & ¢y, then there exists an a: A € PA, such that
for all other a: A’, based on a, it is the case that a: A’ < a: A.

Reductions are obtained by finitely often making the following replacements.

1 Replacing cy U [a] F ¢, by cg b ¢ U [a: Al
2 Replacing cg ¢ U [a: A] by some ¢g = ¢, U [a: A'] with a: A" < a: A.

The modified resolution game has the following derivation rules:

FACTOR 1 If a clause c1 has form ¢y F [b: B1,b: B2] U R, and the right hand side is
selected, and b: By is maximal, then cgy b [b:B1] U R is a factor of c1.
2 If a clause ¢1 has form [a] U cg F [na: A] U R, the right hand side is selected,
and —a: A is mazimal, then [a] Ucy F R is a factor of 1.
RES Ifc; F Ry U [b:B1], and ca b Ro U [b: Ba] are clauses with their right hand sides
selected, and b: By and —b: Bo are mazximal in their clauses, then the following clause
is a resolvent:

ci1Uc F Ry URs.
PARTIAL Let
r=lai,...,ap] F R
be a clause, such that the left hand side [a1: A1, ... ap: Ap] is selected. Let
g1t la:A]JURy, ..., gpF [ap:A;] UR,

be clauses, such that all a;: A, are mazimal in their clauses, and all [a;: A})U R; are
selected. Let m < p. Then clauses of the following form are partial hyperresolvents:

g1U~~~UgmU[am+1,...,ap] FRUR{U---UR,,.
(We have omitted the permutation for notational reasons)
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DEFINITION 4.14. Let C be a set of clauses. A saturation C of C is a set of clauses
satisfying the following:

1CCC.
2 For every clause cy |- ¢, that can be obtained from clauses in C, either by RES, or

by FACTOR, there is a reduction dg & d, of cg ¢, in C.

8 For every group of clauses r;c1, . . ., ¢y, such that it is possible to form partial hyper-
resolvents, there is at least one reduction dg = d, of one of the partial hyperresolvents
in C.

We have the following completeness theorem:

THEOREM 4.15. Let C be a saturation of a clause set C. If C' does not contain the empty
clause, then C' has a model.

PROOF. Assume that a saturated clause set C' does not contain the empty clause. We
show that C' has a model. The order < of the resolution game is well-founded on P.A.
Without loss of generality we can assume that < is total. Let k£ be the ordinal of the
length of <. We inductively construct sets Iy, I1,...,1,,... up to I as follows:

1Iy={}
2 For a successor ordinal A + 1, let b: B be the indexed literal on position A.

(a) Put Iny1 = Iy U {b: B} if either there is a reduction b: B’ of b: B in I, or there
is a clause ¢ in C' which has form

¢=la1,...,ap) FmRU[b:B],
such that

i the right hand side of c is selected,
ii ¢ cannot be factored,
iii b: B is the maximal indexed literal in c,
iv for each literal a; of the left hand side of c,4, there is an indexed literal
a:A €Iy,
v there is no literal in r: R, that occurs in Iy,

(b) Put Iny; = I U {-b:B} on the same conditions as for b: B, but with b:B
replaced by —b: B.
(c) Otherwise put In41 = I.

Observe that Cases 1 and 2 may overlap. When that happens, we assume that
Case 1 is checked before Case 2. Because of this, b: B is added, and —b: B is not
added.

3 For a limit ordinal A, put I = U, ) L.

We first establish the following property:

JUST For each indexed literal £0: B in [, there is a clause of the form
c¢=lai,...,ap] FmRU[£b:B] in C, such that
1 The right hand side of ¢ is selected,
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2 ¢ cannot be factored,

3 +b: B is the maximal indexed literal of c,

4 For each a;, there is an indexed literal of the form a;: A; € Iy,
5 No literal of 7 R is in .

The problem is to establish (5). It is clearly the case that no literal of r: R occurs in I},
because of Condition v of the construction. The indexed literals £a: A, that are added
later, all have +b: B < £a: A. Since +b: B is the maximal literal of ¢, they cannot be in c.
Next we will show the following two facts by induction:

A for indexed atoms a: A, it is not the case that both a: A and —a: A are in Iy,
and for each clause ¢, I ¢, in C, at least one of the following is true:

C1 For an a in ¢g4, there is no A, such that a: A € I.
C2 There is an a: A in ¢, such that a: A in Iy.
C3 There is a —a: A in ¢, such that —a: A in I}.

We write C for the disjunction C1 v C2 Vv C3.

We will establish A and C by induction on the multiset extension << of < . In order to
do this we associate a finite multiset of indexed atoms to each instance of A and C as
follows:

1 To A, applied to an indexed atom a: A, we associate the multiset [a: A].
2 To C, applied to a clause [a1, . . ., ap| I ¢, we associate the multiset [a1: A1, ..., ap: Ap]U
cg. Here each a;: A; is the maximal indexed atom that can be constructed from a;.

In the induction proof we need the following property:

REDUCTION Let S be a finite multiset of indexed literals. Suppose that we have
already established the induction hypotheses to all finite multisets below S. Let
¢y = ¢, be some clause, not necessarily in C, with associated multiset below S. Let
dg F d, be a reduction of ¢4 I ¢, that occurs in C. Then cg | ¢, also satisfies C.

First observe that d, F d, also has the associated multiset below S. It is sufficient to
show that REDUCTION is preserved by reductions that consist of one step.

1 Consider the case where ¢, F ¢, U[-a: 4] is a reduction of ¢y U [a] F ¢,. Assume that
¢g F [a] U [-a: A] satisfies one of C1, C2, C3. If ¢4 F ¢, U [na: A] satisfies C1, then
cg U [a] F ¢, also satisfies CL. If ¢4 I ¢, U [na: A] satisfies one of C1, C2, then one
of the literals in ¢, U [-a: A] occurs in Ij. If this literal is in ¢,, then ¢4 U [a] F ¢,
clearly satisfies one of C1, C2. If it is —a: A, then let —a: A’ be the maximal indexed
literal based on a. By the construction of I, it must be the case that —a: A’ € I.
The associated multiset [a: A’] << the associated multiset of ¢, U[a] F ¢,. Hence we
can apply A to obtain that a: A’ is not in Ij. This makes that ¢, U [a] - ¢, satisfies
Cl1.

2 Consider the case where ¢4 I ¢, U [£a: A'] is a reduction of ¢g F ¢, U [ta: A]. If ¢4 -
¢r U[£a: A'] satisfies C1, then ¢, F ¢, U [£a: A] also satisfies C1. If ¢, F ¢, U [xa: A']
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satisfies one of C2, C3, and a literal of ¢, is in Ij, then clearly ¢, F ¢, U [£a: A]
satisfies one of C2, C3. If ¢4 F ¢, U [ta: A'] satisfies one of C2, C3, and +a: A’ is in
Ii, then by the construction of Iy, also £a: A € Ij. Hence ¢4 F ¢, U [a: A] satisfies
one of C2, C3.

Let S be a finite multiset of indexed atoms. Assume that A and C are true for all instances
with associated multiset below S. We prove that instances of A and C with associated
multiset equal to S are also true. We do this by analyzing the possible instances that
have an associated multiset S. More than one case can be applicable, and it is possible
that no case applies.

L If S has the form [a: A], then we have to establish the fact that not both a: A and
—a: A are in C. Suppose that they were both in C. Then there are clauses

a1 =cybepUlaA], and ¢ = ¢} b 2 U [-a: 4]

in C satisfying JUST. The resolvent ¢} U2 b ¢} U ¢? is allowed, and therefore a
reduction d4 - d, of it is in C. Now the resolvent has an associated multiset smaller
than S, because it consists of indexed literals strictly below a: A. We can apply
REDUCTION, and we obtain the fact that the resolvent c}] U cg Fcl U c? satisfies
C. We show that this leads to a contraction. If the resolvent satisfies C1, this means
that for one of the atoms a in ¢} UcZ, there is no indexed atom a: A € Ij, This makes
that one of the clauses c1, co violates Condition 4 of JUST. If the resolvent satisfies
C2 or C3 this leads to a violation of Condition 5 of JUST in the same way.

2 If there is a clause of the form ¢ = [ay,...,a,] F R in C, with the left hand side
selected, and with associated multiset S, then assume that ¢ does not satisfy C1.
We will show that ¢ satisfies either C2 or C3. There must exist clauses

g1 [ [alel] URl,...,gp [ [ap:Ap] URp

in C, that satisfy JUST. Because of this a partial hyperresolvent is possible. Assume
that there is a reduction of the partial hyperresolvent

h=gU---UgnUlams1,---,ap] F RUR U---URy,.

The associated multiset of h is smaller than S. This is because in the clauses
gi F laiA;] U R;, all indexed literals in R; are strictly smaller than a;: A;. By
the conditions on selection of the right hand side, the maximal indexed atoms that
can be built from g; are strictly smaller than a;: A;. Each indexed atom a;: A; is less
than, or equal to the maximal indexed atom that can be built from a;. This implies
that the associated multiset of kA can be obtained from the associated multiset of c,
by replacing some indexed literals by a finite set of strictly smaller indexed literals.
Because of this we can apply REDUCTION, and we obtain the fact that h satisfies
C. We can proceed in essentially the same way as in the previous case. We first
show that h must satisfy C2 or C3, because C1 results in a contradiction. Suppose
that h satisfies C1. If for one of the as,...,a,, there is no A;, such that a;: 4; € I,
this contradicts the initial assumption. If for an atom a in one of the g;, there is no
indexed atom a: A € I, this constradicts Condition 4 of JUST. Now the fact that h
satisfies C2 or C3 means that there is an indexed literal +a: A that occurs in both
RUR;U---UR,, and I;. Because each g; b [a;: A;] U R; satisfies Condition 5 of
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JUST, the only possibility is that the indexed literal +a: A occurs in R. This makes
that ¢ satisfies C2 or C3.

3 If there is a clause of the form ¢4 - ¢, in C, with the right hand side selected,
which can be factored and with associated multiset S, then we write ¢} = ¢; for
one of its factors, and let d, I ¢, be a reduction that is in C. It is easily checked
that both have an associated multiset strictly smaller than S, and because of this
we can apply REDUCTION and obtain that c; I ¢, satisfies C. Then it is easily
checked that c4 - ¢, satisfies C.

4 If there is a clause of the form ¢4 F ¢,, with the right hand side selected, which
cannot be factored and with associated multiset S, then proceed as follows: Suppose
that ¢4 does not satisfy C1. Let +a: A be the (unique) maximal literal in ¢4 F ¢,. Let
A be its position in the ordering. Then at the moment that Ix;; was constructed
there already was an indexed literal c:C € I, for each ¢ € ¢4. (Because the right
hand side of ¢, I ¢, was selected, there do not exist indexed literals c:C with ¢ € ¢,
greater than +a: A.) If at the moment that Iy was constructed, ¢4 F ¢, did not
satisfy C2 or C3, then +a: A is added to Ix41. For this reason ¢4 - ¢, necessarily
satisfies C2 or C3.

Finally, a model of C' can be extracted from I; by putting the atoms a, for which there
is an indexed atom a: A in I, true. The other atoms are put false. It follows from A, C1,
C2, C3, that this makes every clause in C true. O

DEFINITION 4.16. Let A be literal. The normalization of A is defined as in Defini-
tion 3.14, but if A is negative, the negation sign is removed in the process.

Letc = {-a1: A1, ...,nap: Ap,b1: B1, ..., by By} be a representation-indexed, loosely guarded
clause with loose guard {—ai:A1,...,-apAp}. Let © be its substitution. Let k = #0O.
Then [c] is defined as

[ala ceey a’p] + [bl: (kaB_l)a ceey bq: (kan)]
Here the A;, B; are the normalizations of the A;, B;.

THEOREM 4.17. The strategy of Definition 4.8 is complete for clause sets C in the loosely
guarded fragment.

PRrROOF. Once we have the resolution game of Definition 4.13, the proof is analogous to
the proof of Theorem 3.19. Let C' be an unsatisfiable, loosely guarded clause set. Let C'
be its closure under resolution and factoring, using the rules of Definition 4.8. We need to
show that C contains the empty clause. Let Cp; and C'1p be obtained as in Theorem 3.19.
The set of propositional symbols P is defined as the set of propositional atoms in Cp. The
set [Cp) is defined as before, but using the new definition of [ |, given in Definition 4.16.
The set P.A is defined as the set of objects a: (k, A) for which either a: (k, A) or —a: (k, A)
occurs in [Cpp).

The selection function o is defined as follows: Let

c=lar,...,ap] F [b1:(k, B1),...,bg (k, By)]

be a clause in [Cpp). If there is an indexed literal b;:(k, B;) containing non-ground,
functional terms, then select the right hand side of c. Otherwise select the left hand side.
We must show that when the right hand side is selected, the clause satisfies the condition
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in Definition 4.13. Because the a;: (k, A;) are part of the loose guard, they do not contain
non-ground, functional terms. Let X be the substitution such that a; = A;3. Because A;
does not contain non-ground, functional terms, there exist no term A’ and ¥', such that
a; = A'Y ) and #X < #Y, so we know that #X > #3’. We also have #X < k. (They
are not necessarily equal because A; need not contain all variables in the clause) From
this it follows that there are no indexed atoms a;: (I, A}) € [Cpp] with k < I, or k =1,
and A} contains non-ground, functional terms.

We also need to show that for every atom occurring in a guard, there is a maximal
indexed atom, based on a in P.A. This is the case because PA is finite.

It remains to show that [Cp] is a saturation of the resolution game. This is essentially
analogous to the proof of Theorem 3.19. The differences are the following:

When, due to substitution, a literal moves from the loose guard to the body of a clause,
this is modelled by the first type of reduction, in Definition 4.13.

When a partial hyperresolvent is formed, assume that [a1,...,a,] F 7 (k, R) and

g1 [alz(kzl,Al)] Uury: (kl,Rl),

9p I lap: (kp, Ap)] U rp: (kp, Ry)
have a partial hyperresolvent. There must exist clauses of the following form in C,

c={-a:A1,...,7ap Ay} UrR,

c1 ={-g1:G1}Uri: Ry U{a1: A1},

¢m = {79m:Gm} Urm: Ry U {am: A},

¢p = {9p:Gp} Urp: Ry U{ap: Ap}.
with partial hyperresolvent h =
—91:G1OU - U9 GO U {—am41: Am410, ..., nap: A,O}
Ur:ROUr:R1OU---Ur,,: R,0.
Write [h] =

g1 U UgmUlamet, ... ap) F ([, RO)Ur: (I, R1©) U ---Urp (I, RpO).
It is sufficient to show that [h] is a reduction of the following partial hyperresolvent
g1 U-UgmUlamer, ... ap) Fri(k, R)Ury:(k1, R) U Urp: (kp, Rp).

This is essentially analogous to the proof of Theorem 3.19. It is sufficient to prove that
| < k;, and [ < k. This follows from the fact that for each i,1 <i < m,

Var(¢;0) C Var(cO).
O
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THEOREM 4.18. Resolution with factoring, as defined in Definition 4.8, together with
the modified normal form transformation, is a decision procedure for the loosely guarded
fragment.

5. Conclusions and Further Work

We have shown that it is possible to effectively decide the guarded fragment and the
loosely guarded fragments by resolution. The proofs that the resolution refinements are
complete and terminating can be used as proofs for the decidability of these fragments,
but they offer more than that. They also define practical decision procedures, using
techniques that are standard to the theorem proving community. This has made im-
plementation relatively easy. Since the procedures could be built on top of an existing
resolution prover, they could easily be combined with an efficient, full first order theorem
prover (de Nivelle, 1999a)

Our decision procedure has interest in itself, but it can also be applied to modal logics,
using the relational translation. From the space point of view, translation into the guarded
fragment is not the optimal way for deciding simple modal logics like K and T, since
these logics are in PSPACE (Ladner, 1977), while the complexity of the guarded fragment
with fixed arity is single exponential. However it is not likely that a resolution decision
procedure will ever decide modal logics in PSPACE, since resolution cannot even solve
propositional logic in PSPACE.

We expect that our methods has advantages over the direct approaches of resolution in
modal logic (Enjalbert and Farinas del Cerro, 1989; de Nivelle, 1993), because our method
provides a decision procedure, and because it can exploit existing implementations.

We do not expect to be able to improve the functional translation methods (Schmidt,
1997), at least not with our present translation.

A natural question is, whether or not the results in (Griadel and Walukiewicz, 1999) can
be obtained by resolution. We are pessimistic but we will investigate the question.
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Abstract

We give a new decision procedure for the guarded fragment
with equality. The procedure is based on resolution with su-
perposition. We argue that this method will be more useful
in practice than methods based on the enumeration of cer-
tain finite structures. It is surprising to see that one does
not need any sophisticated simplification and redundancy
elimination method to make superposition terminate on the
class of clauses that is obtained from the clausification of
guarded formulas. Yet the decision procedure obtained is
optimal with regard to time complexity. We also show that
the method can be extended to the loosely guarded fragment
with equality.

1 Introduction

The loosely guarded fragment was introduced in
(Andréka, van Benthem & Németi 1996) as "the modal frag-
ment of classical logic’. Itis obtained essentially by restrict-
ing quantification to the following forms:

Vy[R(z,y) — A(z,y)] and 3y[R(z,y) A A(x,y)].

These forms naturally arise when modal formulae are trans-
lated into classical logic using the standard translation based
on the Kripke frames. The authors showed there that the
guarded fragment has many of the nice properties of modal
logics. In particular it is decidable. Any decision proce-
dure for this fragment, hence, is a decision procedure for
those modal logics that can be embedded into it, for exam-
ple K, D, S3, and B. It has been shown by Grédel (1997)
that equality can be admitted in the guarded fragment with-
out affecting decidability. In the fragment with equality ad-
ditional logics such as difference logic can be expressed
(where & A means A holds in a world different from the
present).

De Nivelle (1998) has given a resolution decision pro-
cedure for the guarded fragment without equality. In his
procedure, a non-liftable ordering is employed, and, hence,

*Work supported in part by the ESPRIT Basic Research Working
Group 22457 (CCL 1).
**Work done at ILLC, U. Amsterdam, Plantage Muidergracht 24, 1018
TV Amsterdam
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some additional and non-trivial argument is required for
proving refutational completeness. In this paper we de-
scribe in detail a decision procedure for the guarded frag-
ment with equality which is based on resolution and super-
position. Despite the fact that it applies to a larger fragment
of first-order logic, our new procedure is simpler than the
one in (de Nivelle 1998) in that we employ a liftable or-
dering (plus selection) so that we are able to re-use stan-
dard results about refutational completeness. Our method
is also interesting as there are not so many saturation-based
decision procedures for fragments with equality described
in the literature. Notable exceptions include (Fermiller &
Salzer 1993), where a resolution decision procedure is given
for the Ackermann class with equality, and (Bachmair,
Ganzinger & Waldmann 1993), where it is shown that a cer-
tain superposition strategy decides the monadic class with
equality. Nieuwenhuis (1996) proves the decidability of
certain shallow equational theories by basic paramodula-
tion.

The advantage of resolution or superposition decision
procedures over theoretical procedures based on collapsing
models is that the former use syntactic, unification-based in-
ferences to enumerate candidate witnesses of inconsistency.
There is experimental evidence (Hustadt & Schmidt 1997)
that such procedures perform well in practice, in particu-
lar they often will not exhibit the usually exponential or
double-exponential worst-case complexity of the respective
fragments. Also, when having a flexible saturation theo-
rem prover at hand, such as SPASS (Weidenbach 1997), it
suffices to appropriately adjust its parameters in order to ef-
ficiently implement the procedure.

The results of this paper can be summarized as follows.
(i) Ordered paramodulation with selection is a decision pro-
cedure for the GF with equality. No sophisticated redun-
dancy elimination methods are required, and a straightfor-
ward (liftable) ordering and selection strategy suffice. (ii)
The procedure decides the class of guarded clauses which
is a proper superclass of the GF with equality. (iii) The
worst-case time complexity of the decision procedure is
doubly-exponential, which is optimal, given that the logic is
2EXPTIME-complete (Gréadel 1997). (iv) Guarded clauses
with deep terms, although decidable in the case without



equality, become undecidable in the equational case. (v)
The superposition-based decision method can be extended
to the loosely guarded fragment with equality, but is much
more involved there. For the extension, hyper-inferences
which simultaneously resolve a set of guards are needed.
Some non-trivial results are required about the existence of
suitable partial inferences to avoid the generation of clauses
which are not loosely guarded, together with meta-theorems
about the refutational completeness of these partial infer-
ences.

2 The Guarded Fragment
DEFINITION 2.1 The formulas of the guarded fragment GF
of function-free first order logic are inductively defined as
follows:
1. T and L arein GF.
2. If Aiisanatomthen A isin GF.
3. GF is closed under boolean combinations.
4. If F € GF and G is an atom, for which every free vari-
able of F' is among the arguments of G, then Vz(G —
F) € GF (or, equivalently, vz(-G V F) € GF) and
3Z(G A F) € GF, for every sequence 7 of variables.

The atoms G which appear as constraints for quantified
variables are called guards. Equations can also be used as
guards. These are examples of guarded formulae:

Ve (z~z — p(z)), Jz(p(x)Aqg(z))
Vyz (r(y,y,2) — L), Vay (r(z,y) — r(y,z))
Vay (r(z,y) — Iz r(y, 2))

Jz [R(w,z) AVy (R(z,y) — p(y)) A q(z)]

The last formula is the translation of the modal formula
<(Op A q) with respect to a world w. These are formulae
which are not guarded:

Yoy p(z,y)

Vrizaxs [p(z1, x2) — p(z2, 23) — D(T1,23)].

The last formula states the transitivity of p. As this is not
guarded, for modal logics such as S4 which are based on
transitive frames the standard embedding methods lead out-
side the guarded fragment.

3 The Superposition Calculus

For the decision procedure to be described below we
only need a rather weak form of the superposition calculus
of Bachmair & Ganzinger (1990), called ordered paramod-
ulation, for which Hsiang & Rusinowitch (1991) have also
given a completeness proof. Here (ordered) paramodulation
into the larger side of an equation is permitted. We use the
symbol = to denote formal equality and do not distinguish
between equations s~t and ¢~ s. Disequations —(s=:t)
will also be written as s % ¢. The calculus is clausal, where
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clauses are multisets of literals L+, ..., Ly, kK > 0, which
we write as disjunctions Ly V ...V L. A clause is called
positive if it does not contain any negative literals. A clause
is called ground or propositional if it contains no variables.

The calculus is parameterized by admissible orderings
> and selection functions X for negative literals. For each
setting of the two parameters it is refutationally complete.
For dealing with the orderings it is useful to view non-
equational atoms of the form p(t1, ..., tx), with p a pred-
icate symbol different from equality, as a shorthand nota-
tion for an equation p(t1, . . ., tx) = tt. In this encoding, the
atom is considered a term (in a two-sorted signature with
sorts 4 and o), with tt a distinguished constant of sort o,
and where predicates are viewed as functions of sort o, tak-
ing arguments of sort . An admissible ordering > is any
total reduction ordering on ground terms (including non-
equational ground atoms) in which tt is minimal. The mul-
tiset extension of -, again denoted >, is used to compare
literals by identifying any positive equation s~t¢ (includ-
ing the equational encodings of non-equational atoms) with
the multiset {s, ¢}, and any negative equation s % ¢ with the
multiset {s, ¢, tt}, respectively. The ordering is extended
to non-ground expressions by defining £ =~ E’ iff, for all
ground substitutions o, Eo > E’c. Although admissible
orderings are total and well-founded on ground terms and
literals, they are only partial on non-ground expressions.
Whenever a literal L contains a unique maximal term we
will denote it by max(L). A selection function ¥ selects, in
each clause, at most one (occurrence of a) negative literal.
This occurrence is called selected.

Inferences involve eligible literals. A literal is called el-
igible in a clause C' if either it is selected in C (by X), or
else nothing is selected in C, and it is a maximal literal in
C' with respect to . In particular, a positive literal, since it
cannot be selected, is eligible only if the respective clause
contains no selected (negative) literal. The inference rules
are as follows:

Ordered Factoring. From A; V As V R derive Ajo0 V Ro
provided A, is eligible and o is the mgu of A; and As.

Equality Factoring. From ¢; ~u V to=wv V R derive
uo #vo V tio~vo V Ro provided ¢, ~u is eligi-
ble and o is the mgu of ¢; and ¢,.

Reflexivity Resolution. From t; #ts V R derive Ro pro-
vided that ¢; % t5 is eligible and o is the mgu of ¢; and
to.

Resolution. From A; Vv R; and = AoV Ry derive RioV Roo
provided that both A; and — A, are eligible and o is the
mgu of A; and As.

Ordered Paramodulation. From¢; = V Ry and Lts] V
Ry, where t5 is not a variable, derive L[u]o V Rio V



Ryo provided that both ¢; ~ v and the literal L[t5] are
eligible, o is the mgu of t; and ¢, and u % ;.

The way in which the order restrictions are applied here is a
priori, i.e. before the unifier is computed. Superposition is
complete also if the order restrictions are checked after the
substitution is applied to the premises (a posteriori check-
ing), or even if they are attached to the clauses and inherited
throughout inferences. A priori checking has the advantage
that the eligible literals in a clause can be precomputed, be-
fore any inference is attempted. On the other hand, a poste-
riori application is generally more restrictive. For obtaining
the theoretical results in the present paper a priori ordering
constraints turn out to be sufficiently powerful.

The calculus is refutationally complete for any choice
of admissible ordering and selection function. Moreover,
the calculus is compatible with a rather powerful notion of
redundancy by which don’t-care non-deterministic simplifi-
cation and redundancy elimination can be justified. In par-
ticular, tautologies can be eliminated and multiple occur-
rences of literals in clauses can be deleted. The notion of
redundancy allows for much more sophisticated simplifica-
tion methods which, however, will not be required here, al-
though for achieving good practical performance they have
to be implemented. The fact that non-naive implementa-
tions of superposition, such as in the SPASS system, spend
most of their execution time on simplification rather than
search is what makes them useful in the end. We call a set
of clauses NV saturated up to redundancy (with respect to or-
dered paramodulation) if any inference from non-redundant
premises in N is redundant in N. The definition of redun-
dancy, in particular, implies that an inference is redundant
in IV if the conclusion of the inference is contained in N or
else is redundant in N.

THEOREM 3.1 (BACHMAIR & GANZINGER, 1990) Let
N be a set of clauses that is saturated up to redundancy
with respect to the above derivation rules. Then N is
unsatisfiable if and only if IV contains the empty clause.

4 The Decision Procedure

We will now describe the decision procedure. We de-
fine a notion of guarded clauses, and show that guarded for-
mulae can be translated into guarded clause sets. We will
obtain a resolution decision procedure by defining a reduc-
tion order > and a selection function X that force an upper
bound on the complexity of the derivable clauses.

4.1 Clausal Normal Form Translation

We rely on a specific clausal normal-form transforma-
tion for the guarded fragment. We may assume that the
given formula is in negation normal form, that is, negation
is only applied to atoms. We also assume that implications
and equivalences have been eliminated by replacing them
by equivalent formulas involving conjunction, disjunction,
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and negation. These standard transformations do not take a
formula outside the guarded fragment.

The next step is to replace certain sub-formulae by fresh
names, together with a definition of the name.* We abstract
universally quantified sub-formulae to reduce the number
of quantifier alternations. Let 7 = {Fy,...,F,} be a
set of formulae in negation normal form. The structural
transformation of GF is obtained by iterating the follow-
ing transformations: If £ is a formula in F containing a
proper sub-formula of the form Vz(-G Vv H), with G the
guard, then (i) add a definition Vzgy(—~G V - a(y) vV H) to
F, and (ii) replace the indicated sub-formula in ' by a(7).
Hereby it is assumed that 7 is the set of variables that occur
in G, but not in 7, and that « is a new predicate name that
does not occur in F. Observe that the structural transforma-
tion, when applied to a set of guarded formulas also yields
a set of guarded formulas as result. Moreover, all remain-
ing universal quantifiers are outermost, so that any inner
existential quantifier occurs in the scope of all universally
quantified variables. This method of eliminating embedded
quantifiers is standard and has also been used in the context
of the guarded fragment by Gradel (1997).

For the purposes of this paper, the standard skolemiza-
tion technique is the one which is appropriate. One re-
places any applied occurrence of an existentially quantified
variable y by a term f(z1,...,z,), with f a new Skolem
function symbol, if z4,...,x, are the universally quanti-
fied variables, in the scope of which y occurs. After that
replacement, all existential quantifiers have been removed,
and Skolem function applications contain all the variables
of a formula. Finally, to obtain a set of clauses, distribute
disjunctions over conjunctions, omit the universal quanti-
fiers (which are all outermost) and consider any conjunction
of disjunctions as a set (of clauses).

ExAMPLE 4.1 Consider the guarded formula
Jz (n(z) AVy [-alz,y) V
Vz {=p(x,2) V Iz (a(z, 2) A (2b(z, 2) V =c(z, x)))}]).

The structural transformation gives the set of formulas

Jz [n(z) A alx)],

v,y [-a(z,y) V —a(x) V ()],

Va, z [-p(z, z) V -8(x) V

Az (a(z, 2) A (—b(z,2) V —c(z, x)))].

Skolemization yields

n(c) A afe),

Ve, y [halx,y) V —alz) V B(x)],

Ve, z [-p(x,z) V -8(x) V

(a(fzz,z) A (—b(z,2) V —e(faz, fzz)))].

Clausification, finally, produces this set of clauses:

1Such transformations are called structural and are, for instance, stud-
ied in (Baaz, Ferm'uller & Leitsch 1994). They are called structura since
more of the structure of a formula is preserved when the formula is fac-
tored.



n(c)

a(c)

—a(z,y) vV —a(z) V B(x)

ﬂp(Z,Z) (I)\/a(f(xvz)vz)

—p(x,z) V-B(x)V -b(z, 2) V-oo(frz, frz).

4.2 Guarded Clauses

The result of the transformation are sets of guarded
clauses which, in particular, consist of a specific kind of lit-
erals. A termis called shallow if either it is a variable or else
a functional term f(u1, ..., um), m > 0, in which each v;
isavariable or a constant. A literal L is called simple if each
term in L is shallow. Hence p(z,¢, f(x)) and f(z,c) %y
are simple while —p(s(f(0),x)) and f(z, s(x)) =~ g(z) are
not. A clause is called simple if all literals are simple. A lit-
eral is called covering if each non-ground and non-variable
subterm in the literal contains all the variables of the literal.
An expression is called functional if it contains a constant
or a function symbol, and non-functional, otherwise.

DEFINITION 4.2 A simple clause C is called guarded if it
satisfies the following conditions:

(i) C'is a positive, non-functional, single-variable clause;
or

(ii) every functional subterm in C' contains all the variables
of C, and, if C' is non-ground, C' contains a non-functional
negative literal, called a guard, which contains all the vari-
ables of C.
Clauses of the form (ii) are called properly guarded, while
the concept of guards is void for the other types of guarded
clauses. A set of clauses is called guarded if all its clauses
are guarded.

Note that if a guarded clause contains a constant it must be a
ground clause in which terms are shallow. Also, any literal
in a guarded clause is covering.
These are some examples of guarded clauses where suit-
able guards have been underlined.
p(0,5(0)) v e d V q(s(0), f(0,0))
pla,2) V g(x)
—p(y,z) V 2q(z,y,y) V
—p(y, ) V ~q(z,y,y)
xy Vax(r+y)
The following clauses are not guarded:

r(z+y,z—y,)

ela) V els ( (2))) (not simple)
—p(z) V =q(y) V r(z,y) (no guard)
—»(f(z, )) vV p(z,y) (no guard)
—p(z, y) Vv p(f(@),y) (not covering)
ﬁp(;r/, y) V p(0,g9(x,y))  (constant, but non-ground)

Definition 4.2 is more restrictive than the corresponding
definition in (de Nivelle 1998). The last two clauses in the
previous example are guarded in the sense of (de Nivelle
1998). In the section 5 we will discuss this issue in more
detail.
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THEOREM 4.3 The number of different (up to variable re-
naming) guarded clauses (without duplicate occurrences of
literals) over a finite signature has a double exponential up-
per bound in the size of the signature.

Proof. Let a finite signature be given. Define the following
parameters:

the maximal arity of function symbols

az  the maximal arity of predicate symbols

a  the maximum of a; and as

n1  ag + the number of constant and function symbols
no  the number of predicate symbols

n  the maximum of n; and ns.

ai

The maximal size s of a simple atom is a? + a + 1.
Therefore, the number of simple atoms (modulo variable
renaming) that may appear in a guarded clause over the
given signature is bounded by

n§ ::ng2+a+1-

Then the number of simple literals (modulo variable renam-

ing) is at most
| = 2 Fatl,

This is also an upper bound for the maximal number of lit-
erals in a clause, since a clause contains at most all possi-
ble literals over at most a- variables. Then the number of
guarded clauses that can be constructed from non-repeated
literals is bounded by

a?4a+1
c=2=2%" :
O

4.3 Preservation of Guardedness

We now show that guarded clauses are closed under the
paramodulation inferences so that, using the theorem 4.3,
saturating a given set of clauses under these inferences,
combined with eager elimination of duplicate literals in
clauses, yields a decision procedure for satisfiability. To
that end we need to define an appropriate ordering and se-
lection function. For the ordering - we may use any lexi-
cographic path ordering on terms and non-equational atoms
based on a precedence > such that f >~ ¢ = p > tt for
any non-constant function symbol f, constant ¢, and pred-
icate symbol p, respectively. For the selection function X
we assume that (i) if a clause is non-functional and con-
tains a guard then one of its guards is selected by 3; (ii) if
a clause contains a functional negative literal, one of these
is selected; and (iii) if a clause contains a positive func-
tional literal, but no negative functional literal, no literal is
selected, so that the maximality principle applies for a lit-
eral to be eligible for an inference.



LEMMA 4.4 Let Ly, Lo be two literals of a guarded clause.
Assume that L, contains a non-ground functional term,
while L, does not. Then Ly = L.

Proof. First observe that with the given assumptions the
clause does not contain any constants. Let L be a literal,
and let ¢ be a functional term in L. First suppose that L is
a non-equational literal of the form [=]p(u1, ..., u,) with
variables u;. Then, any of the w; also occurs in t. With re-
gard to the ordering, non-equational literals such as L, are
identified with equations [-](p(u1, ..., u,)~tt). Let f be
the leading function symbol in ¢. Then f has a precedence
greater that any of the symbols in L, and as ¢ contains all
variables of L;, we conclude that p(u1,...,u,) < t =<
max(Lz) which implies that L; < Lo.

If L, is an equational atom u = v, by a similar reasoning
we infer that ¢ > w and ¢ > v, from which again L < Lo
is inferred. O

LEMMA 4.5 With = and X as defined above, a literal in a
clause is eligible for an inference only if it contains all the
variables of the clause.

LEMMA 4.6 Let o be the most general unifier of two sim-
ple non-equational atoms p(t1, ..., t,) and p(u1, ..., u,).
Then p(t1, ..., t,)o is also simple.

LEMMA 4.7 Let A and B be simple atoms such that (i)
every variable occurring in B also occurs in A; (ii) every
variable that occurs in a functional term of B also occurs in
a functional term of A; and (iii) every functional term of B
contains all the variables of A. Then for any substitution o,
(i) if Ao issimple, then Bo is simple,
(ii) every variable of Bo occurs in Ao,
(iii) every variable occurring in a functional term of Bo
occurs in a functional term of Ao.
(iv) Every functional term of Bo contains all the variables
of Ao.

As a consequence of the lemma 4.4, if a clause is non-
ground, any eligible literal either contains a (non-ground)
functional term or else there is no functional term in the en-
tire clause. The preceding lemma can therefore be applied
to any eligible literal A and any other literal B in a guarded
clause.

LEMMA 4.8 A factor of a guarded clause is guarded.

LEMMA 4.9 An equality factor of a guarded clause is
guarded.

LEMMA 4.10 A clause obtained by reflexivity resolution
from a guarded clause, is guarded.
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Proof. The propositional case the lemma is trivial. For re-
flexivity resolution to be applicable to a non-propositional
clause, the clause must be of the form D = z%y Vv C,
with guard =%y and with C' not containing a functional
term. Clearly, the resolvent has only simple literals and is
either the empty clause or has just one variable. In the latter
case the resolvent either has a guard or is a positive clause.
a

LEMMA 4.11 A resolvent of two guarded clauses is
guarded.

Proof. Let C; = A1 vV Dy and Cy = —As V D5 be the
clauses resolved upon, with o the mgu of A; and A,. Then
the conclusion is the clause D = Dio VvV Dyo. Notice that
with A = A; and B any literal in D;, the premises of the
lemma 4.7 are satisfied, both for s = 1 and ¢ = 2. As both
Aj and A, are simple, the literal A;o is also simple. Apply-
ing the lemma 4.7, part (i), we may infer that all literals in
D are simple. If there are functional terms in D then these
contain the same set of variables, and all the variables of D,
cf. Theorem 4.7, parts (iii) and (iv). In order to show that
there is a guard in D when one is needed, we distinguish as
to whether or not the clauses are ground.

Suppose that one of the C; is ground. In that case D
is ground since literals which are eligible for an inference
contain all the variables of a clause.

Let us now assume that both C; and C> are non-ground.
Suppose that C; is not a positive clause over one variable.
Then C; must have a guard -G, and —~Go occurs in D.
Moreover, A; must have a functional term containing all
the variables of Cy. (Otherwise =G or some other guard
of Cy would be selected and the inference would not be
possible). As A;o is simple, o assigns a variable to each
variable in C. Therefore, the literal ~Go has only variables
as arguments. Since ~Go contains all the variables of A; o,
it contains all variables of D, and, hence, is a guard. In
case that Cy is a positive, single-variable clause, then D
contains at most one variable. If there is no guard in D then
the resolvent must be a single-variable, positive, possibly
empty clause.

Finally, the resolvent does not contain a constant unless
one of the premises does. In that case both the premise and
the resolvent are ground. O

LEMMA 4.12 Any clause obtained by a superposition in-
ference from two guarded clauses is guarded.

Proof. Let C; = L[u] V D; be the main premise, Co =
t1 &ty V Dy the side premise, and D = Lts]o V Do V
Dqyo be the conclusion, respectively, of the inference, with
o the mgu of ¢; and w.

We first consider the case where C5 is ground. If 5 is
not a constant then also ¢; is not a constant, as otherwise



the ordering constraints would block the inference. Su-
perposition inferences into variables are excluded so that
u must be a functional term containing all the variables of
the clause. Hence, all variables in u become grounded by
o, D is ground, and contains simple literals only.

If Cs is non-ground, then ¢; ~¢5 has to contain all its
variables, and at least one of the ¢; or ¢, is a functional term.
(Otherwise the guard in C would be selected and the clause
cannot appear as the side premise of the inference.) The
ordering restrictions, therefore, imply that ¢, is functional,
containing all the variables of the clause, whereas ¢, can be
a variable, or a functional term. The possible forms of « are
also restricted. » cannot be a variable. « can be a functional
term containing all the variables of C5, or a ground term.
Suppose that u is ground and unifiable with ¢;. Then w is
not a constant, C5 is ground, and « occurs as an argument to
a predicate in C'5. Then, D is a ground clause and is simple
since ty0 is either a constant or a functional term with con-
stant arguments. If « is not ground o is a variable renaming
and, in particular, both D0 and Dyo are guarded. More-
over, L[to]o is simple. It is easily checked that the guards
of Cyo0 and Cso can both serve as guards of D. O

THEOREM 4.13 Let X and > be as specified. For all the
inferences of the ordered paramodulation calculus, if the
premises are guarded, so is the conclusion.

THEOREM 4.14 The fragment of guarded clauses is decid-
able by ordered paramodulation.

Proof. By the theorem 4.13 all derivable clauses are
guarded, and the number of such clauses is finite, cf. The-
orem 4.3. As each inference rule is a decidable relation on
guarded clauses, the theorem follows.? O

The theorem can also be extended to guarded clauses
combined with unrestricted ground clauses. There one re-
places in the initial clause set any ground (sub-) term s
which is not shallow by a new constant a, together with
the defining equation as ~ s. This preserves satisfiability
and produces a clause set which is guarded.

4.4 Complexity

The complexity of our decision procedure is double ex-
ponential. Gradel (1997) has shown that the decision prob-
lem for the guarded fragment with equality is 2EXPTIME-
complete, hence our procedure is theoretically optimal. We
use the fact, cf. Theorem 4.3, that the number of guarded

2Theinferences are equipped with constraints which specify which lit-
erals are eligible for an inference. Depending on the signature, the term
ordering, and the selection function such constraints are in general unde-
cidable and have to be approximated. Thisis not the case here. But even if
the constraints were undecidable, by Theorem 4.13 a safe approximation
would be to consider any unrestricted inference the conclusion of which is
aguarded clause.
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clauses has a doubly exponential bound and show that the
saturation process has no primitive operation that has more
than exponential complexity.

THEOREM 4.15 The superposition decision procedure can
be implemented in 2EXPTIME (in the size of the signature).

Proof. We reuse the notation defined in the proof of the the-
orem 4.3. It is clear that the space complexity of the pro-
cedure is dominated by the space that is needed to store the
clauses. Hence, we obtain a space complexity of s x [ x c.
For the time complexity, observe that suitable abstractions
of the ordering and selection constraints for the inferences
can be checked in polynomial time, cf. the proof of Theo-
rem 4.14. Then one may show that the time needed to do a
subsumption check is in O(I3s). In fact, one first matches
the guard with at most [ literals. After that one has to try
to match each of the [ remaining literals with one of the [
literals of the other clause. This gives a total of /3 attempted
matches. Since each matching can take up to s time, this
number has to be multiplied by s. Knowing the time com-
plexity for subsumption for guarded clauses, we can esti-
mate the time complexity of our method as a whole. The
algorithm has to try all pairs of literals, and in the case that
a resolvent is possible, it has to check that the resolvent is
not subsumed by one of the existing clauses. This takes time
in O((cl)?c(I3s)). This iteration has to be repeated at most
c times, resulting in a bound in O((cl)?c?13s). This num-
ber is roughly equal to ¢* which gives the desired double
exponential time complexity.

Finally we should also consider the time and space com-
plexity of the clausal normal form translation. It is well-
known that the transformation to normal form can take at
most single exponential time, which is negligible compared
to the double exponential time obtained above. The (struc-
tural) elimination of equivalences is slightly more tricky
here as the result has to be a guarded formula. O

5 Weakly Guarded Clauses

The notion of guarded clause as given in the Defini-
tion 4.2 is more restrictive than the one given in (de Nivelle
1998). There, terms of arbitrary depth are allowed provided
that they are either ground, or contain all variables of the
clause. We repeat the formal definition:

DEFINITION 5.1 A clause C is called weakly guarded, if
(i) every non-ground functional term in C' contains all the
variables of C'; and (ii) if C' is non-ground it contains a neg-
ative literal, all of which arguments are constants or vari-
ables, and which contains all the variables of the clause.

This notion was inspired by the E*-class. Every clause
which is guarded is also weakly guarded, but the converse
is not true in general.



THEOREM 5.2 Satisfiability is undecidable for finite sets
of weakly guarded clauses if equational atoms are admitted.
The fragment remains undecidable if all ground terms are
constants.

The Post Correspondence Problem can be reduced to
this decision problem. This is essentially due to the
fact that projection functions defined by equations of the
form f(z,y)~z can make a non-shallow term equal to
a term that violates the covering condition. For example
from the guarded clauses —p(z,y) V p(s(f(z,y))) and
—p(z,y) V f(z,y)~z we may deduce the non-guarded
clause —p(z,y) V p(s(x))}, where s is not applied to all the
variables of the clause. This shows that variables in nested
functional terms cannot be combined with equality.

6 ThelLoosely Guarded Fragment

Our method can be generalized to the so called loosely
guarded fragment. This fragment obtained by weakening
the condition (4) in the Definition 2.1 as follows: If F'is
loosely guarded and G, ..., G, are atoms, with variables
as arguments, then the formulae VZ(G1 A - - A G,, — F)
and 3z(G1 A -+ A Gy, A F) are loosely guarded, provided
that (i) every free variable of F occursina G, and (ii) every
pair of variables 1, y2, which are free in F, and of which
at least one is among the Z, occur together in one of the G;.
We call the entire conjunction Gy A - -- A G, the guard of
the formula, and any conjunct a guard atom.

In the loosely guarded fragment the until operator can be
expressed, which cannot be expressed in the guarded frag-
ment. P until Q) can be translated as:

Jy (Rey A Qy AVz (Rzz A Rzy — Pz)).

Transitivity of R, though, cannot be expressed in the loosely
guarded fragment. In the formula

V,y,z (Rry A Ryz — Rxz)

there is no atom in the guard in which the variables x and z
co-occur. In fact, Ganzinger, Meyer & Veanes (1999) have
shown that allowing for a single transitive relation makes
the LGF undecidable in general.

A CNF transformation similar to the one described in the
section 4.1 leads to what we call loosely guarded clauses:

DEFINITION 6.1 A simple clause C is called loosely
guarded if it satisfies the following conditions:

(i) C'is a positive, non-functional, single-variable clause;
or

(if) C contains no constants, every functional subtermin C'
contains all the variables of C, and C contains a set of neg-
ative, non-functional literals = A1, ...,—A,, n > 0, called
a (loose) guard of C, such that every pair of variables that
occurs in C occurs together in one of the atoms A,.
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Propositional simple clauses are admitted. They have an
empty guard.

The main modification of the decision procedure is that
in cases where previously a guard atom needed to be se-
lected in a clause now a set of literals may constitute a
guard, and some of these have to be resolved simultane-
ously. Therefore, resolution needs to be generalized to (or-
dered) hyper-resolution. The basis for this are more gen-
eral selection functions X which now may select an entire,
possibly empty set of occurrences of negative literals in a
clause. Now a literal is called selected if it occurs in the set
of selected literals of a clause.

Ordered Hyper-Resolution with Selection

A1V Ry A, VR, -ByVvV...Vv-B,VR

RioV...VR,oV Ro

where (i) either the —B; are the literals selected by
in the main premise, or else n = 1, nothing is selected
in =By VR, and - By is maximal in =By VR, (ii) the A;
are eligible in the side premises A; V R;, and (iii) o is
the mgu of the tuples (A4,..., A,) and (B, ..., By).

Given a hyper-resolution inference of this form, we speak of
a partial inference producing a partial conclusion D when-

ever there exists a non-empty subset ji, ..., jx of the in-
dices1 < j <nand
D= \/ Ryrv \/ -BitVRr
1<i<k iZ{G1,5dn}
with 7 the mgu of (4;,,...,4;,) and (Bj,,..., Bj,).

The extended calculus is refutationally complete and
compatible with a notion of redundancy by which the usual
simplification mechanisms (tautology elimination, con-
densement, subsumption) can be justified. There is no pub-
lished result that exactly covers this calculus, but it is easy
to generalize the results in (Bachmair & Ganzinger 1990)
appropriately.

The orderings which we may use for the decision proce-
dure are the same as for the non-loose case. The selection
function X should satisfy these restrictions:

(i) If a clause C' is non-functional and contains a guard
L1V ...V L then all the literals of one of the guards of C
are selected by 33;

(ii) if a clause contains a functional negative literal, one of
these is selected; and

(iii) if a clause contains a positive functional literal but no
negative functional literal, then no literal is selected, so that
the maximality principle applies for a literal to be eligible
for an inference.

In order to prove that with this ordering and selection
strategy, ordered paramodulation becomes a decision pro-
cedure for the LGF, two problems have to be solved. The



first problem is that conclusions of inferences might become
too deep.

EXAMPLE 6.2 (DE NIVELLE & RIJKE, 1999) The
lowing clause D is loosely guarded:

fol-

—ay(z,y) V —as(y, 2) V ~as(z, x)
\/bl(‘rvy) \/bg(y,Z) \/bg(Z,I)

There are no functional terms, therefore the three guard lit-
erals are selected. The following three clauses are candi-
dates for a hyperresolution inference:

C —P1 (u) \ a’l(fuv fu)v
CQ = _'p2(v) \ 0,2(’11, gl})7
Cs = —p3(w)Vaz(gw,w),

From these one may derive the hyper-resolvent

—p1(w) V —p2(fu) V —ps(fu) v
bi(fu, fu) V ba(fu,gfu) vV bs(gfu, fu),
with an mgu o [z, y,v,w = fu, z := gfu]. This

resolvent has a non-shallow term which is not admitted for
a loosely guarded clause.

A remedy to this problem is to resolve D only with a suit-
able subset of the side premises C;. In the example, if we
only resolve the second and third guard literal of D with C5
and C's, respectively, we obtain the partial conclusion

—ay(w,w) V —pa(w) V —ps(w)
V by (w, w) V ba(w, gw) V bs(gw, w).

The mgu of the partial inference is [y,v,z = w, z =
gw]. This clause is loosely guarded, in particular, not too
deep. It turns out that if an inference is possible then one of
its partial conclusions will be a guarded clause. The proof
makes use of the subsequent lemma which is a special case
of a theorem in (de Nivelle & Rijke 1999).

LEMMA 6.3 Let Ay, ..

simple literals such that
(i) the B; are non-functional;
(ii) forall z,y in Var(By,...

x,y isin Var(B;);

(iii) the A; are covering and functional;

(iv) A; and A;, for 4 # j, have no common variables;
(v) the A; and the B; have no common variables;

.,A, and By,...,B, be 2n > 2

, Bp,) there is a B; such that

(vi) the tuples (A4,...,A4,) and (By,...,B,) are unifi-
able.

Then there exists a non-empty subset j1, ..., ji of the in-
dices 1 < j < n such that the tuples (A4;,,...,4;,) and

(Bj,, ..., Bj,) are unifiable with an mgu  and
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(i) any of the A;,7 (= Bj,7) is simple and covering;
(ii) if z is a variable in any of the B; or A;, and if y is a
variable in y7 then y also occurs in A;, 7.

The proof which is given in full detail for the more gen-
eral theorem in (de Nivelle & Rijke 1999) is based on this
observation: Let us assume, for simplicity, that the A; are
non-ground and that all non-constant symbols are binary.
Then any of the A; is of the form p(u, fuv), p(fuv,v), or
p(fuv, guv), with more variants arising from exchanging u
and v in one of the arguments of p, f, and g. If we disregard
the trivial one-variable case, any of the guard atoms is of the
form p(z,y), with different variables  and y. The prob-
lem of unifying all the A; with the corresponding B;, there-
fore, induces at least one unification problem of the form
r = fry,y = foy,x =y, fry = fay, or fay = fyx
on any pair z,y of variables in Var(By,...,B,). Thisis
a consequence of the co-occurrence requirement (ii). If the
unification problem is solvable with an mgu o then if z is in
Var(By, ..., By), either zo is of maximal depth d among
all the yo, for y in Var(By,..., By,), or else zo is a sub-
term of some yo, with y in Var(By, ..., B,). Picking for
the j; those atoms in which a variable = with zo of depth
d appears, solves the problem. Any other variable in one
of the B;, will be instantiated either by a term of the same
depth and containing the same variables, or else by a direct
subterm of a term of depth d.

The lemma covers exactly those unification problems
which arise from hyper-resolution inferences with guard
atoms B; and corresponding positive atoms A;. For the lat-
ter to be eligible for an inference they all have to contain a
functional term. In other words, with the class of orderings
> and selection functions > which we consider for the LGF,
we obtain this theorem:

THEOREM 6.4 Suppose there is an inference by hyperres-
olution with respect to > and 3. Then one of the partial in-
ferences produces a (partial) conclusion which is a guarded
clause.

The existence of suitable partial inferences solves our prob-
lem as the calculus remains complete if, for any potential
hyper-inference from side premises C,...,Cy and main
premise D, rather than deriving the full conclusion, we
derive any don’t-care non-deterministically chosen partial
conclusion. A proof of this fact in the non-equational case
has been given in (Bachmair & Ganzinger 1997), and the
proof does not dependent on any properties that are critical
when adding equality. The criterion for which partial con-
clusion to choose is simply that the conclusion should be a
guarded clause. With this modification of the calculus, the
class of guarded clauses is closed under its inferences.

A second, simpler problem arises from the fact that
loosely guarded clauses over any given finite signature may



be arbitrarily long. Fortunately it is not difficult to see that
the set of guarded clauses that can be derived with our in-
ference system from an initially given finite set of guarded
clauses is finite. This is an immediate consequence of the
fact that the number of variables does not increase during
an inference: The point here is that the loose guard of any
generated clause is an instantiation of the loose guard of one
of the parent clauses. Therefore, the number of variables in
any derived clause is bound by the number of variables in
one of the parent clauses.

LEMMA 6.5 If D is the [partial] conclusion of an inference
from premises C; then |Var(D)| < max(|Var(C;)|).

Altogether we obtain:

THEOREM 6.6 Ordered Paramodulation with hyperresolu-
tion based on selection is a decision procedure for the LGF.

7 Conclusions

We have shown that it is possible to effectively decide the
[loosely] guarded fragment with equality by superposition-
based saturation provers. There is hope that usable deci-
sion procedures can be obtained from these results with
existing standard theorem provers. This hope is supported
by our theoretical optimality result (in the non-loose case)
and by experimental evidence that has been obtained in us-
ing these theorem proving techniques in related application
domains (Hustadt & Schmidt 1997). The GF has turned
out to be a fragment of first-order logic with equality for
which it is especially easy to configure superposition into
an optimal decision procedure. Although the complexity
issue has been neglected by and large in the literature on
resolution-based decision procedures, we believe that in
most cases of fragments which are complete for a particular
time complexity class, the resolution-based methods can be
implemented it this time bound. (Things are different for
space complexity classes such as PSPACE and local theo-
rem proving methods based on resolution and superposition
where the reuse of space, as is standard with tableau meth-
ods, is not so straightforward.) The loosely guarded case is
more tricky. However this paper also demonstrates that the
theory of saturation-based theorem proving is sufficiently
developed to be able to solve the problems without having
to deal with technically difficult proof-theoretic arguments.
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Abstract. We provide a simple translation of the satisfiability problem for regular
grammar logics with converse into GF?, which is the intersection of the guarded
fragment and the 2-variable fragment of first-order logic. The translation is theoret-
ically interesting because it translates modal logics with certain frame conditions into
first-order logic, without explicitly expressing the frame conditions. It is practically
relevant because it makes it possible to use a decision procedure for the guarded
fragment in order to decide regular grammar logics with converse. The class of
regular grammar logics includes numerous logics from various application domains.

A consequence of the translation is that the general satisfiability problem for
every regular grammar logics with converse is in EXPTIME. This extends a previous
result of the first author for grammar logics without converse. Other logics that
can be translated into GF? include nominal tense logics and intuitionistic logic.
In our view, the results in this paper show that the natural first-order fragment
corresponding to regular grammar logics is simply GF? without extra machinery
such as fixed point-operators.

Keywords: modal and temporal logics, relational translation, guarded fragment,
2-variable fragment

1. Introduction

Translating modal logics. Modal logics are used in many areas of
computer science, as for example knowledge representation, model-
checking, and temporal reasoning. For theorem proving in modal logics,
two main approaches can be distinguished. The first approach is to
develop a theorem prover directly for the logic under consideration.
The second approach is to translate the logic into some general logic,
usually first-order logic. The first approach has the advantage that a
specialized algorithm can make use of specific properties of the logic
under consideration, enabling optimizations that would not work in
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general. Such optimizations often lead to terminating algorithms. In
addition, implementation of a single modal logic is usually easier than
implementing full first-order logic. But on the other hand, there are
many modal logics, and it is simply not feasible to construct optimized
theorem provers for all of them. The advantage of the second approach
is that only one theorem prover needs to be written which can be reused
for all translatable modal logics. In addition, a translation method
can be expected to be more robust against small changes in the logic.
Therefore translating seems to be the more sensible approach for most
modal logics, with the exception of only a few main ones.

Translation of modal logics into first-order logic, with the explicit
goal to mechanize such logics is an approach that has been introduced
in (Morgan, 1976). Morgan distinguishes two types of translations:
the semantical translation, which is nowadays known as the relational
translation (see e.g., (Fine, 1975; van Benthem, 1976; Moore, 1977))
and the syntactic translation, which consists in reifing modal formulae
(i.e., transforming them into first-order terms) and in translating the
axioms and inference rules from a Hilbert-style system into classical
logic using an additional provability predicate symbol. This is also
sometimes called reflection. With such a syntactic translation, every
propositional normal modal logic with a finite axiomatization can be
translated into classical predicate logic. However, using this general
translation, decidability of modal logics is lost in general, although
the work in (Hustadt and Schmidt, 2003) has found a way to avoid
this problem for many standard modal logics. We will study relational
translations in this paper, which instead of simply translating a modal
formula into full first-order logic, can translate modal formulas into
a decidable subset of first-order logic. The fragment that we will be
using is GF2, the intersection of the 2-variable fragment (Gréidel et al.,
1997) and the guarded fragment (Andreka et al., 1998). We modify the
relational translation in such a way that explicit translation of frame
properties can be avoided. In this way, many modal logics with frame
properties outside GF? can be translated into GF2.

A survey on translation methods for modal logics can be found in
(Ohlbach et al., 2001), where more references are provided, for instance
about the functional translation (see e.g., (Herzig, 1989; Ohlbach, 1993;
Nonnengart, 1996)), see also in (Orlowska, 1988; D’Agostino et al.,
1995) for other types of translations.

Guarded fragments. Both the guarded fragment, introduced in (An-
dreka et al., 1998) (see also (de Nivelle, 1998; Gradel, 1999b; Ganzinger
and de Nivelle, 1999; de Nivelle et al., 2000; de Nivelle and de Rijke,
2003)) and FO?, the fragment of classical logic with two variables
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(Gabbay, 1981; Gréadel et al., 1997; de Nivelle and Pratt-Hartmann,
2001), have been used for the purpose of hosting’ translations of modal
formulas. The authors of (Andreka et al., 1998) explicitly mention
the goal of identifying 'the modal fragment of first-order logic’ as a
motivation for introducing the guarded fragment. Apart from having
nice logical properties (Andreka et al., 1998), the guarded fragment GF
has an EXPTIME-complete satisfiability problem when the maximal
arity of the predicate symbols is fixed in advance (Gradel, 1999b).
Hence its worst-case complexity is identical to some simple extensions
of modal logic K, as for example the modal logic K augmented with
the universal modality (Spaan, 1993). Moreover, mechanization of the
guarded fragment is possible thanks to the design of efficient resolution-
based decision procedures (de Nivelle, 1998; Ganzinger and de Nivelle,
1999). In (Hladik, 2002), a tableau procedure for the guarded fragment
with equality based on (Hirsch and Tobies, 2002) is implemented and
tested; see also a prover for FO? described in (Marx et al., 1999).

However, there are some simple modal logics with the satisfiabil-
ity problem in PSPACE ((Ladner, 1977)) that cannot be translated
into GF through the relational translation. The reason for this is the
fact that the frame condition that characterizes the logic cannot be
expressed in GF. The simplest example of such a logic is probably S4
which is characterized by reflexivity and transitivity. Many other ex-
amples will be given throughout the paper. Adding transitivity axioms
to a GF-formula causes undecidability (see (Grédel, 1999a)).

Because of the apparent insufficiency of GF to capture basic modal
logics, various extensions of GF have been proposed and studied. In (Ganzinger
et al., 1999), it was shown that GF? with transitivity axioms is decid-
able, on the condition that binary predicates occur only in guards.
The complexity bound given there is non-elementary, which makes the
fragment not very relevant to deal with logics, say in EXPTIME.

In (Szwast and Tendera, 2001), the complexity bound for GF? with
transitive guards is improved to 2EXPTIME and it was shown 2EXPTIME-
hard in (Kieronski, 2003). As a consequence, the resulting strategy is
not the most efficient strategy to mechanize modal logics with transitive
relations (such as S4)

Another fragment was explored in (Griadel and Walukiewicz, 1999),
see also (Gradel, 1999a). There it was shown that uGF, the guarded
fragment extended with a p-calculus-style fixed point operator is still
decidable and in 2EXPTIME. This fragment does contain the simple
modal logic S4, but the machinery is much more heavy than a direct
decision procedure would be. After all, there exist simple tableaux
procedures for S4. In addition, uGF does not have the finite model
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property, although S4 has.

Almost structure-preserving translations. In this paper, we put

emphasis on the fact that GF? is a sufficiently well-designed fragment
of classical logic for dealing with a large variety of modal logics. An
approach that seems better suited for theorem proving than the trans-
lation into the rich logic uGF, and that does more justice to the low
complexities of simple modal logics is the approach taken in (de Niv-
elle, 1999; de Nivelle, 2001). There, an almost structure-preserving
translation from the modal logics S4, S5 and K5 into GF? was given.
The subformulae of a modal formula are translated in the standard
way, except for subformulae that are O-formulae. The translation of
O-formulae O depends on the frame condition and encodes the prop-
agation of single-steps constraints (as done in (Massacci, 2000)) so that
¥ holds true in successor states. In (de Nivelle, 1999; de Nivelle, 2001),
the translations and their correctness proofs were ad hoc, and it was not
clear upon which principles they are based. In this paper we show that
the almost structure preserving translation relies on the fact that the
frame conditions for K4, S4 and K5 are regular in some sense that will
be made precise in Section 2.2. The simplicity of the almost structure-
preserving translation leaves hope that GF? may be rich enough after
all to naturally capture most of the basic modal logics.

We call the translation method almost structure-preserving because
it preserves the structure of the formula almost completely. Only for
subformulae of the form [a]¢ does the translation differ from the usual
relational translation. On these subformulae, the translation simulates
an NDFA based on the frame condition of the modal logic. In our
view this translation also provides an explanation why some modal
logics like S4, have nice tableau procedures (see e.g. (Heuerding et al.,
1996; Goré, 1999; Massacci, 2000; del Cerro and Gasquet, 2002; del
Cerro and Gasquet, 2004; Horrocks and Sattler, 2004)): the tableau rule
for subformulae of form [a]¢ can be viewed as simulating an NDFA | in
the same way as the almost structure-preserving translation.

In this paper, we show that the methods of (de Nivelle, 1999) can
be extended to a very large class of modal logics. Some of the modal
logics in this class have frame properties that can be expressed only by
recursive conditions, like for example transitivity. By a recursive con-
dition we mean a condition that needs to be iterated in order to reach
a fixed point. The class of modal logics that we consider is the class of
reqular grammar logics with converse. The axioms of such modal logics
are of form [ap]p = [a1] ... [an]p where each [a;] is either a forward or a
backward modality. Another condition called regularity is required and
will be formally defined in Section 2.2.
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With our translation, we are able to translate numerous modal logics
into GF? = FO? N GF, despite the fact that their frame conditions are
not expressible in FO? U GF. These logics include the standard modal
logics K4, S4, K5, K45, S5, some information logics (see e.g. (Vakarelov,
1987)), nominal tense logics (see e.g. (Areces et al., 2000)), description
logics (see e.g. (Sattler, 1996; Horrocks and Sattler, 1999)), proposi-
tional intuitionistic logic (see e.g. (Chagrov and Zakharyaschev, 1997))
and bimodal logics for intuitionistic modal logics IntKg + I' as those
considered in (Wolter and Zakharyashev, 1997). Hence the main contri-
bution of the paper is the design of a very simple and generic translation
from regular grammar logics with converse into the decidable fragment
of classical logic GF2. The translation is easy to implement and it
mimics the behavior of some tableaux-based calculi for modal logics.
As a consequence, we are able to show that the source logics that can
be translated into GF? have a satisfiability problem in EXPTIME.
This allows us to establish such an upper bound uniformly for a very
large class of modal logics, for instance for intuitionistic modal logics
(another approach is followed in (Alechina and Shkatov, 2003) leading
to less sharp complexity upper bounds). We are considering here the
satisfiability problem. However because of the very nature of the regu-
lar grammar logics with converse, our results apply also to the global
satisfiability problem and to the logical consequence problem.

We do not claim that for most source logics the existence of a
transformation into GF? of low complexity is surprising at all. In fact
it is easy to see that from each simple modal logic for instance in
PSPACE there must exist a polynomial transformation into GF2,
because PSPACE is a subclass of EXPTIME. The EXPTIME-comp-
leteness of fixed-arity GF implies that there exists a polynomial time
transformation from every logic in PSPACE into fixed-arity GF. It
can even be shown that there exists a logarithmic space transformation.
However, the translation that establishes the reduction would normally
make use of first principles on Turing machines. Trying to efficiently
decide modal logics through such a transformation would amount to
finding an optimal implementation in Turing machines, which is no
easier than a direct implementation on a standard computer.

Our paper also answers a question stated in (Demri, 2001): Is there
a decidable first-order fragment, into which the regular grammar logics
can be translated in a natural way? The translation method that we
give in this paper suggests that GF? is the answer. It is too early to state
that the transformation from regular grammar logics with converse into
GF? defined in this paper can be used to mechanize efficiently such
source logics with a prover for GF2, but we show evidence that GF? is
a most valuable decidable first-order fragment to translate modal logics
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into, even when their frame conditions are not expressible in GF2.

Structure of the paper. The paper starts by introducing multi-
modal languages with converses, semi-Thue systems, and some formal
language theory. Using this, we can define regular grammar logics in
Section 2.2. The same section also contains examples of regular gram-
mar logics, which show that there are some natural modal logics covered
by our framework.

Section 2.3 starts by repeating a standard result about derivability
in Hilbert-style systems. After that, we prove a new result which char-
acterizes when a grammar rule is a consequence of a set of grammar
rules. This characterization will be used in Section 4 for determining
which grammars define the same logic. In addition, we prove a closure
theorem, which will be used in Section 3.2.

Section 3.1 presents the translation into GF2. In Section 3.2 it is
proven correct. In Section 4, we explore the borders of the transla-
tion method, and state some conjectures concerning which classes of
logics can be translated. Section 5 contains the comparison of related
works with ours. Section 6 concludes the paper and states some open
questions, and future directions of research.

2. Multimodal Logic with Converse

We first introduce modal languages, after that we introduce modal
frames and models. In standard modal logic, one has two operators
O¢, and ©¢, which denote that ¢ is true in all successor states, or true
in at least one successor state. In multimodal logic, different types of
successor relations are distinguished, which are labelled by elements of
an alphabet . As usual, an alphabet ¥ is a finite set {aq,...,a;} of
symbols. We write ¥* to denote the set of finite strings that can be
built from the elements of 3, and we write € for the empty string. We
write uq - uo for the concatenation of w; and uy. For a string u € 3%,
we write |u| to denote its length. A language over some alphabet ¥ is
defined as a subset of 3*.

Definition 2.1. We assume a countably infinite set PROP of proposi-
tional variables. Let ¥ be an alphabet. The multimodal language ML>
based on ¥ is defined by the following schema:

o u=p | L| T | =g | ord | oV | [de | {(a)o
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where p € PROP and a € ¥ The O-formulae are the formulae of the
form [a]i). We write |¢| to denote the size of the formula ¢, that is the
number of symbols needed to write ¢ down. A formula ¢ is in negation
normal form (NNF) if = occurs only in front of propositional variables.

\%

Without any loss of generality, we can make use of the NNF when
we translate formulae to GF2. The use is not essential, but it simplifies
the presentation.

Definition 2.2. Let ¥ be an alphabet. A X-frame is a pair F = (W, R),
such that W is a non-empty set, and R is a mapping from the elements
of ¥ to binary relations over W. We usually write R, instead of R(a).
A ¥-model M = (W, R, V) is obtained by adding a valuation function
V with signature PROP — P(W) to the frame. For every p € PROP,
V(p) denotes the set of worlds where p is true.

The satisfaction relation = is defined in the usual way:

— For every p € PROP, M,z =p iff x € V(p).

— For every a € 3, M,z |= [a]¢ iff for every y such that R,(x,y),
M.y = o

— For every a € ¥, M,z |= (a)¢ iff there is an y such that R,(z,y)
and M,y = ¢.

— M,z =AY iff Mz |E ¢ and M,z = 1.
— M,z =V iff Mz |E ¢ or M,z = 1.
— M,z = —¢ iff it is not the case that M,z = ¢.

A formula ¢ is said to be true in the ¥-model M (written M |= ¢) iff
for every x € W, M,z |E ¢. A formula ¢ is said to be satisfiable if
there exist a ¥-model M = (W, R, V) and w € W, such that M, w = ¢.
\Y

In order to be able to cope with properties such as symmetry and
euclideanity, one needs to be able to express converses. Probably the
most natural way to do this, is by extending the modal language with
backward modal operators [a] !¢ and (a)~'¢. Unfortunately, this ap-
proach does not work for us, because we want to be able to express
frame conditions using languages over X, and in this way the backward
modalities have no counterpart in X.

Because of this, we follow another approach and we assume that to
each a in the alphabet X, a unique converse symbol @ is associated,
which is also in . In this way, one can partition ¥ into two parts, the
forward part and the backward part.
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Definition 2.3. Let X be an alphabet. We call a function ~ on ¥ a
converse mapping if for every a € X, we have @ # a and @ = a. \Y%

It is easy to prove the following result.

Lemma 2.1. Let X be an alphabet with converse mapping -. Then - is a
bijection on Y. In addition, ¥ can be partitioned into two disjoint sets
Y+ and X7, such that (1) for every a € X7, @ € £, (2) for every
a€Y, acxt.

In fact, there exist many partitions ¥ = ¥~ U X*. When we refer to
such a partition, we assume that an arbitrary one is chosen. We call the
modal operators indexed by letters in X forward modalities (conditions
on successor states) whereas the modal operators indexed by letters in
Y.~ are called backward modalities (conditions on predecessor states).

Definition 2.4. Let ¥ be an alphabet with converse mapping -. The
converse mapping - is extended to words over X* as follows:

[=N
o

e

l.e=c¢,

def

2. ifue¥X*anda € X, thenu-a=a-u.

\%

In order to ensure that converses behave like converses should, we
impose the following, obvious constraint on the -frames:

Definition 2.5. Let ¥ be an alphabet with converse mapping *. We call a
Y-frame a (X, )-frame if, for every a € ¥, Rz equals {(y,z) | Rq(x,y)}.
\Y

In the rest of the paper, we adopt the following working definition
for a logic.

Definition 2.6. Let 3 be an alphabet with converse mapping =. A logic
L is pair (ML*,C) such that C is a class of (X, )-frames. A formula
¢ € ML is L-satisfiable [resp. L-valid) iff there exist a (¥,7 )-model
M= (W,R,V) and w € W such that M,w = ¢ and (W, R) € C [resp.
—¢ is not L-satisfiable]. \Y
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2.1. DEFINING LoGIcs BY PRODUCTION RULES

We want to study validity and satisfiability in various modal logics.
Modal logics are traditionally defined by subclasses of frames (see Def-
inition 2.6), or by axioms. For example, the logic S4 can be either
defined by the modal axioms [a]|¢ — [a][a]¢ and [a]¢ — ¢ or by the
subclass of frames in which all relations R, are reflexive and transitive.
For many modal logics, the axioms stand in natural correspondence to
the condition that has to be imposed on the frames.

We will use a language theoretical framework for defining frames
conditions. Since the accessibility relations are labelled by letters, paths
through a frame can be labelled by words. Using this, certain conditions
on the accessibility relation can be represented by production rules.
For example, the transitivity rule Vzyz R, (z,y) ARy (y, 2) = Ry(z, 2)
can be represented by the rule a — a - a. Similarly, the implication
Vryz Ry(z,y) A Rp(y,2) = Re(z,2) can be represented by the rule
¢ — a-b. In order to formally define how a frame satisfies a production
rule, we need the following definition.

Definition 2.7. Let ¥ be an alphabet and F = (W, R) be a X-frame.
The interpretations R, are recursively extended to words u € X* as
follows:

- R Y (x,x) |z € W},

— forall u € ¥X* and a € X,

Ruo & {(z,y) | 32 € W, Ru(z,2) and Ry(z,y)}.
\%

Definition 2.8. Let ¥ be an alphabet with converse mapping -. A semi-
Thue system S over X is a set of production rules of form u — v with
u,v € 2F. v

A semi-Thue system is similar to a grammar, but it has no start
symbol, and there is no distinction between terminal and non-terminal
symbols. Using semi-Thue systems, we can define more precisely how
semi-Thue systems encode conditions on Y-frames.
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Definition 2.9. Let v — v be a production rule over some alphabet
Y with converse mapping . We say that a (3,7 )-frame F = (W, R)
satisfies w — v if the inclusion R, C R, holds. A (X,7 )-frame F
satisfies a semi-Thue system S if it satisfies each of its rules. We also
say that the production rule (or the semi-Thue system) is true in F.

\%

Observe that in Definition 2.9, u and v are swapped when passing
from the production rule to the relation inclusion.

Definition 2.10. A formula ¢ is said to be S-satisfiable iff there is a
(X,7)-model M = (W, R, V') which satisfies S, and which has an x € W
such that M,z | ¢. Similarly, a formula ¢ is said to be S-valid iff in
all (3, )-models M = (W, R, V) that satisfy S, for every z € W, we
have M,z = ¢. \%

Transitivity on the relation R, can be expressed by the semi-Thue
system {a — a-a}. Similarly, reflexivity can be expressed by the system
{a — €}.

Semi-Thue systems are obviously related to formal grammars, but
in a semi-Thue system, the production rules are used for defining a
relation between words, rather than for defining a subset of words. The
former is precisely what we need to define grammar logics.

Definition 2.11. A multimodal logic (ML*,C) with ¥ an alphabet with
converse mapping - is said to be a grammar logic with converse if there is
a finite semi-Thue system S over ¥ such that C is the set of (3, 7 )-frames
satisfying S. \Y%

We will mostly omit the suffix 'with converse’, because we study
only grammar logics with converse in this paper. One could give Defi-
nition 2.9 without converse, but this will bring no increased generality,
because a logic without converse can always be viewed as a sublogic
of a logic with converse. Consider a grammar logic £ without con-
verse defined by a semi-Thue system S over alphabet ¥. One can put
Y =X U{a|a € X}, and for each a € 3, put @ = a. Each X-frame can
now be obviously extended to a (X',* )-frame.

The modal logic S4 can be defined by the context-free semi-Thue
system {a — €, a — aa}. The modal logic B can be defined by {a — a}.
The following correspondence result is standard, see for example (van
Benthem, 1984).

Theorem 2.2. Let 3 be an alphabet with converse mapping -, and S be a
semi-Thue system over . The following statements are equivalent:
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1. In every (X, )-frame F satisfying S, for every p € PROP,

[ulp = [v]p is valid.

For aword u = (uq,...,un), [u]p is an abbreviation for [ui] - - [tum,]p.
2. R, C R, in every (X, )-frame satisfying S.

This is the same as saying that F makes u — v true.

Originally, grammar logics were defined with formal grammars in (del
Cerro and Penttonen, 1988) (as in (Baldoni, 1998; Demri, 2001; Demri,
2002)), and they form a subclass of Sahlgvist modal logics (Sahlqvist,
1975) with frame conditions expressible in II; when S is context-free
(see e.g. Definition 2.13). II; is the class of first-order formulae of the
form V xy V 9 ...V z, ¢ where ¢ is quantifier-free. In the present
paper, we adopt a lighter presentation based on semi-Thue systems as
done in (Chagrov and Shehtman, 1994), which is more appropriate.

2.2. REGULAR GRAMMAR LOGICS WITH CONVERSE

In order to define the class of regular grammar logics with converse, we
need to recall a few notions from formal language theory.

Definition 2.12. Let S be a semi-Thue system. The one-step derivation
relation =g based on S is defined as follows: u =g v iff there exist
U, us € X, and v’ — v’ € S, such that u = uq-u'-us, and v = uq v -us.
The full derivation relation =g is defined as the reflexive and transitive
closure of =g. For every u € ¥*, we write Lg(u) to denote the language
{ve¥*|u=§v} \Y

Definition 2.13. The system S is context-free if all production rules are
of the form a — v with a € ¥ and v € ¥*. A context-free semi-
Thue system S, based on X, is called regular if for every a € ¥, the
language Lg(a) is regular. In that case, we assume there is a function
that associates to each a € ¥, an automaton A4, that accepts Lg(a).
The converse closure S of a system S over an alphabet ¥ with
converse mapping - is the semi-Thue system {u — 7 : v — v € S}.

A system S is said to be closed under converse if S = S. v

Regular languages can be recognized by finite-state automata. We
recall the definition of finite-state automaton, so that we can refer to
it later.

Definition 2.14. A non-deterministic finite automaton (NDFA) A is de-
fined by a tuple (@, s, F,d). Here @ is the finite, non-empty set of
states. s € @ is the initial state. F' C @ is the set of accepting states.
Jd C Q% (XU{e}) x Q is the transition relation.

The extension 6* of § is recursively defined as follows:
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— For every state ¢ € Q, (q,¢,q) € 6*.

— For all strings v and states ¢, ¢, q", if (¢, u,q') € §* and (¢, ¢,q") €
d, then {(q,u,q") € §*.

— For all strings u, letters a, and states ¢,q’,¢", if {q,u,q’) € 6*
and (¢',a,q") € 0, then {(q,u - a,q") € 6*.

A accepts a word u if there is a state ¢ € F, such that (s,u,q) € 6*. We

write L(A) to denote the set of finite words accepted by A. A language
L is regular if there exists an NDFA A, such that L = {u | A accepts u}.
\Y

For more details on NDFA’s, we refer to (Hopcroft and Ullman, 1979).
In Definition 2.13, we do not specify which automaton A, is associated
to a.

Definition 2.15. A multimodal logic (ML>,C) with ¥ an alphabet with
converse mapping - is said to be a regular grammar logic with converse
if there is a finite regular semi-Thue system S over ¥ closed under
converse such that C is the set of (2,7 )-frames satisfying S. \Y

Example 2.1. The standard modal logics K, T, B, S4, K5, K45, and S5
can be defined as regular grammar logics over the singleton alphabet
Y = {a}. In Table I, we specify the semi-Thue systems through regular
expressions for the languages Lg(a).

<

Numerous other logics for specific application domains are in fact regu-
lar grammar logics with converse, or logics that can be reduced to such
logics. We list below some examples:

— description logics (with role hierarchy, transitive roles), see e.g. (Hor-
rocks and Sattler, 1999).

— knowledge logics, see e.g. S5,,,(DE) in (Fagin et al., 1995).

— bimodal logics for intuitionistic modal logics of the form IntKn +
I' (Wolter and Zakharyashev, 1997). Indeed, let S be a regular
semi-Thue system (over X) closed under converse and let ¥/ C 2
be such that for every a € X, either a ¢ ¥/ or @ ¢ ¥/. Then, the
semi-Thue system SU {b — bab,b — bab | a € X'} over XU {b, b} is
also regular, assuming b, b ¢ ¥.. By taking advantage of (Ganzinger
et al., 1999), in (Alechina and Shkatov, 2003) decidability of
intuitionistic modal logics is also shown in a uniform manner.

— fragments of logics designed for the access control in distributed
systems (Abadi et al., 1993; Massacci, 1997).
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Table I. Regular languages for standard modal logics

| logic | Ls(a) | frame condition |
| K | {a} | (none) |
| KT | {a,e} | reflexivity |
| KB | {a,a} | symmetry |
| KTB | {a,a,c} | refl. and sym. |
| K4 | {a} - {a}* | transitivity |
| KT4 =84 | {a}* | refl. and trans. |
| KB4 | {a,a} - {a,a}* | sym. and trans. |
| K5 | ({@ {a.a}" {a})Ufa} | euclideanity |
| KT5 =S5 | {a,a}* | equivalence rel. |
| K45 | ({a}* - {a})* | trans. and eucl. |

— extensions with the universal modality (Goranko and Passy, 1992).
Indeed, for every regular grammar logic with converse, its exten-
sion with a universal modal operator is also a regular grammar
logic with converse by using simple arguments from (Goranko and
Passy, 1992) (add a new letter U such that [U] is an S5 modality
and [U]p = [a]p is a modal axiom for every letter a). Hence,
satisfiability, global satisfiability and logical consequence can be
handled uniformly with no increase of worst-case complexity.

— information logics, see e.g. (Vakarelov, 1987). For instance, the
Nondeterministic Information Logic NIL introduced in (Vakarelov,
1987; Demri, 2000) can be shown to be a fragment of a regu-
lar grammar logic with converse with ¥+ = {fin,sim} and the
production rules below (augmented with the converse closure):

e fin — fin-fin, fin — ¢,

e sim — sim, sim — e,
e sim — fin - sim - fin.
For instance Lg(sim) = {fin}* - {sim, sim, €} - {fin}*.
Assuming that £ = <MLE, Cs) is a grammar logic with converse, check-

ing whether L is regular is not an easy task. It is undecidable to check
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whether a context-free semi-Thue system is regular since it is undecid-
able whether the language generated by a linear grammar is regular (see
e.g. (Mateescu and Salomaa, 1997, page 31)). However, if S is closed
under converse and all the production rules in S are either right-linear
or left-linear, then L is regular. We recall that S is right-linear if there
is a partition {V,T} of ¥ such that the production rules in S are in
V — T* - (V U{e}). Similarly, S is left-linear if there is a partition
{V,T} of ¥ such that the production rules are in V. — (V U {¢}) - T™*.
Also, regularity is guaranteed if one can show that for every a € X,
the language Lg(a) is regular. All the modal logics cited above fall in
this category. However, there is a remaining possible situation which is
quite interesting. It might be the case that for some a € 3, the language
Lg(a) is not regular but that there is another semi-Thue system S’ s.t.
(ML*, Cg') defines the same logic as (ML>, Cs) and all Lg(a) are regular.
This topic will be discussed in Section 4. In full generality, one should
not expect to find a way to compute effectively a regular system S’ but
this shows the large scope of our translation.

2.3. CHARACTERIZATIONS OF CONSEQUENCES

In this section we study the following two questions. Let 3 be an
alphabet and S be a finite context-free semi-Thue system over 3.

1. Which formulas are true in all (3, )-frames that satisfy S?

2. Which production rules u — v are true in all (X,7 )-frames that
satisfy S7

The first question can be answered in the standard way by Hilbert-style
deduction systems.

Definition 2.16. Let 3 be an alphabet with converse mapping . Let S be
semi-Thue system over ¥. The set of derivable formulas H is recursively
defined as follows:

1. If ¢ is a propositional tautology, then ¢ € H.

2. For all formulae ¢ and letters a € £, [a]¢p < —(a)—¢ € H.
3. If p € H, and a € %, then also [a]¢ € H.
4

. For all formulae ¢, and letters a € X, [a]¢ A [a](¢p = o) = [aly) €
R,

. For all formulas ¢ and letters a € X, (a)[a]¢ — ¢ € H.

ot

6. For every rule u — v € S, for every formula ¢,

[u]¢ — [v]¢ € H and [u]¢ — [v]¢ € H.
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The following follows from (Sahlqgvist, 1975).

Theorem 2.3. Let ¥ be an alphabet with converse mapping *. Let S be
a semi-Thue system over 3. Then ¢ € H if and only if ¢ is true in all
(3, 7)-frames satisfying S.

Regarding the second question, it is quite easy to see that u =g v
implies that u — v is true in every (X,7 )-frame that satisfies S. The
converse does not always hold as shown in Example 2.2 below. When
there is no converse mapping, it is indeed the case that all rules of form
u — v, which are true in all (3,7 )-frames, are derivable as v =g wv.
This follows from (Chagrov and Shehtman, 1994, Theorem 3) (see also
the tableaux-based proof in (Baldoni, 1998)) and it is related to the fact
that every ordered monoid is embeddable into some ordered monoid of

binary relations (see more details in (Chagrov and Shehtman, 1994)).

Example 2.2. Consider the semi-Thue system S = {a — @, b — a® }.
In this system, b #& a. However, the rule a — @ expresses symmetry,
which means that in a (2,7 )-frame satisfying S, whenever (z,y) € R,
then also (z,y) € R,s. Therefore, R, C R;. One may think that the
situation improves when the converse rules are added to S, but if one
puts ' ={a—a, a—a, b—a® b—a®}, then still b A% a.

The production rule b =% a can be derived as follows: whenever
(x,y) € R,, then (y,x) € Rz. As a consequence, (z,y) € R,zq. This
means that the (non context-free) production rule a@a — a is true in
every frame. By combining b — aaa, a — @, and aa@a — a, we can
derive b — a. <

In the sequel, we provide a complete characterization of the pro-
duction rules that follow from a semi-Thue system S inspired from the
(non context-free) rules added in Example 2.2.

Definition 2.17. Let ¥ be an alphabet with converse mapping -. The
expansion system Ex, of ¥ is the semi-Thue system

{uv-w u—ulueX*\{e }

Lemma 2.4. Let X be an alphabet with converse mapping -.

(I) Every production rule in Ey; is true in all (3, )-frames.
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(IT) For all (X,%)-frames F and production rules u — v, F satisfies
u — v iff F satisfies uw — 7.

(ITII) Let S be a semi-Thue system over X, u, v be two strings verifying
u =§ v, and F be a (X,7)-frame satisfying S. Then F satisfies
U — .

Proof. (I), (II) and (III) are by an easy verification. For instance, (III)
can be proven by induction on the ¢ for which u =g v. O

Theorem 2.5. Let 3 be an alphabet with converse mapping © and S be
a context-free semi-Thue system over Y. Then, for all strings u,v € X%,
the following are equivalent:

1. In every (X, )-frame F = (W, R) that satisfies S, we have R, C R,,.
. : * * *
2. There exists a string z € ¥* such that u =¢ <z and z =% v.

3. u :>’§UguE2 v.
It is easy to see that (2) implies (3). It follows from Lemma 2.4 that
(3) implies (1). We will use the rest of this section to show that (1)
implies (2). In order to do this, it is convenient to use the notion of
closure. The closure will be also used in Section 3.2. If some (¥, 7)-frame
F = (W, R) does not satisfy some context-free semi-Thue system, then
one can add the missing edges to R and obtain a (X, 7)-frame that does
satisfy the semi-Thue system. For context-free semi-Thue systems, one
can define a function that assigns to each (3, *)-frame the smallest frame
that satisfies the semi-Thue system.

Definition 2.18. We first define an inclusion relation on (3, )-frames.
Let ¥ be an alphabet with converse mapping -. Let F; = (W, Ry) and
Fy = (W, Ra) be two (X,7)-frames sharing the same set of worlds W.
We say that Fi is a subframe of F3 if for every a € ¥, Ry, C Ra 4.
Using the inclusion relation, we define the closure operator Cg as
follows: for a context-free semi-Thue system S over alphabet ¥ with
converse mapping °, for a (X,7)-frame F, the closure of F under S is
defined as the smallest (X,7)-frame that satisfies S, and which has F
as a subframe. We write Cg for the closure operator. \Y%

The closure always exists, and is unique, due to the Knaster-Tarski
fixed point theorem. It can also be proven from Theorem 2.6, which
states a crucial property of C's, namely that every edge added by Cg
can be justified by :>§U§ .

When S is regular, the map Cg is a monadic second-order defin-
able graph transduction in the sense of (Courcelle, 1994) and it is
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precisely the inverse substitution A~ in the sense of (Caucal, 2003)
(see also (Caucal, 1996)) when the extended substitution h is defined
by a € ¥ — Lg(a).

Theorem 2.6. Let S be a context-free semi-Thue system over alphabet
Y. with converse mapping -. Let F = (W, R) be a (3, *)-frame. For every
letter a € ¥, the relations R/, of the (3,%)-frame F' = Cs(F) = (W, R')
are defined as follows:

R, = {(z,y) | 3u € Xsuch that a =3 z v and (z,y) € Ry}
Then F' is the closure of F.

Proof. We have to show that

1. (W, R') satisfies S,
2. (W,R') is a (X,7)-frame, and

3. among the (S,)-frames that satisfy S and that have F as subframe,
(W, R') is the minimal such frame.

In order to show (1), we show that for every rule @ — w in S, the
inclusion R!, C R/, holds. Write u = (uq,...,u,) with n > 0, and each
u; € X. Let (z,y) € R,. We need to show that (z,y) € R.,.

By definition, there are z1,...,2,_1 € W, such that

(x,21) €R,,, (21,22) € Rypyyoony (2n—1,y) €ER,, .
By construction of R’, there are words v1,...,v, € X*, such that
uUq :%Ug V1, ..., Up :>§U§ Uy, and
(r,21) € Ry, (21,22) € Ryyy---y (2n-1,Y) € Ry,
As a consequence, (,y) € Ry,....., . Because a =g g u, u= (u1,...,un),
and each u; :>§U§ v;, we also have a :>§U§ V1 ... Uy. It follows that

(x,y) € R, from the way R/, was constructed.
Next we show (2). As a preparation, it can be shown by induction that
a :>§U§ uiffa :>§U§ 7. We need to show that for every a € %,

(z,y) € Ry iff (y,z) € Rg.
(z,y) € R, iff

there exists a word u € X%, for which a =

Sus
there exists a word uw € X*, for which @ :>§U§ u and (y,z) € Ry iff

u, and (z,y) € R, iff

<y7 l‘) € RE-
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Finally we show (3). Let (W, R"”) be a (X, %)-frame, such that (W, R) is
a subframe of (W, R”) and (W, R") satisfies S. We want to show that
for every a € ¥, R/ C R/

Assume that (z,y) € R/,. This means that there exists an u € X%,
for which (z,y) € R, and a =2 g u- From Lemma 2.4(I1,IIT), we know
that @ — w is true in (W, R). Therefore, we have (x,y) € R,. Because
R, C R/, we also have (z,y) € R..

a
Actually, only Part 1 and Part 2 of Theorem 2.6 are needed in the proof
of Theorem 2.5 and in Section 3.2.

We can now give the proof of Theorem 2.5 “(1) implies (2)”. Let S
be a context-free semi-Thue system. Let u,v be two words, such that
in every (3, )-frame F = (W, R) satisfying S, we have R, C R,,.

Write v = (v1,...,v,) with n > 0. Let the frame F, = (W, R) be
defined as follows:

- W=A{wy,...,wp,wp41},
— If (and only if) v; = a, then (w;, wiy1) € R, for 1 < i < n and
a € X.

Intuitively, the frame F,, consists of a single path, which is labelled with
the word v. Let F| = (W, R') be obtained from F,, by the construction
of Theorem 2.6, i.e. | = Cs(F,). Since by Theorem 2.6, F, is a frame
satisfying S and by hypothesis R! C R/, we have (w1, wn+1) € R,.

If one writes u = (u1, ..., U ), then there must exist wi, ..., w), ; € W,
such that
/ / / / / / / / /
<w1’w2> € Rula <w2’w3> € Rug? ceey <wm’wm+1> € Rum’
with w} = w and w, ;| = wp41.
By construction of F, there exist words z1,..., 2, € 3*, such that
/ / / / / /
<w17w2> € RZI’ <w27w3> € R227 tee <wm7wm+1> € RZm?
and
* * *
U1 :>SU§ 21, U9 :>SU§ 292,00y, Um :>SU§ Zm-

Therefore, for the word z = z1-29-. . .-z, it follows that (w1, wp41) € R,
and u :>§U§ z. We will show that also z =% v, from which then follows

3
that u :>SU§UEZ .

Lemma 2.7. Let F,, = (W, R) be the frame defined above from v. Let
z € ¥* be a string such that (wi,wny1) € R,. Then 2z =% v.

The word z corresponds to a walk from wj to wy11 in the frame F,.
The frame F, consists of a single path, which is labelled by the word v.

87



The word z is obtained by a walk on this path, which possibly changes
direction a few times.

We call a maximal subpath that does not change direction a seg-
ment. A segment is either forward directed, or backward directed. So
a segment s is of the form either

S = (wi,le, e ,wj_l,wj)
or
S = (wi,wi,l, e ,ijrl,U}j)

with 1 <1i,j <n+1andi#j.
Using segments, the path can be written in the form

51:(xla"'ayl))"'vsk‘:(:Eka"'ayk;), (1)
where
— all the states in the segments are in {wy, ..., wny1},
— k is odd,

— for every i, z; # y; and x;41 = y; (assuming i + 1 < k).

Given two states w,w’ € {w1,...,wy41}, we write w < w’ whenever
there are 1 < j < j* <n+1 such that w; = w and w; = w’. Observe
that if ¢ is odd, then z; < y;. If 7 is even, then x; > y;. For every 4, there
is a unique string v; € (XT)* U (Z7)*) \ {€} such that (z;,y;) € R,,. If
i is odd, then v; is a substring of v. If ¢ is even, then v; is a substring

of v. We call v; the associated string of the segment s; = (z;,...,v;).
We have z = vy - ... v.
If £ =1, then z = v; = v, and we are done because z :>0EZ .

Otherwise, let @ with 1 < ¢ < k be chosen in such a way that (z;,...,y;)
is a segment with minimal length. Such an ¢ must exist, because k >
3. The segment (z;_1,...,y;—1) before (x;,...,y;) cannot be strictly
shorter than (x;,...,y;). Suppose that it were. Then, if i > 2, the
position ¢ — 1 would have been chosen instead of ¢. If ¢ = 2, then
(z2,...,y2) is a segment that walks backwards in the direction of wj.
The first segment (z1,...,y;) starts with z; = w; and must be at least
as long, because otherwise (x2,...,y2) would walk back through wy,
which is not possible because F, is a chain starting in wy.

For the same reason, the segment (x;11,...,¥y;+1) cannot be strictly
shorter than (z;,...,y;). As a consequence, the neightbours of the i-th
segment s; are of the form

sic1 = (Ti—1, ., Yim1) = (Tic1, - Yis - -+, Ti),
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and
Sit1 = (Tit1s - Yir1) = Wis - Tis o Yir1)-

Then the associated strings are of the form

vi-1 =a-v; and vy =7T; - 3, for some «, 5 € XF.
The complete walk can be written as

Slyees (Ticty oo s Yise s i)y (Tiy oo 3 Yi)y Uiy e oo s Tiy oo vy Yitd)y - - - Sk
The complete string z is of the form
Z=UV1 . QU VU B U,
which can be rewritten by the following rule, which is in Fy; :
Vi Vi -V — U,
The result is the string
T IRN o I 1A & R 1/ (3)
If one replaces walk 2 by
Slyeens (Ticdye ooy Yiseen s Tiyneo s Yit1)s -+ Sk

then the result is a walk from w; to w,41 with associated string 3.
Since the walk consists of & — 2 segments, it follows by induction that

Ve T B v L,
from which follows that
Ve 0 T B v S V.
Example 2.3. Assume that ¥ = {a,a}, and that S = {a — @aa}. In
every (X,)-frame in which S is true, also the production rule a — @aa

is true. This can be seen as follows. Let F = (W, R) be a (X, %)-frame
for which (x,y) € Rgaq. Then there are wy,wy € W, such that

<x,w1> € Rz, <’LU1,U}2> € R, <w2,y> € R,.
Since F is a (3,~)-frame, we have

(y,w2) € Rz, (w2,w1) € Rg, (w1,r) € R,.
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Figure 1. A walk from w1 to wn41 with 5 segments. In the corresponding string, it
is possible to replace the substring (ve, vs, Us, U2, v2,v3) by (v2,vs).

Because S is true in F, also
(y,z) € Rq.
Now we have

(r,y) € Rg, (y,w2) € Rz, (w2,y) € R,

*

which implies (z,y) € Rq. Clearly not a =§ @aa, and also not a =45

aaa. However, a =g (aaa) =3 (@Gaa)aa = g, aaa. <

3. The Translation into GF?

In this section, we define the transformation from regular grammar
logics with converse into GF2. The transformation can be carried out
in logarithmic space. It behaves the same as the standard relational
translation on all subformulae, with the exception of O-subformulae.
On a O-subformula, it simulates the behaviour of an NDFA in order
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to determine to which worlds the O-formula applies. The translation
generalises the results in (de Nivelle, 1999; de Nivelle, 2001) for the
logics S4 and K5, which were at an ad hoc basis.

Unless otherwise stated, in the rest of this section, we assume that
L = (ML* C) is a regular grammar logic with converse such that C
is the class of (X,7)-frames satisfying S, a finite regular semi-Thue
system closed under converse. For every a € X, the automaton A,
is an NDFA recognizing the language Lg(a). It would be possible to
make A, canonic, for example by defining A, to be the minimal DFA
accepting Lg(a) -which is unique up to isomorphism- but there is no ad-
vantage in this. In contrast, as we shall see, this could even blow up the
translation because an NDFA can have exponentially less states than
a DFA accepting the same language (see e.g. (Hopcroft and Ullman,
1979)). It is in principle possible that A, and Ag are different automata,
although they have to accept isomorphic languages (because u € Lg(a)
iff w € Lg(a) for every u € ¥*). We write A, = (Qq, Sa, Fa,0a). When
all rules in S are either right-linear or left-linear, then each automaton
A, can be effectively built in logarithmic space in |S|, the size of S with
some reasonably succinct encoding.

3.1. THE TRANSFORMATION

In the sequel we assume that the two variables in GF? are {xq,z;}.
The symbols a and [ are used as distinct meta-variables in {zg,x1}.
Observe that in Definition 3.2 the quantification alternates over a and
G.

In the translation, we use atomic formulae of the form R,(«, )
for every a € 3. Because of the conditions between R, and Rz in
(3,7 )-frames, we add the axioms of the form Va5 R, («, 5) < Ra(fF, «)
which belong to GF2. Although this treatment of converse relations
allows us to avoid some case distinctions in the proofs, in practice we
might adopt an alternative treatment with a smaller signature. Indeed,
one can replace syntactically in the translation process Rg(a,3) by
R, (3, ) for every a € ©7.

Definition 3.1. We assume that to each letter a € 3, a unique binary
predicate symbol R, is associated. The formula CONVy, defined below
deals with converses:

CONVy £ /\ Yo x1 Ra(l‘o,xl) = Ra(xl,xo).

aeXt

\%

The formula CONVy; is in GF?. When a subformula [a]¢ is translated,
it is replaced by formulae stating
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At every point that is reachable through via a sequence of transi-
tions labelled by a word in Lg(a) (i.e. accepted by the automaton
A,), the translation of ¢ holds.

We define a function that takes two parameters, a one-place first-
order formula and an NDFA. The result of the translation is a first-order
formula (one-place again) that has the following meaning;:

In every point that is reachable by a sequence of transitions labelled
by a word that accepted by the automaton, the original one-place
formula holds.

Definition 3.2. Let A = (Q, s, F,d) be an NDFA and ¢(«) be a first-
order formula with one free variable «. Assume that for every state
g € @, a fresh unary predicate symbol q is given. We define t 4(c, ¢)
as the conjunction of the following formulas (the purpose of the first
argument is to remember that « is the free variable of ¢).

— For the initial state s, the formula s(«) is included in the con-
junction.

— For every transition (q,a,r) € 4, the formula

vas [ Ra(a, 8) = (a(@) = r(9)) |

is included in the conjunction.

— For every e-transition, (g,€,7) € ¢, the formula

va [ (q(e) = r(a)) ]

is included in the conjunction.

— For each accepting state g € F, the formula

Va [ q(a) — ¢(a) |
is included in the conjunction.

\%

The function ¢t 4(«, v) is applied on formulas ¢ that are subformulae
of an initial formula ¢. Definition 3.2 requires that in each application of
t 4, distinct predicate symbols of form q for ¢ € ) are introduced. This
can be done either occurrence-wise, or subformula-wise. Occurrence-
wise means that, if some subformula 1 of ¢ occurs more than once,
then different fresh predicate symbols have to be introduced for each
occurrence. Subformula-wise means that the different occurrences can
share the fresh predicates. In the sequel, we adopt the subformula-wise
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approach. For every state ¢ € (), we should write q, instead of q in
the translation of ¢ 4(«, ¢). We sometimes omit the subscript when it
is not confusing.

If the automaton A has more than one accepting state, then ¢(«)
occurs more than once in the translation ¢ 4(c, ¢). This may cause an
exponential blow-up in the translation process but this problem can
be easily solved by adding a new accepting state to the automaton,
and adding e-translations from the old accepting states into the new
accepting state.

Now we can give the translation itself. It behaves like a standard
relational translation on all subformulae, except for those of the form
[a]y, on which t4, will be used. In order to easily recognize the O-
subformulae, we require the formula ¢ to be in negation normal form.
One could define the translation without it, but it would have more
cases.

Definition 3.3. Let ¢ € ML* be a modal formula in NNF. We define the
translation Tg(¢) as (¢, xg,x1) from the following function ¢(, «, 3),
which is defined by recursion on the subformulae v of ¢ :

— t(p, o, B) equals p(«), where p is a unary predicate symbol uniquely
associated to the propositional variable p.
— t(=p, a, B) equals —p(a),
— t( AN o, B) equals t(Y, a, ) ANtV o, B),
— t( V' a, B) equals t(v, a, B) V E(W', a, B),
— forevery a € ¥, t({a)y, «a, ) equals 30 [ Ro(a, B) At(Y, B, ) |,
— for every a € 3, t([a]t, a, ) equals t 4, (o, t(¢,, ) ).
\Y%

Hence, the first-order vocabulary used in Ts(¢) includes
— unary predicate symbols p for every propositional variable p oc-
curring in ¢,
— binary predicate symbols R, for every letter a € %,
— unary predicate symbols q)y, for every O-subformula [a]i) of ¢
and ¢ € Q.

Lemma 3.1. Let ¢ € ML” be a modal formula in NNF such that m =
max{|A,| | a € £}.

1. The only variables occurring in Ts(¢) are in {zg,z1} and « is the
only free variable in t(¢, o, ).
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Table II. The K5 automaton and ¢4, (c, p()) for arbitrary o(a)

Aq ta, (o, p(a))
do, (@)

Vaf [ Ra(a, f) = (qQo.0(@) = ar.6(6)) ]
Vaf [ Ra(a, f) = (qo,e(@) = a1,6(8)) |

Vap [ Ra(a, B) = (d1,¢(a) = q1,+(8)) ]
Vaf [ Ra(a, 8) = (di,e(a) = q1,4(8)) ]

VaB [Ra(a, B) = qie(@) = a7,0(8) |

Va [afe(a) = ¢(a) ]

2. Ts(¢) is in the guarded fragment.
3. The size of Ts(¢) is in O(|¢| x m).
4. Ts(¢) can be computed in logarithmic space in |¢| + m.

When S is formed from production rules of a semi-Thue system that
is either right-linear or left-linear, then m is in O(|S|). For a given
semi-Thue system S, the number m is fixed. As a consequence, Ts(¢)
has size linear in |¢| for a given logic. Observe also that [CONVyg| is a
constant of the logic.

Example 3.1. Let ¢ = Op A OO-p be the negation normal form of the
formula —(Op = OCp). We consider K5, and assume one modality a,
so O is an abbreviation for [a], and < is an abbreviation for (a). Table 1T
contains to the left an automaton A, recognizing the language defined
in Table I for K5 (page 82). To the right is the translation ¢ 4, (a, ()
for some first-order formula ¢(a)). The translation Ts(¢) of ¢ is equal
to

36 [Rala, B) Ap(B) [ A T8 [ Rala, B) Ata, (8,p(8) ) |-

Since we perform the introduction of new symbols subformula-wise,
it is possible to put the translation of the automaton outside of the
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translation of the modal formula. At the position where ¢ 4, (o, t(1, o, 3))
is translated, only qg (o) needs to be inserted where g is the initial
state of A,. The rest of the (translation of the) automaton yields an
independent conjunct of translation.

Extension with nominals. The map 75 can be obviously extended
to admit nominals in the language of the regular grammar logics with
converse. The treatment of nominals can be done in the usual way by
extending the definition of ¢ as follows: ¢(i, «, [3) 4 ¢; = a where ¢; is a
constant associated with the nominal i. The target first-order fragment
is GF? with constants and identity. For instance, nominal tense logics
with transitive frames (see e.g., (Areces et al., 2000)), and description
logics with transitive roles and converse (see e.g., (Sattler, 1996)), can
be translated into GF2[=] with constants in such a way. Additionnally,
by using (Blackburn and Marx, 2002, Sect. 4) regular grammar logics
with converse augmented with Gregory’s “actually” operator (Gregory,
2001) can be translated into such nominal tense logics.

3.2. SATISFIABILITY PRESERVATION

We show that the map Tg preserves satisfiability. First, we introduce
some notation. A first-order model is denoted by (W, V') where W is a
non-empty set and V' maps unary [resp. binary| predicate symbols into
subsets of W [resp. W x W]. Given a variable valuation v : {zg,z1} —
W and a first-order formula 1 using at most the individual variables
{x0,x1}, we write M, v |= 1) to denote that ¢ holds true in M under the
valuation v (we use here the standard definition). We write v/ = v[a «
w| to denote the valuation obtained from v by putting v'(3) = v(0)
and v'(a) = w.

The following, rather technical, lemma states roughly the following:
suppose we have a first-order model (W, V') containing some point w €
W, such that in every point v that is reachable from w through a path
labelled by a finite word accepted by the automaton A, the formula
() is true, then we can extend V in such a way, that the new model
(W, V") will satisfy the translation ¢t 4(c, ¢) in w.

Lemma 3.2. Let A be an NDFA and ¢(«) be a first-order formula with
one free variable a. Let M = (W,V) be a first-order structure not
interpreting any of the fresh symbols introduced by t 4(«, ¢) (those of

the form q for every state ¢ of A). Then there is an extension M’ =
(W, V") of M such that, for every w € W, (%) below is satisfied:
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(%) For every word by ---b, € ¥* that is accepted by A, for every
sequence wq, . .., w;, of elements of W, such that

(w,wy) € V(Ry,), (wi,w2) € V(Rpy,), .., (wp_1,wn) € V(Ry,),
we have M, v[a — wy,] E p(a),

we have
M, vla e u] = ta(a, ).

Proof. Write A = (Q, s, F, ). We extend V to also interpret the symbols

q, and also we do this in a way that is consistent with the runs of A.
def

For all w € W and states ¢ of A, we define w € V'(q) <

— for every word by - -- b, € L(A) and for every sequence wy, ..., wy,
of elements of W, such that

(w,w1> S V(Rb1)7 (wl,w2> S V(RbQ), Ceey <wn_1,wn> S V(Rbn),
we have M, v[a — w,] = ¢(a).

It is easy to check (but tedious to write out because of the size of the
statements involved) that for every w € W satisfying the condition (x),
we have

— for the initial state s,

M v]a — w] | s(a).

for every transition (q,a,r) € 0,
M Va8 [ Ra(a,8) = (a(a) = 1(8)) |
— for every e-transition (g, ¢,r) € 9,
M EVa [ gla) - x(a) ]
— for each accepting state q € F,

M EVa [qe) = ¢(a) ].

M’ and M agree on all formulas that do not contain any symbols
introduced by t4(a, @), i.e. those of the form q for some state g of
A. O

Next follows the main theorem about satisfiability preservation.
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Theorem 3.3. Let ¢ € ML* be a modal formula in NNF. Then the
following are equivalent:

1. There exist a (X,~)-model M = (W, R, V) and a w € W such that
M satisfies S and M, w = ¢.

2. Ts(¢) A CONVy is satisfiable in FOL.

Proof. We first prove that (1) implies (2). Assume that there exists a
(3,7 )-model M = (W, R, V) with a w € W such that M,w = ¢ and
(W, R) satisfies S. We need to construct a model M’ of T5(¢) ACONV .

In order to do this, we first construct an incomplete interpretation
My = (W, Vp), which will be completed through successive applications
of Lemma 3.2. Vj is obtained as follows:

— For every a € 2, Vo(Ry) € R,

— For every propositional variable p occurring in ¢, we set Vy(p) def

V(p)-

We now have a model interpreting the symbols introduced by ¢(¢, «, 3),
but not the symbols introduced by ¢ 4(c, ). It is easily checked that
CONVy holds true in (W, Vp). In order to complete the model construc-
tion, we order the O-subformulae of ¢ in a sequence [a1]i1, ..., [an]tn
such that every O-subformula is preceeded by all its O-subformulae.
Hence, i < j implies that [a;]¢; is not a subformula of [a;]1);. Then we
iterate the following construction (1 < i < n):

— M; = (W,V;) is obtained from M;_1 = (W, V;_1) by applying the

construction of Lemma 3.2 on A,, and t(¢;, o, ).

Then M,, = (W, V,,) is our final model. Roughly speaking, V; is equal
to Vi_1 extended with the unary predicate symbols of the form qy,
with g a state of A,,. The values of the other predicate symbols remain
unchanged. We have

— forevery a € X, Vh(R,) = -+ = Vi (Ra),
— for every propositional variable p of ¢, Vo(p) = -+ = V,,(p).
Additionally,

— for every j € {1,...,n}, for every state q of Ay,
Vilay,) = Vii(ay,) = ... = Valay,)-
We show by induction that for every subformula ¢ of ¢, for every
x € W, for every valuation v, M,z = @ implies M,,vja «— z] |
t(v,a, 3). We treat only the modal cases, because the propositional
cases are trivial.
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— If4 has form [a]y)’ with a € X, then t([a]y), «, B) = ta, (o, (Y, «, 3)).
For every word by - - - b accepted by A, for every sequence w1, ..., wy €
W, such that
<CU,’U)1> € Vn(Rb1)7 <’LU1,U]2> S Vn(Rbg)a ‘e 7<wk‘—1awk> S Vn(Rbk)a
also

<x,UJ1> S Rb17 <w17w2> € Rb27 7<wk717wk> S Rbk7

by construction of Vg, Vi, - - -, V,,. Because M satisfies S, by Lemma, 2.4,
we also have (z,wy) € Ry, which in turn implies (x, wg) € V,,(R,),

by construction of the V;. Therefore, we have M,w;, = 9. By
the induction hypothesis, we have M, v[8 «— wi] | t(¢/, 3, a).
Let n’ be the position of ¢’ in the enumeration of O-subformulae
[a1]i1, ..., [an|thn. Tt is easily checked that

Mnlvv[ﬁ — wk] ): t(d},?ﬁ?a)'

Now we have all ingredients of Lemma 3.2 complete, and it follows
that

Mn/,’U[Oé — .Z‘] ): tAa(a’t(¢l’a,B))'

Since M, is a conservative extension M., we also get

Mu, vl = 2] = ta, (0 H(d 0, B)).

— If ¢ has form (a)y’, then there is a y such that (z,y) € R,
and M,y = ¢'. By definition of V), we have (z,y) € Vy(Ry)
and therefore also (z,y) € V,(R,). By the induction hypothesis,

Mn,’U[ﬁ — y] ): t(¢,aﬂa a)' Hence,
Mo, v[a — z] E 3B [ Rae(a, B) AW, 3, a)].

Next we show that (2) implies (1). Assume that Ts(¢) A CONVy is
FOL-satisfiable. This means that there exist a FOL model M = (W, V)
and a valuation v such that M,v | Ts(¢) A CONVy. We construct a
model M’ of ¢ in two stages. First we construct M” = (W” R’ V")
as follows.
W =W,
— Forevery a € ¥, R £ V(Ry,).

— For every propositional variable p, V" (p) < V (p).
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Then define M’ = (W', R, V') where R’ is defined from (W' R') =
Cs((W”,R")) and V' = V. Here (s is the closure operator, defined
in Definition 2.18. Intuitively, we construct M’ by copying W and the
interpretation of the accessibility relations from M, and applying Cg
on it. The constructions imply that W’ = W. Because M = CONVy,
the frame M” is a (X,7)-frame. By definition of Cy, the structure M’
is an S-model, and also a (X, 7)-frame. We now show by induction that
for every subformula 1) of ¢, M,v = t(¢, o, ) implies M’ v(«) = 9.

— If 9 has form (a)y)’, then M,v = t({a)y’, a, 3), that is M,v =
36 [ Ra(a, B) ALY, B, ) ].
This means there is a y € W, such that (v(a),y) € V(R,) and
M[B —yl E Y, B, a).

By the induction hypothesis, M’,y |= ¢'. It follows from the defi-
nition of R’, using the fact that Cg is increasing (by its definition),
that (z,y) € R., so we have M,z |= (a)1.

— If ¢ has form [a]y)’, then assume that M,v = t4, (o, t(¢', «, 3)).
First, we show that for every word by - - - by accepted by A,, for
every sequence wi,...,ws of elements of W, for which it is the
case that

(v(a),w1> S V(Rbl), (wl,w2> c V(RbQ), ceey <wk,1,wk> S V(Rbk)7
the following holds
M, vla — wi] E W, a, B).

Indeed, M, v = s(«), for the initial state s of A,. It is easy to show
by induction on k that the following holds: Let by - - - by be some
word over ¥ Let ¢ be a state of A, such that (s,by-...-by, q) € 6%,

for the initial state s € Q. Then for every sequence wy, ..., wg of
elements of W such that

(v(a),w1> S V(Rbl), (wl,w2> S V(RbQ), ceey (wk,l,ww S V(Rbk),
it must be the case that M, v[a < wg] = q(a). Then the result

q
follows from the fact that M,v[ja — wi] E q(a) = ¥'(a), for
every accepting state g of A,.

Now assume that in M’, we have a world y for which R (z,y).
Then, by Theorem 2.6, there is a word u € L(.A,) for which a =>;U§
w and R!'(z,y). By the above property, we have

M, v[a —y] =t a, ).

By the induction hypothesis, we obtain M’ y = /.
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O
The uniformity of the translation allows us to establish forthcoming
Theorem 3.4. We first define the general satisfiability problem for reg-
ular grammar logic with converse, denoted by GSP(REG®), as follows:

input: A finite semi-Thue system S closed under converse, in which
either all production rules are left-linear, or all production rules
are right-linear, and an ML>-formula ¢;

question: is ¢ S-satisfiable?

We need to restrict the form of the semi-Thue system to a form
from which the automata A, can be computed. Even if one knows that
some language L is regular, then there is no effective way of obtaining an
NDFA for L. This is a consequence of Theorem 2.12 (iii) in (Rozenberg
and Salomaa, 1994).

Theorem 3.4.

(I) The S-satisfiability problem is in EXPTIME for every regular
semi-Thue system closed under converse.

(IT) GSP(REG®) is EXPTIME-complete.

Theorem 3.4(I) is a corollary of Theorem 3.3. The lower bound
in Theorem 3.4(II) is easily obtained by observing that there exist
known regular grammar logics (even without converse) that are already
EXPTIME-complete, e.g. K with the universal modality. The upper
bound in Theorem 3.4(II) is a consequence of the facts that Ts(¢) can
be computed in logarithmic space in |¢|+ [S| and the guarded fragment
has an EXPTIME-complete satisfiability problem when the arity of
the predicate symbols is bounded by some fixed k& > 2 (Gréadel, 1999b).
We use here the fact that one needs only logarithmic space to build a
finite automaton recognizing the language of a right-linear [resp. left-
linear| grammar.

Extensions to context-free grammar logics with converse. When
S is a context-free semi-Thue system with converse, S-satisfiability can
be encoded as for the case of regular semi-Thue systems with con-
verse by adding an argument to the predicate symbols of the form
qy. The details are omitted here but we provide the basic intuition.
Each language Lg(a) is context-free and therefore there is a pushdown
automaton (PDA) A recognizing it. The extra argument for the qys
represents the content of the stack and the map ¢ 4(a, ) can be easily
extended in the presence of stacks. For instance, the stack content aab
can be represented by the first-order term a(a(b(e))) with the adequate
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arity for the function symbols a, b, and €. Suppose we have the following
transition rule: if the PDA is in state ¢, the current input symbol is a,
and the top symbol of the stack is by, then the new state is ¢’ and by
is replaced by by --- b, on the top of the stack. This rule is encoded in
FOL as follows:

Va,0,7, (ta(e, 8) = (ale,bo(7)) = o' (8,b1(. .. ba(7) - ))))-

The translation Ty is then defined with the context-free version of
ta(a, ). Satisfiability preservation is also guaranteed but the first-
order fragment in which the translation is performed (beyond GF) is
no longer decidable. Hence, although this provides a new translation
of context-free grammar logics with converse, from the point of view
of effectivity, this is not better than the relational translation which is
also known to be possible when S is a context-free semi-Thue system
with converse.

4. The Borders of the Translation Method

In this section we try to answer the following question: given a finite
context-free semi-Thue system S closed under converse, how to find out
whether the modal logic based on S can be translated by the method
of Section 3.17 This is a natural question, because modal logics are
usually presented by modal axioms, and in most cases the semi-Thue
system naturally corresponds to the modal axioms.

As stated in Sect. 2.2, a logic can be translated if for every letter
a € ¥, the language Lg(a) = {u € ¥* | a =§ u} are regular. This
question is in general undecidable, because it is already undecidable
whether the language generated by a linear grammar is regular (see
e.g. (Mateescu and Salomaa, 1997, page 31)).

However, regularity of the languages Lg(a) is not a necessary con-
dition for existence of a translation. The reason for this is that dif-
ferent semi-Thue systems may characterize the same logic. Exactly
which context-free semi-Thue systems characterize the same logic is
determined by Theorem 4.1 below.

Theorem 4.1. Let ¥ be an alphabet with converse mapping - and S1,So
be context-free semi-Thue systems closed under converse. If for all
(i1,42) € {(1,2),(2,1)} and rules u — v € S;,, there is a string z € ¥*,
such that

u=§, zand 2 =g, v,

then S; and Sg define the same set of (X, 7)-frames.
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Proof. It follows from Theorem 2.5 that a (X, *)-frame satisfies S; if and
only if it satisfies So. a
Theorem 4.1 determines when two context-free semi-Thue systems de-
fine the same modal logic. Using this equivalence, the criterion above
can be refined to: a modal logic £ based on finite context-free semi-
Thue system S closed under converse can be translated by the method
of Section 3.1 if (and approximately only-if) there is a finite regular
semi-Thue system S’ closed under converse which is equivalent to S,
for which the languages Lg/(a) are regular. We do not have a general
method for answering this question, and we don’t know whether the
problem is decidabile.

There exist pairs of context-free semi-Thue systems S; and So defin-
ing the same logic, where S; is non-regular while So is regular. An
example of such a pair is given in the following examples:

Example 4.1. The euclideanity condition can be generalized by consid-
ering frame conditions of the form (R;1)"; R, C R, for some n > 1.
The context-free semi-Thue system corresponding to this inclusion is
S, = {a — @"a, @ — @a"}. The case n = 1 corresponds to euclideanity,
which is regular, see Example 2.1 and Example 3.1. We will show that
in general, for n > 1, the language Lg, (a) is not regular. Nevertheless,
Sp-satisfiability restricted to formulae with only the modal operator [a]
is known to be decidable, see e.g. (Gabbay, 1975; Hustadt and Schmidt,
2003). To see why the languages Lg, (a) are not regular, consider strings
of the following form:

onlit,in) = (@ H" a (@ la)®.
Gnlit,iz) = (@™ H% @ (@ la)®.
We show that
( a :>§n Un(’il,ig) and a :>§n En(il,’iQ + 1) ) iff 414 = i9.

In order to check that the equivalence holds from right to left, observe
that a = 0,(0,0), and

=g, Un(i,i) =3, En(i,i + 1) =3, Un(i + 1,7+ 1) =g, ‘-

We now prove the equivalence from left to right. Let us say that u
is a predecessor of v if u =g, v. Then it is sufficient to observe the
following:

1. A string of form 0,(0, j) with j > 0 has no predecessor.
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2. A string of form o,(i + 1,7) has only one predecessor, namely
on (i, 5)-

3. A string of form 7,(7,0) with ¢ > 0 has no predecessor.

4. A string of form ,(i,j + 1) has only one predecessor, namely

on(i, 7).

To have a predecessor, a string must have a sequence of at least n
consecutive a’s or @’s. The strings of the form either 1 or 3 have no
such sequence. The strings of the form either 2 or 4 have exactly one
such sequence.

We have
Ls, (a) N {on(i,7) | i >0, j > 0} = {on(i,i) | i > 0}.

The language {0, (4,7) | ¢ > 0} is clearly not regular (we assume n > 1)
and {o,(i,7) | ¢ > 0, j > 0} is clearly regular. Since the regular
languages are closed under intersection, Lg, (a) cannot be regular for
n> 1.

<

We will now show that, although
So={ a—aaa, @—aaa }

is not regular, the logic defined by it, is regular. The reason for this is
the fact that So defines the same logic as

/ ___ _ _ ___ _ _
5= { a—aaa, a— aaa, a— aaa, a— aaa },

which is regular. In order to show that So and S/, define the same logic,
it suffices to observe that Sy C S), and that

a =s, aaa =g, (@ea)aa =g, aa(a), and

a =g, aaa =5, aa(aaa) =g, ;, (@)aa.

In order to show that S is regular, we show that Lg, (a) is recognized
by the automaton of Table III.

Lemma 4.2. The automaton in Table III recognizes the language Lg, (a).

Proof. It is clear that state s1 accepts only the word a. Every run ending
in s5 consists of three parts:

1. The path (s, s2, s4), accepting either @a or aa.
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Table III. Automaton for Ls; (a) a,a

2. A number of cycles of form (sy4,s5,54), or (S4,S2,54) accepting
aa, aa, aa, or aa. These are all possible words of length two.

3. The path (s4, s5), accepting the word a.

As a consequence, a word u is accepted by the automaton iff it has one
of the following three forms:

a, aaX*a, or aax%a, (4)

where Y% is an arbitrary word of length 2i on the alphabet ¥ = {a,a}.

We first show that every string in Lg (a) has the form 4. The language
Lg; (a) is inductively defined as the smallest set containing a and closed
under rewriting by rules of S}. Therefore, it is sufficient to show that
a has form 4 and that form 4 is preserved by rewriting under rules in S5.

If u is of form @a¥:%a, rewriting at @ results in (@@a)aX?a or (@aa)aX*a,
which is of the form @aX?*la or @aX?*'a. Rewriting at the first
a results either in @(aaa)X*a or @(@aa)Y*a. Both can be written
as aax?tla. Rewriting at the last a results either in @aX?@aa or
@aX*'@aa, which both can be written as @aX?*'a. Rewriting in %%
results also in a string of one of the three forms. The 7 possible rewrites
in @aX%a can be analyzed analogously.

Next we show by induction on i that every word of the form 4 is in
Lg, (a). For the base case i = 0, it is immediate that a, @aa, aaa €

Lg; (a). Now assume that, for some 4, every word of the form @a¥%a
or @aaX%a belongs to LS/Q(G)- We show that every word of the form
aaX? Vg or @ax?+tVa also belongs to Lg; (a). In each case, we find a

string of form 4 (but with parameter i) from which the current string
can be obtained using a single rewrite step by a rule in Si. If one
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expands the first two letters of %12, one obtains the following forms:
da(aa)X¥a, aa(aa)X¥a, @a(@a)X*a, @a(@@)L*a, and
aa(aa)X¥a, aa(aa)X*a, @a(@a)X¥a, aa(aa)L*a.

Case 1. ‘
By induction hypothesis, @aaX%a € Lg; (a) and

aaX%a = (a—daa} da(aa)X%a

by rewriting at the first position. Hence, @a(aa)X%a € Lg; (a).
Case 2. ‘
By induction hypothesis, aa¥?a € Lg; (a) and

aayx?a = (a—daa} da(aa)x¥a

by rewriting at the first position. Hence, @a(a@)X%a € Lg; (a).
Cases 5 and 6. Similar to the cases 5 and 6 using the rule @ — aaa.
Case 7.

By induction hypothesis, aa¥?a € Lg; (a) and
aax?a = (a—aaa} aa(aa)x¥a

by rewriting at the second position. Hence, @a(aa)X%a € Lg; (a).
Cases 4 and 8.

In order to treat both cases, we pose u to denote a string in {a@a, aa}.
By induction hypothesis, u¥%a € Lg; (a) and

u¥?a € Lg; (a) = {a—aaa} u(@a)x%a

by rewriting at the first occurrence of a in ¥%a. Hence, u(@a)X?a €
LS’2 (a)
Case 3.
By induction hypothesis, aa¥?a € Lg; (a). Write ¥ = (@a)1v%2
where ¢ = i1 + 19, and 4; is maximal.
Case 3.1.: ¥%2q starts by a.
We have A
aaX%a = {a—daa} aa(aa)X%a
by rewriting at the first occurrence of a in £%2q.
Case 3.2: ¥%2 starts with aa.

»2%2¢ is of the form @*au for some k > 2 and string u. Since @
k —k—2
a

k—2
au é{aﬂma}

@ au and (@a)™ au € Lg; (a) by induction hypothesis, we have that
— W2
aadaaX*'a € Lg (a).
O
The regularity of S, and its equivalence to Sg make it possible to

deduce the following upper bound.

105



Theorem 4.3. The bimodal logic whose set of frames is the set of frames

satisfying So is a regular grammar logic with converse. Hence, its sat-
isfiability problem can be solved in EXPTIME.

The automaton in Table IIT was discovered by a computer program.
Given a language L over an alphabet X, one can define the following
equivalence relation =p, on strings over X : For two words w1, us € X*,
uy =g, ug iff for allv € ¥*, wuy-v € L & us-v € L. By the Myhill-Nerode
theorem, if =1, partitions X* into a finite set of equivalence-classes, then
L is regular, and the equivalence classes define the states of the minimal
DF A recognizing L. If one tries sufficiently many v’s, one has a high
chance of finding the right equivalence classes. Of course one cannot
be certain in general that the automata returned by the program are
correct, but in most cases verifying an automaton is easier than finding
one. The same computer program has also proposed an automaton for
the modal logic defined by S3 = {a — @>a, @ — @a’}. This automaton
has 19 states. Based on the fact that the grammar logics defined by
S1,S92 and S3 can be characterized by a regular language, we conjecture
that all of the grammar logics defined by a grammar of form S; are
regular. At the same time, it appears that the modal logics defined
by the context-free semi-Thue systems S; = {a — d'a, a — aa'}
with ¢ > 1, are non-regular, based on the output of the same computer
program. We conjecture that the output of the program is correct and
that the grammar logics defined by Si, i > 1 are indeed non-regular.

5. Related work

In this section, we compare our contribution to translations of modal
logics similar to ours, to tableaux-based proof systems with single steps
and to the characterization of star-free languages with first-order logic
over finite words. Before doing so, let us mention some other relevant
works.

Complexity issues for regular grammar logics have been studied in
(Demri, 2001; Demri, 2002) (see also (Baldoni, 1998; Baldoni et al.,
1998)) whereas grammar logics are introduced in (del Cerro and Pent-
tonen, 1988). Frame conditions involving the converse relations are not
treated in (Demri, 2001; Demri, 2002). These are needed for example for
S5 modal connectives. The current work can be viewed as a natural con-
tinuation of (de Nivelle, 1999) and (Demri, 2001). Translation of regular
grammar logics into converse PDL can be found in the preprint (Demri
and de Nivelle, 2004, Sect. 4) extending (Demri, 2001).

The frame conditions considered in the present work can be defined
by the MSO definable closure operators (Ganzinger et al., 1999). How-
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ever, it is worth noting that by contrast to what is done in (Ganzinger
et al., 1999), we obtain the optimal complexity upper bound for the
class of regular grammar logics with converse (EXPTIME) since the
first-order fragment we consider is much more restricted than the one
in (Ganzinger et al., 1999). Moreover, we do not use MSO definable
built-in relations, just plain GF?2.

5.1. INCORPORATING A THEORY IN THE TRANSLATION

Unlike the standard relational translation from modal logic into classi-
cal predicate logic (see e.g., (Fine, 1975; van Benthem, 1976; Morgan,
1976; Moore, 1977)), the subformulae in 75(¢) mix the frame condi-
tions and the interpretation of the logical connectives. Frame condi-
tions are incorporated in our translation as done also in (Schmidt and
Hustadt, 2004). Such a feature is shared by many other translations
dealing for modal logics, see e.g. (Balbiani and Herzig, 1994; Demri
and Goré, 2002). However, the work (Schmidt and Hustadt, 2004) is
closely related to ours. Probably the main similarities are the following
ones.

— Both translations are from a large class of modal logics into GF2.

— Translations of the modal logics K,T,K4 and S4 in (Schmidt and
Hustadt, 2004) and in this paper are essentially the same, once
minor differences are disgarded (NNF is our work and renaming
in (Schmidt and Hustadt, 2004)). For example, the clause schema
for the K4 axiom [a]p = [a][a]p in (Schmidt and Hustadt, 2004) is
the following:

V& Qop(r) = (V y Ra(,y) = Qop(y)).

This clause schema is obtained from Op = OOp by performing a
partial translation that stops before the innermost modalities are
eliminated and by renaming subformulae. In this paper, the letter
a from a K4 modal operator [a] is related to the regular language
a™ that can be recognized by the finite-state automaton Ay =

{g0, a1}, 90,01, {e0 = @1,q1 = q1}). The formula t4,(c, p(c))
introduced in Definition 3.2 contains a conjunct of the form

Vaaqi(x)= (VyRalr,y) = ai1(y)),

where qi is also a monadic predicate symbol depending on ¢(«)
which is after all nothing else than a predicate symbol of the above
form Qop depending on p.

— Both methods require some preliminary knowledge. In our case,
the grammar logic at hand needs to be shown regular whereas
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in (Schmidt and Hustadt, 2004) one needs to determine how many
finite instances of the clause schemata obtained from axioms are
sufficient for completeness. Both problems are difficult in general
but for many known logics the problem can be solved.

5.2. RELATIONSHIPS WITH FIRST-ORDER LOGIC OVER FINITE
WORDS.

The method of translating finite automata into first-order formulas by
introducing unary predicate symbols for the states, is reminiscent to
the characterization of regular languages in terms of Monadic Second-
Order Logic over finite words, namely SOM[+1], see e.g. (Straubing,
1994). Similarly, the class of languages with a finite syntactic monoid
is precisely the class of regular languages. Our encoding into GF? is
quite specific since

— we translate into an EXPTIME fragment of FOL, namely GF?2,
neither into full FOL nor into a logic over finite words;

— we do not encode regular languages into GF? but rather modal
logics whose frame conditions satisfy some regularity conditions,
expressible in GF with built-in relations (Ganzinger et al., 1999);

— not every regularity condition can be encoded by our method since
we require a closure condition.

Hence, the similarity between the encoding of regular languages into
SOM[+1] and our translation is quite superficial. The following argu-
ment provides some more evidence that the similarity exists only at the
syntactic level. The class of regular languages definable with the first-
order theory of SOM[+1] is known as the class of star-free languages
(their syntactic monoids are finite and aperiodic), see e.g. (Perrin,
1990). However, the regular language Lg(a) = (b - b)*(a U €) obtained
with the regular semi-Thue system S = {a — bba, a — €} produces a
regular grammar logic with converse that can be translated into GF?
by our method. Observe that the language (b-0)*(a U €) is not star-
free, see e.g. (Pin, 1994). By contrast, (a - b)* is star-free but it is
not difficult to show that there is no context-free semi-Thue system S
such that Lg(a) = (a-b)* since a is not in (a - b)*. As a conclusion, our
translation into GF? is based on principles different from those between
star-free regular languages and first-order logic on finite words. Other
problems on (tree) automata translatable into classical logic can be
found in (Verma, 2003).
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6. Concluding Remarks

The two main contributions of the paper are the following:

— for every regular grammar logic with converse the design of a
logspace translation into GF2,

— to characterize when two regular grammar logics define the same
set of satisfiable formulae.

As a by-product, our work allows us to answer positively to some ques-
tions left open in (Demri, 2001). Typically, we provide evidence that
the first-order fragment to translate the regular grammar logics with
converse into is simply GF?: there is no need for first-order fragment
augmented with fixed-point operators, as far as regular grammar logics
are concerned.

In our view, Theorem 2.5 can be interpreted as confirming that the
use of grammars for defining modal logics, is natural. Theorem 2.5
completely determines the behaviour of grammar rules on frames in
terms of the behaviour of grammar rules on words. We end by listing
a few open problems that we believe are worth investigating.

1. The study of the computational behaviour of the translation to
mechanize modal logics using for instance (de Nivelle and Pratt-
Hartmann, 2001) should be further investigated.

2. Although regular grammar logics (with converse) can be viewed
as fragments of propositional dynamic logic (see e.g. (Demri and
de Nivelle, 2004, Sect. 4)), it remains open whether the full PDL
can be translated into GF? with a similar, almost-structure pre-
serving transformation. We know that there exists a logarithmic
space transformation, but we do not want to use first principles on
Turing machines.

3. Is there a PSPACE fragment of GF? in which the following modal
logics can be naturally embedded: S4, S4; (S4 with past-time oper-
ators), Grz, and G? (to quote a few modal logics in PSPACE, see
e.g. (Chagrov and Zakharyaschev, 1997)).

4. Can our translation method be extended to a reasonable fragment
of first-order modal logics?

5. Combining the translation from S4 into GF? with Godel’s transla-
tion from intuitionistic logic into S4 (see (Troelstra and Schwichten-
berg, 1996)), one obtains a translation from intuitionistic logic into
GF?, see e.g. the preprint (Demri and de Nivelle, 2004, Sect. 5). Can
it be extended to a reasonable fragment of first-order intuitionistic
logic?
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6. Are the conjectures at the end of Section 4 true?
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Deciding the ET-class by an a posteriori, liftable
order

Hans de Nivelle
June 22, 2005

Abstract

We show that the ET-class can be decided by a liftable order, when it is
applied a posteriori. This is a surprising result, because the ET-class was
one of the motivations for the study of non-liftable orders. Also surprising
is the behaviour of the resolution process. Initially the variable depth of
the clauses may grow, but it will not grow deeper than a certain bound.
We do not make use of any type of saturation rule in our completeness
proof.

1 Introduction

The E7T class is the set of clauses, in which all literals have identical variables,
and the literals are weakly covering. The class was introduced by [Tam90].

It was shown there (see also [FLTZ93]) that the following order is terminating
on ET : A <, B iff the maximal depth at which a variable occurs in A is
strictly less than the depth at which a variable occurs in B. Although resolution
with this order terminates on the class E™T, it does not satisfy the condition:
A<, B= A0 <, BO.

Because of this the completeness of <, on Et was open until [Niv94a], [Niv94b],
where a technique for proving completeness of non-liftable orders was intro-
duced, called the resolution game. In fact the E class was one of the motiva-
tions for its introduction.

In this paper we show that the ET class can be decided by a liftable order after
all, when it is applied a posteriori. In [FLTZ93], pp. 109, this is posed as an
open problem. (The R., refinement occurring there is equal to our <-ordering)
In [Leitsch97], there is a termination proof for the class Eq, (under the name
K), which is essentially ET restricted to 1-variable clauses. (The ET class is
also mentionend there, under the name K*, on page 223. It is claimed there
that saturation techniques are required)

We here prove termination for the full ET class, with a fully liftable order, and
without saturation rules.
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The behaviour of the refinement is very surprising. Initially growth of the depth
(and the variable depth) is possible but only up to a certain bound.

1.1 The Resolution Calculus

We briefly introduce the resolution calculus. Contrary to the case of first order
logic, we distinguish constants and variables. This makes it possible to omit the
V-quantifiers in clauses.

Definition 1.1 We assume a fixed set of functions/constant symbols F,
a fixed set of predicate/propositional symbols P, and a fixed set of
variables V. The set of terms is recursively defined as follows:

1. A variable is a term.

2. Ifty, ..., tn, withn > 0, are terms, and f € F, then f(t1,...,t,)
is a term.

If t1,...,t,, with n > 0, are terms, and p € P, then p(t1,...,t,) is
an atom.

A literal is an atom A, or its negation — A. Atoms of the form A are
called positive. Atoms of the form — A are called negative.

A clause is a finite set of literals.

A term that contains no variables is called ground. A term of the
form c is called constant. A term of the form f(t1,...,t,), with
n > 0, is called functional.

Definition 1.2 We define some complexity measures for atoms/clauses/literals:

e Let A be an atom. The depth of A is recursively defined as
follows:
— If A is a variable, then Depth(A4) = 1.
— Depth(f(t1,...,tn)) equals the maximum of {1, 1+Depth(ty),..., 1+
Depth(t,)}.
The depth of a literal equals the maximal depth of its atoms.

The depth of a clause ¢ equals the maximal depth of a literal
in ¢, or 0 for the empty clause.

e Let A be an atom. The wvardepth of A is recursively defined as
follows:
— If Ais ground, then Vardepth(A4) = —1.
— If Ais a variable, then Vardepth(A) = 0.

— Otherwise Vardepth(f(¢1,...,t,) equals the maximum of
{1 + Vardepth(t;),...,1 + Vardepth(t,)}.
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The vardepth of a literal equals the vardepth of its atom. The
vardepth of a clause ¢ equals the maximal depth of a literal
in ¢. The vardepth of the empty clause is defined as —1. The
vardepth of a set of clauses C' is defined as the maximal vardepth
of a clause in C.

e Let A be an atom/literal/clause. Var(a) is defined as the set of
variables that occur in A.

e Let ¢ be a clause. Varnr(c) equals the size of Var(c). If C'is a set
of clauses, then Varnr(C) equals maximal number of variables
that occurs in a clause of C.

e Let A be a literal. The complezity of A, written as #A equals
the total number of function/constant/variable occurrences in
it.

Definition 1.3 A substitution is a finite set of variable assignments of
the form {V5 :=+¢1,...,V, :=t,}, such that V; # ¢;, and V; = V; =
t; = t;. The first conditions ensures non-redundancy, the second
condition ensures consistency.
We write AO for the effect of © on term A.

If ©; and O, are substitutions, then the composition of ©1 and ©O4
is defined as the substitution {v := v©102| |v # v0102}.

For two literals A and B a unifier is a substitution ©, such that
AO = BO. A most general unifier © is a substitution such that
AO = BO, and

VO/'(A0' = BO') = IN(O' =0 - ¥).

For the composition holds, for all terms A(©; - O3) = (4601)0O3.
We present an algorithm for computing the mgu. The algorithm is not efficient
because its purpose is proving properties of mgu’s, rather than applying it.

Definition 1.4 The following algorithm effectively decides whether or
not two literals A and B have a unifier:

Let A and B be two literals, such that A # B. A minimal difference
is obtained as follows:

1. Put A’ = A, and B’ = B.

2. Aslong as A has form p(ty, ..., t,) and B’ has form p(uy, . .., uy),
replace A’ by t; and B’ by w;, for an 4, such that t; # u,;.

The algorithm is defined as follows: Let A and B be the terms to
be unified. Put © = { }, the idempotent substitution.
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1. If A = B, then © equals the most general unifier.
2. Aslong as A # B, let (A’, B’) be a minimal difference. Then:
o If (A', B’) has form (p(t1,...,tn), q(u1,. .., Um),) with p #
q, or n # m, then report failure.
o If (A, B’) has form (V,t), where V is a variable, V' # t,
but V occurs in ¢, then report failure.
o If (A, B’) has form (¢,V), where V is a variable, V # t,
but V occurs in ¢, then report failure.

o If (A, B’) has form (V,t) where V is a variable, and V does
not occur in ¢, then put
A:=A{V:=t}, B:=B{V:=t},0:=0-{V =t}

o If (A',B’) has form (¢,V), where V is a variable, and V

does not occur in ¢, then put
A:=A{V:=t}, B:=B{V:=t},0:=0-{V =t}

Theorem 1.5 The procedure of Definition 1.4 is complete and sound, and
strongly normalizing. This means that the outcome does not depend, modulo
renaming substitutions, on the minimal difference selected.

Definition 1.6 We define the ordered resolution and factorization rules:
Let < be an order on literals. The order is used to select the liter-
als in the clauses that can be used for resolution, or factorization.
Only the maximal literals in a clause can be used. There are two
moments at which the ordering can be used. The first is before the
substitution. This is called a priori application. The second is after
the substitution, this is called a posteriori application.

APRIORI Let {A1} U Ry and {— A2} U Ry, be two clauses, s.t.
{A1}UR; and {— A3} U Ry have no variables in common,
Ay and A have mgu ©,

e for no A € Ry, it is the case that A1 < A,

e for no A € Ry, it is the case that A; < A.
Then the clause R10 U R0 is called a resolvent.
Let {A1, A2} U R be a clause, such that

e A; and As have an mgu O,

e for no A € R it is the case that A; < A.
The clause {410} U RO is called a factor of {41, A2} U R.

APOSTERIORI Let {A;}UR; and {— A3} U Ra, be two clauses,
s.t.

e {A1}UR; and {— A3} U Ry have no variables in common,
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e A; and As have mgu O,
e For no A® € R0, it is the case that 410 < AO,
e For no A® € R,0, it is the case that 42,0 < AO.

Then the clause R1© U R»0 is called a resolvent.
Let {A1, A2} U R be a clause, such that

e A; and As have mgu O,
e for no A© € RO is it the case that 4;0 < AO.

Then the clause {410} U RO is called a factor of { A1, A2} UR.

It is not completely trivial to find an example where a priori and a posteriori
application of the order differ, in the case that the order is liftable.

Example 1.7 Let < be (asort of) a Knuth-Bendix order: A < Bif # A< # B
and each variable occurring in A occurs at least as often in B.

The following derivations are allowed by a priori application of <, but they are
blocked by a posteriori application:

Resolve {p(X, X,Y),q(X,Y,Y)} with {- p(0,0, s(s(0)))}.

Resolve {p(X, X,Y,0),q(X,Y,Y, s(s(s(0))))} with {—= p(0,0,Y,0)}.

Definition 1.8 Let C = {c1,...,¢,} be a clause set. We call C unsat-
isfiable if its first order meaning is unsatisfiable. We call C' propo-
sitionally unsatisfiable if for every substitution ©, the set CO is
unsatisfiable.

Theorem 1.9 Let < be an order satisfying
A< B= A0 <X BO.
(the liftability condition). Then <-ordered resolution with factoring is complete.

In fact the order need not be fully liftable. It is sufficient if A and B are restricted
to literals that can occur in a derivation, and A® and BO are restricted to
literals that can occur in an unsatisfiable instance.

This makes the following more complicated condition:

Definition 1.10 Let < be a relation on literals. We call < liftable if it
satisfies the following conditions:

For every unsatisfiable clause set C, there is a propositionally unsat-
isfiable set C' of instances of C, and an order <, on the literals in C,
s.t.

1. for all A and B with A < B, that can occur together in a clause
that is <-derivable from C, and
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2. for all A® and BO that occur in C, (not necessarily in the same
clause)

it is the case that
AO <, BO, or AO = BO.

So < need not even be an order by itself, but <4 has to be an order.

2 Covering Literals

In order to obtain termination for resolution it is necessary that the literals in
the clause sets have a special form: The must be weakly covering. Although the
definition of this notion is technical, covering literals arise naturally from the
Skolemization of decidable classes. We show that covering literals are preserved
under resolution, and that the mgu of two covering literals is not larger than
the largest of them.

Definition 2.1

e A literal A is covering if every functional subterm ¢ of A con-
tains all variables of A.

o A literal A is weakly covering if every functional, non-ground
subterm t of A contains all variables of A.

Covering and weakly covering literals are typically the result of skolemization,
when the prefix ends in an existential quantifier. If an atom a(Z,y) with in the
scope of Vy is skolemized the result equals a(Z, f(T)), which is covering. If
a(Z,y) contains ground terms, then the result is weakly covering.

The main property of (weakly) covering literals is that they do not grow when
they are unified. Before we prove this we need a technical property.

Definition 2.2 Let O be a substitutution. © is a weak renaming if for
each variable V| the result VO is either ground, or a variable.

So what is excluded are substitutions of the type {X := f(X)}.

Lemma 2.3 Let A and B be two weakly covering literals, such that Var(A) C
Var(B), and Vardepth(A) < Vardepth(B). Let © be the mgu of A and B. Then
Vardepth(A4) = Vardepth(B).

proof:

Suppose that Vardepth(A) # Vardepth(B). Then Vardepth(A) < Vardepth(B).
For every substitution ©, it follows Vardepth(AO) < Vardepth(B®©), because
every variable of A occurs in the deepest term of B. But then A and B cannot
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be unified.
end of proof

The following states that when two weakly covering terms are unified, the result
is not larger than the largest of them.

Theorem 2.4 Let A and B be weakly covering literals that have an mgu ©.
Let C = A® = BO. Then:

1. C is weakly covering,
2. Vardepth(C) < Vardepth(A), or Vardepth(C) < Vardepth(B).
3. Varnr(C) < Varnr(A) or Varnr(C) < Varnr(B).

proof:
Without loss of generality we consider two cases:

e Vardepth(A) = Vardepth(B). Assume that the mgu © is constructed by
the algorithm of Definition 1.4. We will show that for every variable X,
the result X O is ground, or a variable.

Suppose there were a minimal difference of the form (X, ¢) (or converse),
where t is non-ground, and functional. ¢ has to contain all variables of B,
since B is weakly covering. The variable X cannot occur in B, because of
the occurs check. Define ©' = {X :=t}. We have Var(BO’) C Var(A©’),
and Vardepth(BO’) < Vardepth(A©’). This contradicts Lemma 2.3. By
following the iteration of Definition 1.4 it follows that the unifier © does
not assign a non-ground functional term to any of the variables in A or
B.

e Vardepth(A) < Vardepth(B). Assume that the mgu © is constructed by
the algorithm of Definition 1.4.
Let (t1,t2) be a minimal difference based on a term with maximal vardepth
in B. (t1,t2) must be of the form (X, t), where X does not occur in ¢, and ¢
is non-ground, functional, and contains all variables of B. Put @’ = {X :=
t}.
We have Var(BO’) C Var(A©’) and Vardepth(BO’) < Vardepth(A©’).
By Lemma 2.3 it follows that Vardepth(A©’) = Vardepth(B©’).

end of proof

The following is necessary in order to show that when two clauses resolve, and
they consist of weakly covering literals, that then the resolvent consists of weakly
covering literals. Let R1© U R0 be a resolvent of {A;} UR;} and {— A3} URs.
Theorem 2.4 states that A;0 is weakly covering, but we have proven nothing
about the literals in R;0.
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Theorem 2.5 Let A and B be literals and let © be a substitution such that
1. Var(A4) C Var(B),
2. A is weakly covering,
3. BO is weakly covering.

Then AO is weakly covering.

proof:

Let ¢ be a non-ground, functional subterm of AG. Let V5 be a variable of A©.
We have to show that V5 occurs in 9.

There must exist a variable V7, that occurs in A, and such that V;© contains
Va. (If V2 was not introduced by O, then V4 = V4.) There are two possibilities:

1. There is a t;[W] in A, such that ¢;[WO] = t,.
In that case ¢1[W] is non-ground, and functional. because of this t; =
t1[W O] contains V;.

2. There is a W in A, such that t5 is a subterm of WO. (This case includes
to = WO)
Because W also occurs in B, the term BO = t5 occurs in BO. Because
BO is weakly covering, V5 must occur in ts.

end of proof

Usually ([FLTZ93]) this theorem is found with a 4th condition: B is weakly cov-
ering. We have shown that this condition can be dropped. That this results in a
true generalization can be seen by putting: A = p(X,Y), B = p(X,s(Y)),0 =
{Y :=s(X,Y)}. B is not weakly covering, but A® is.

No more conditions can be dropped from Theorem 2.5, as can be seen from the
following examples:

1. A=p(X,Y), B=p(X), 0 ={X =s(X)}.
2. A=p(X,s(Y)), B=p(X,Y), ©={}.
3. A=p(X,Y), B=p(X,Y), © ={X:=s(X)}.

The following states that the side literals can be bound by the literals resolved
upon.

Lemma 2.6 If
1. Var(A4) C Var(B),

2. A is weakly covering,
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3. B is weakly covering,
4. Vardepth(A) < Vardepth(B),
Then: Vardepth(A®) < Vardepth(BO©).

There is another technical fact that we are going to need, namely that unification
does not introduce new ground terms in weakly covering literals, unless the result
is completely ground.

Lemma 2.7 Let C = AO = BO be the most general unifier of two weakly
covering literals. If C' is not ground by itself, then every ground term of C
occurs either in A or in B.

proof:

If either A or B is ground, then C will be ground, so let us consider the case
where neither A, nor B is ground.

Assume that © is obtained by the algorithm of Definition 1.4. Then we can
write

O=%1...- %,

where each ¥; is a simple substitution of the form {X :=t¢}.

We show by induction that if both A¥; ---X; and BX; ---3; are non-ground,
then they do not contain new ground terms. This is clearly true for ¢ = 0.
Suppose it is true for some i. Then ;11 = {X := ¢}, where ¢ is a term occurring
either in AY ---3;, or BY; ---3;. Hence there is no ground term, not in A or
B, in t.

This means that the only manner in which a new ground term can be obtained
is when t is ground, and X was the last variable in a functional term. Now if
variable X occurs somewhere in a functional term, then this term either con-
tains all variables of AX; ---X;, or of BY; ---X,;. (Consequence of the proof of
Theorem 2.4) Hence if the last variable is substituted away, either AX; ---3;,
or BYq---3%; is ground. Hence one of A® or BO is ground, and so they are
both ground.

end of proof

3 The E™-Class

We are now ready to introduce the Et-class.

Definition 3.1 Let C be a clause set. C is in the class ET if for every
clause ¢ € C the following holds:

1. For all A, B € ¢, it is the case that Var(A4) = Var(B).
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2. All literals A € ¢ are weakly covering.

Sometimes the ET-class is defined in an extended manner in which the clauses
are allowed to consist of more than one component. This is not relevant for our
discussion.

It was already known that the Et-class is decidable, and that it can be decided
by the following order, when it is applied a priori:

Definition 3.2 Let A and B be two literals. A <, B if Vardepth(4) <
Vardepth(B).

This order is non-liftable, which makes it difficult to prove completeness, but
proving termination is fairly easy. With the liftable order < that we will intro-
duce, the picture is exactly reversed. Proving termination is difficult, but the
completeness is a standard result.

That the order <, is non-liftable, can be seen from the following: We have

p(X, S(O)> <v p(S(X), O>7 and p(S(O), X) <, p(0, S(X))
Applying {X := 0} we obtain:

p(0,5(0)) <v p(s(0),0), and p(s(0),0) <, p(0,5(0)),

which contradicts the fact that <, is an order.

Showing that <, cannot satisfy Definition 1.10 is slightly more involved. We
need to show that the previous conflict can be enforced by a clause set: Take
the clause set

C = {p(0,s(X))}, {= p(X,5(0)),p(s(X),0)}, {= p(s(0), X)}}
C is unsatisfiable, and has only one unsatisfiable set of ground instances:
Cy = {{p(0,5(0))}, {~ p(0,5(0)),p(5(0),0)}, {= p(s(0),0)}}

Since all the ground instances of the previous example lie in Cy, and there is no
other unsatisfiable set of ground instances, the order <, violates Definition 1.10.

Theorem 3.3 Let C be a set of clauses in ET. Every clause that can be derived
from C, (by unrestricted resolution, or factoring) is also in E™T.

proof:
Follows from Theorem 2.4 and Theorem 2.5.
end of proof

Definition 3.4 We define the following order on literals: A < B if
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1. Vardepth(A) < Vardepth(B) and Depth(A) < Depth(B).
2. Vardepth(A) = Vardepth(B) = —1, and Depth(A4) < Depth(B).

Order < is not liftable in the strong sense of Theorem 1.9, but it satisfies the
conditions of Definition 1.10. This order is called <4 in [FLTZ93], page 106.

Theorem 3.5 Relation < is liftable.

proof:

We show that < satisfies Definition 1.10. Let C' be an unsatisfiable clause set in
E™T. The class E™ is closed under unrestricted resolution with factoring. Because
of this we may assume that A and B are weakly covering, and Var(A) = Var(B).
Take for <, the following order:

AO <, BO iff Depth(AO) < Depth(BO).
Suppose that A < B. There are two cases:

1. Both A and B are ground. Then A < B because of the second case
of the definition. The substitution does not affect A and B, and hence
A© <, BO.

2. Both A and B are non-ground. Then A < B because of the first case
of the definition. We need to show that Depth(A®) < Depth(BO). Let
d = Depth(A®©). There are two cases to consider:

(a) The depth d occurs in a term (which is a constant or variable) created
by ©. Then since Var(A) = Var(B), Vardepth(A) < Vardepth(B),
the same term is created by © in B, and at a deeper position. Hence
Depth(AO) < Depth(BO).

(b) The depth d occurs in a term not created by ©. Then the term
occurred already in A. Because of Depth(A) < Depth(B) there is a
deeper term in B, and also in BO.

end of proof

The following also holds, although it is irrelevant for completeness:
Lemma 3.6 Relation < is an order within a clause.

The termination proof for the <, order is based on the fact that it is impossible
to derive a clause ¢, with Vardepth(c) > Vardepth(C), or containing more vari-
ables than a clause of C. This, together with Lemma 2.7 ensures termination.
So it is possible that Depth(c) > Depth(C), for a derived clause, but this is
harmless, as this can be caused only by a finite set of ground terms.
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Example 3.7 Put ¢; = {p(X,Y,s(f(X,Y))),¢(X,Y,s(f(X,Y)))}, and c2 =

{= p(s(s(0)), X,Y}. The resolvent ¢ = {p(s(s(0)),Y,s(f(s(s(0)),Y)))} is al-
lowed. We have Vardepth(c) < Vardepth(c;), Varnr(c) < Varnr(c; ), but Depth(c) >
Depth(cy), Depth(cz). The ground term s(s(0)) occurred already in cs.

This is not true for the a posteriori <-order, as can be seen from the following
example:

Example 3.8 Put ¢; = {— p(X, s(s(s(s(0))))), p(s(X), s(s(s(s(0)))))}. Resolv-
ing the clause twice with itself is allowed, and results in

¢ = {7 p(X,s(s(s(5(0))))), p(s(s(s(s(X)))), s(s(s(s(0))))) }, with Vardepth(c) =
4, and Vardepth(cq) = 1.

We will show however that it is not possible to continue this initial growth. So
this unpleasant behaviour can only occur in clauses with low depth.

Definition 3.9 Let A and B be literals. We define the following notions:
1. AC Biff
Depth(A) — Vardepth(A) < Depth(B) — Vardepth(B).
2. A=Bif AC B and BLC A.

We have p(X, s(0)) C p(X, s(s(0))), but not p(X,s(0)) C p(X,0).
We have the following technical fact:

Lemma 3.10 Let A and B weakly covering literals with Var(A4) = Var(B). Let
O be a substitution, such that A®© is non-ground. Then

Vardepth(A©) — Vardepth(BO) = Vardepth(A) — Vardepth(B).

proof:
Because the deepest term in both A and B must contain all variables.
end of proof

Theorem 3.11 The relation C satisfies the following conditions:
O1 Always AC A.
O2 AC B and BLC C implies AC C.

L1 For weakly covering A and B, with Var(A) = Var(B), for substitutions ©,
such that A© is non-ground,

ALC B= AOLC B6.
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L2 For weakly covering A and B, with Var(A) = Var(B), for substitutions ©,
such that A© is non-ground, if Depth(A©) > Depth(A), then

A© C BO.

proof:

O1 Because

Depth(A) — Vardepth(A4) = Depth(A) — Vardepth(A).

02 Evidently
Depth(A) — Vardepth(A) < Depth(B) — Vardepth(B),
and
Depth(B) — Vardepth(B) < Depth(C) — Vardepth(C),
implies

Depth(A) — Vardepth(A) < Depth(C) — Vardepth(C),

L1 Assume that A C B, so
Depth(A) — Vardepth(A) < Depth(B) — Vardepth(B).
We want to show that
Depth(AO) — Vardepth(A©) < Depth(BO) — Vardepth(BO).

Write k = Vardepth(B) — Vardepth(A) = Vardepth(B®)— Vardepth(A©).

Note that k is possibly negative. Let d = Depth(A®). We must show that
Depth(BO) > d+k. Let T be a deepest variable or constant in A©. There
are two cases:

e T was introduced by ©O. In that case T was also introduced in BO,
and T causes there a depth of at least d + k.

e T was already present in A. In that case Depth(A©) = Depth(A) = d,
and all terms introduced by the substitution © had a depth not larger
than Depth(A) — Vardepth(A). Because of A C B it must be the case
that Depth(B) > d + k.

L2 Write k = Vardepth(B) — Vardepth(A) = Vardepth(B©O) — Vardepth(A40O).
Let T be a deepest variable or constant in A©. Let d = Depth(T). We
have to show that Depth(BO) > d + k. Because Depth(AO) > Depth(A)
this 7" must have been introduced by the substitution. Because of this T’
also occurs in BO. Then BO must have a depth of at least d + k.
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end of proof

Property L1 does not hold when the substitution ® makes the literals ground.
The following example demonstrates this: We have p(s(X), s(0)) C p(X, s(0)),
but substitution ©® = {X := s(s(s(0)))} results in p(s(s(s(s(0)))),s(0)) Z
p(s(5(s(0))), 5(0)).

Lemma 3.12 Let C be a clause set in ET. Let k be an integer with & >
Depth(C'). For every non-ground clause c that is derivable from C with < applied
a posteriori, the following holds:

1. If A, B € ¢, and Depth(A), Depth(B) > k, then A = B.
2. If A, B € ¢, with Depth(A) > k, and Depth(B) < k, then A C B.

proof:

We may assume that all derived clauses are in ET. Initially (1) and (2) are
trivially satisfied.

It is sufficient to show that properties (1) and (2) are preserved by substitution,
deletion of a literal, and <-ordered propositional resolution, as factorization and
resolution, using < a posteriori can be decomposed into these rules.

e Deletion of a literal.
Let ¢’ be obtained from ¢ by deleting one literal. Whenever A, B € ¢’ also
A, B € c. Because of this A and B have the desired properties.

e Propositional resolution.
Let ¢ be a <-ordered, propositional resolvent of the clauses ¢; = {A} U R,
and co = {- A} U Rs.
If both ¢; and ¢ contain no literals with depth > k, then also ¢ contains
no literals with depth > k. Because of this ¢ trivially satisfies (1) and (2).

If one of ¢1, ¢o contains a literal with depth > k, then Depth(A) > k. This
can be seen from the following:

Without loss of generality assume that ¢; contains a literal B with Depth(B) >
Ek, but that Depth(A) < k. Then evidently Depth(A) < Depth(B). Since

B C A, by (2), it must be the case that Vardepth(A4) < Vardepth(B). But
then we have A < B, which is a contradiction, since B would block A.

Let Bp, By be literals with Depth(B;), Depth(Bs) > k. If B; and Bs
originate together from Ry, or Rg, then (1) and (2) are trivially inherited.
So assume, without loss of generality that By originates from R; and Bs
originates from Rs. Since By = A, and By = A, by induction, it must be
the case that By = Bs.

Let B, C be literals with Depth(B) > k, and Depth(C) < k. Without loss
of generality assume that B originates from R;, and that B, orginates
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from Ry. Then by induction we have A = B and A C C. It follows that
BCC.

e Substitution.
Let © be a substitution not making ¢ ground. Let A©®, BO be a pair
of literals in ¢®. Without loss of generality consider the following cases.
The other cases are either impossible, or symmetric to one of the cases we
consider:

1. Both Depth(A), Depth(B) < k, and both Depth(A®), Depth(BO) <
k.

A and B trivially satisfy (1) and (2).

2. Both Depth(A), Depth(B) < k, and both Depth(A©), Depth(BO) >
k.

It follows from Theorem 3.11, L2, that A© = BO.

3. Both Depth(A), Depth(B) < k, and Depth(AO©) > k, but Depth(BO) <
k.

It follows from Theorem 3.11, L2, that A© C BO.

4. Depth(A) > k, Depth(B) < k, and Depth(A©) > k, Depth(BO) <
k.

By induction A C B. It follows from Theorem 3.11, L1, that A© C
BoO.

5. Depth(A) > k, Depth(B) < k, and Depth(A®©), Depth(BO) > k.
By induction A C B. It follows from Theorem 3.11, L1, that A© C
BO. It follows from L2, that BO C AO©. Together this makes AO =
BO.

6. Depth(A), Depth(B) > k, and Depth(A®©), Depth(BO) > k.

It follows from decomposing =, twice applying Theorem 3.11, L1,
that A© = BO.

It is easy to check that this ensures preservation of (1) and (2).

end of proof

This decomposition works because we use the order a posteriori. When the
order < is applied apriori, things go wrong:

Example 3.13 Let

C = {p(0,5*(0)}, {= p(X,5°(0)), p(s(X), 5°(0)) }.

The <-order allows derivation of each {p(s(0),s3(0))} in the case of a priori
application.
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Now we are ready to prove the main theorem:

Theorem 3.14 Let C be a finite set of clauses in ET. With a posteriori ordered
resolution and factoring based on < only a finite set of clauses can be derived
from C.

proof:

It is sufficient to show that there exists a bound &k on the Vardepth of derivable
clauses. We take k = Depth(C), the depth of a deepest clause in C.

We show that no clause with Vardepth(C) > k, can be introduced. First of all
note that even unrestricted factoring cannot increase the variable depth of a
clause, since by Theorem 2.4 the subsitution © must be a weak renaming on at
least one of the literals, and because of this on the whole clause.

It remains to consider the resolution rule. We use the same decomposition as
in Theorem 3.12. Let ¢ be the first clause with Vardepth(c) > k. We show
that there is no such c¢. Clause ¢ can be seen as the propositional resolvent of
c1 = {Al("')} UR10 and ¢ = {—‘ AQ@} U R20.

Let BO be a literal with Vardepth(BO) > k. We show that BO cannot ex-
ist, due to the fact that its presence would block the derivation. First note
that Vardepth(A4;0) < k, because of Theorem 2.4. Because of this we have
Vardepth(4;0) < Vardepth(BO).

Now suppose that Depth(A4;0) > Depth(BO) > k, then it would follow from
Theorem 3.12 that 4;0© C BO, which is a contradiction with

Vardepth(4,;0) < Vardepth(B®©) and Depth(A4;0) > Depth(BO).

So it must be the case that Depth(A;0) < Depth(BO). But then the <-order
would have blocked the derivation.
end of proof

4 Future Research

The obvious question is: Can the decidability results in ([Niv98]) be reproduced
by a liftable, a posteriori order?
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Abstract. The two-variable-fragment £2 of first order logic is the set
of formulas that do not contain function symbols, that possibly contain
equality, and that contain at most two variables. This paper shows how
resolution theorem-proving techniques can be used to provide an algo-
rithm for deciding whether any given formula in £2 is satisfiable. Pre-
vious resolution-based techniques could deal only with the equality-free
subset £? of the two-variable fragment.

1 Introduction

The two-variable-fragment £2, is the set of formulas that do not contain func-
tion symbols, that possibly contain equality (=), and that use only two variables.
The two-variable fragment without equality £ is the subset of £Z not involving
the predicate ~. For example, the formula Va3y[r(x,y) AVa(r(y, x) — = = y)],
stating that every element is r-related to some element whose only r-successor
is itself, is in £2 (but not in £2). Note in particular the ‘re-use’ of the vari-
able x by nested quantifiers in this example. In the same way, it is possible
to translate modal formulas into £2, (without equality) by reusing variables.
For example, the modal formula OCOa can be translated into Vy(r(z,y) —
Fz(r(y, x) AVy(r(z,y) — a(y) ))). No equality is needed for translating modal
formulas.

Both two-variable fragments are known to be decidable. That is: an algorithm
exists which, given any formula ¢ € £2, will determine whether ¢ is satisfiable.
In [GKV97], decidability of £ is proven by analyzing the structure of possible
models, and showing that if a formula ¢ has any models at all, then it has
a model of size O(2/?!). This gives in principle a decision procedure in non-
deterministic exponential time. However this procedure is probably inefficient in
practice. This is caused by inherent problems of backtracking. Any backtracking
procedure will be spending time retrying details, that are irrelevant for the truth
of the formula. Intelligent backtracking can decrease this problem, but cannot



completely remove it. Moreover, a backtracking procedure cannot be prevented
from redoing the same work in different branches. Improved implementations
might decrease this problem, but it cannot be removed completely.

Opposed to this, a resolution procedure works bottom up, starting with the
formula in which one is interested. This means that every clause that is derived is
related to the original formula, and hence more likely to be relevant. Additionally,
a clause can be seen as a lemma, which can be used many times, and which can be
seen as representing the set of its instances. Because of this, the risk of repeated
work is decreased.

Another advantage, of a more practical nature, is that resolution decision pro-
cedures are close to the standard methods of full first-oder automated theorem-
proving, so that existing implementations and optimizations can be used. Indeed
only a small modification in a standard prover is needed in order to obtain a
resolution decision procedure.

To date, resolution-based decision procedures have been developed for var-
ious fragments of first-order logic, including the guarded fragment with equal-
ity, the Godel class, and the two-variable fragment without equality £2. (See
[dN95],[dN00a],[GAN99)).

A resolution theorem prover (for unrestricted first order logic) works as
follows: The first order formula is translated into a set of clauses through a
clausal normal form-transformation. After that, the resolution prover derives
new clauses, using derivation rules. Examples of derivation rules are resolution,
factoring and paramodulation. The prover can also delete redundant clauses, us-
ing certain deletion rules. Common deletion rules are subsumption, demodulation
and tautology elimination. This process terminates when either the empty clause
is derived, or a stable set of clauses is reached. This is a set for which every clause
that can be derived, can be immediately deleted by one of the deletion rules. For
full first-order logic, there are formulas for which the process will not terminate.

Resolution decision procedures are obtained by first identifying an appropri-
ate clause fragment. Then it is shown that certain restrictions of resolution are
complete for the given clause fragment, and that all newly derived clauses are
within the clause fragment. After that it is shown that the first order formulas
of the fragment under consideration can be translated into the given clause frag-
ment. Finally it is shown that there exists only a finite number of non-redundant
clauses in the given fragment.

The strategy that we give in this paper is different from usual decision pro-
cedures in the fact that it consists of two stages. First, the clauses are partially
saturated under a restricted form of resolution. After that, it is shown that
clauses containing equality can be replaced by clauses without equality, with-
out affecting satisfiability. The result is a clause set that corresponds to £2, the
two-variable fragment without equality.

At this point, one could continue the work by using any decision procedure
for £2; we prefer to stay within the resolution framework. we present a novel
resolution decision procedure based on a liftable order.
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The plan of the paper is as follows. Section 2 motivates the search for an ef-
ficient decision procedure for £2,. Section 3 shows how equality can be removed
from a formula ¢ of £2, without affecting its satisfiability. Section 4 then presents
the new resolution-based algorithm for determining satisfiability of formulas of
£%. We assume familiarity with the standard terminology and the basic tech-
niques of resolution theorem-proving. The reader is referred to [FLTZ93] Ch. 2
for the relevant definitions.

2 Motivation

A logic is said to have the finite-model property if any satisfiable formula in that
logic is satisfiable in a finite structure. It is easy to see that any fragment of first-
order logic having the finite model property is decidable; and indeed, most of
the known decidable fragments of first-order logic have the finite model property.
(For a comprehensive survey, see Borger, Griadel and Gurevitch [BGG97].) One
such fragment of particular interest here is the so-called Godel class: the set
of first-order formulas without equality which, when put in prenex form, have
quantifier prefixes matching the pattern 3*Vv3*. Godel [G33] showed that the
Godel class has the finite model property, and is thus decidable. In the same
paper, Godel claimed that allowing ~ in formulas of the Godel class would
not affect the finite model property, a claim which was later shown to be false
by Goldfarb [G84]. Between these two discoveries, Scott [S62] showed that any
formula of the two-variable fragment can be transformed into a formula in the
Godel fragment which is equisatisfiable. Relying on Gédel’s incorrect claim, Scott
concluded decidability for £2,. Of course, what Scott actually showed was the
decidability for L5 only. That the full two-variable fragment does indeed have
the finite model property was eventually established by Mortimer [M75].

Most proofs of the finite model property actually yield a bound on the size
of a smallest model of a satisfiable formula ¢ in terms of the size of (number of
symbols in) ¢, and the result for the two-variable fragment is a case in point. A
satisfiable formula ¢ € £Z of size n has a model with at most 2°" elements, for
some constant ¢ (see Bgg97, pp. 377-381). Therefore, we can determine the sat-
isfiability of ¢ by enumerating all such models, a process which can evidently be
completed in nondeterministic exponential time. Moreover, it can be shown us-
ing standard techniques that satisfiability in £2 is in fact NEXPTIME-complete
(as, indeed, is satisfiability in £?). Hence, the complexity of model enumeration
agrees with the known worst-case complexity of determining satisfiability in £2,.

Nevertheless, enumeration of models up to a certain size is in practice an
inefficient method for determining satisfiability in ¢ € £Z, especially if no model
exists. A much more promising method is to adapt a resolution-based theorem
prover so that termination on formulas of £2 is guaranteed. Such an approach
has already been employed for other decidable fragments. In particular, the
Godel class can be decided using ordered resolution; moreover, as was pointed
out in [FLTZ93], by applying Scott’s reduction from £2 to the Godel class, the
same technique can be used to decide £2 as well. Unfortunately however, this
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method does not apply to the whole fragment £2,, since adding equality to the
Godel class leads to undecidability. The main contribution of the present paper
is to show that, with the aid of some technical manceuvres, this approach can
nevertheless be extended to the whole fragment £2,. To the best of the authors’
knowledge, this is the first really practical decision procedure that has been
proposed for the full two-variable fragment.

The fragment £2, is of particular interest when dealing with natural language
input, because many simple natural language sentences translate into £2,. To give
a somewhat fanciful example, the sentence

Every meta-barber shaves every man who shaves no man who shaves himself

translates to the two-variable formula

Vz(meta-barber(z) —
Vy((man(y) A Va((man(x) A shave(x, x)) — —shave(y, x))) — shave(x, y))).

Although by no means all of English translates to the two-variable fragment
(just think, for example, of ditransitive verbs), a useful subset of English can
nevertheless be treated in this way. In particular, Pratt-Hartmann [PHOO0] gives
a naturally circumscribed fragment of English which is shown to have exactly
the expressive power of £2,. Certainly, the two-variable fragment is more useful
when dealing with natural language than other well-known decidable fragments,
such as the guarded fragment [AvBNO98] or any of the quantifier prefix fragments,
whose formulas do not fit translations of natural language constructs easily.

3 Making Equality Disappear

In this section, we give give a method for removing equality from a formula in
L2, based on resolution. Let ¢ to be some formula of £2. We can assume that ¢
contains only unary and binary predicates, since predicates of higher arity—as
long as they feature only two variables—can be removed by a transformation (see
[GKV97] for details). Throughout this section, if 1 (z) is an £Z-formula whose
only free variable is x, we use the abbreviation 3!z 1 (z) for the £2-formula

Fz[(x) AVy( Y(y) — == y)l,

asserting that v is satisfied by exactly one object.

Occurrences of the ~-symbol fall into two groups. Negative occurrences can
be ’simulated’ without recourse to equality. Positive occcurrences can be re-
stricted to those belonging to a 3! quantifier. This is done in the key step of our
procedure, which is described in Lemma 4. The remaining occurrences of ~ can
axiomatized within £2. This enables us to remove all occurrences of == .

Definition 1. An atom is defined as usual. A literal is an atom, or its negation.
A formula « is in conjunctive normal form if it has form ci A --- A ¢, where
each ¢;, (1 <1i<n)is a disjunction ¢; = ;1 V -V By, of literals.
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A formula in CNF is not the same as a set of clauses, because the clauses can
be universally quantified. We begin by removing individual constants from our
formula ¢.

Lemma 1. Let ¢ € L2, and let the sets of individual constants, unary predicates
and binary predicates occurring in ¢ be D, P and R, respectively. Let ¢’ be the
result of replacing any atoms in ¢ involving individual constants with formulas
according to the following table:

Atom |Replacement formula

p(d)  |[Fz(p(x) Apa(z))

r(d, z) |3y(r(y, =) A pa(y))

r(d,y) [Fz(r(z,y) Apa(z))

r(z,d) |3y(r(z,y) Apa(y))

r(y,d) |3z(r(y, ) A pa(z))
r(d,d")|323y(r(z, y) A pa(z) A par(y))

where p € P, r € R, d € D, and where the unary predicates pqg(x) (for d € D)
are all new. Then ¢ is equisatisfiable with

¢0 := &' A Ngep 3@ pa(z).

In fact, individual constants will be reintroduced later; however removing them
at this point makes the key step described in Lemma 4 much easier to follow.
Next, we convert to Scott normal form. The following result is standard (see,
e.g. [BGGYI7] lemma 8.1.2).

Lemma 2. Let ¢ be a formula in L2,. There is an equisatisfiable formula ¢
with form ¢1 = B1 A--- A Bn, where each B; has one of the following three forms:

dz ay, Vedy o, or YaVy a;.

FEach «; is a formula in conjunctive normal form. We call the types of the [3;
from left to right Type 1, Type 2, and Type 3. If B; is a Type 1 formula, then o
contains at most the variable x. If B; is a Type 2 or a Type 3 formula, then oy
contains at most the variables x and y. There are no constants in the «;.

The transformation in question introduces some new predicate letters, but
no new individual constants or function symbols. Next, we move all occurrences
of ~ out of the «; into the quantifiers.

Lemma 3. Let ¢1 be as defined in Lemma 2. Formula ¢1 can be transformed
into a formula g2 = Py A -+ A By, where each B; has one of the following forms:

dz «;,
Vady (z # y A o),

or
VaVy (z =y V ;).

Now each of the «; is a formula without equality, in conjunctive normal form.
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If ¢o contains more than one Type 3 formula, then they can be merged. In
the sequel we will assume that this is done, and that there is only one Type 3
formula in ¢s.

We come to the key idea of the present transformation—the elimination of
the positive occurrence of /& in a disjunction VazVy(a(z,y) V 8(z) Vy(y) Vz ~ y)
of ¢2. Our solution is to saturate ¢, partially under resolution, and than to
eliminate the disjunctions that have a non-empty «a(z,y). When this is done, we
have only disjunctions of the form VaVy(z = yV 5(z) Vy(y)). These can be read
as: If B(x) does not hold everywhere, and «(y) does not hold everywhere, then
there is one point ¢, which is the only point on which §(¢) does not hold, and also
the only point on which v(c) does not hold. This provides the transformation of
~ into J!.

Definition 2. We need the following, restricted version of the resolution rule.
It is restricted because we allow resolution only between two-variable literals.

Let B(z,y) V r1 and —8(z,y) V re be disjunctions, occurring in an «; of
¢2. Then 11 V 1o is a resolvent. The r1 and o are disjunctions of literals. We
implicitly assume that r1 V1o is normalized after the resolution step. That means
that multiple occurrences of the same literal are removed.

We allow swapping of variables, but we do not allow proper instantiation. So
Bly,x) Vrr and =8(x,y) V ra can resolve into ri[x < y] V ra.

Inside a formula ¢2, defined as in Lemma 3, we allow resolution as follows:
Resolution is allowed between disjunctions inside the Type &8 formula. The results
are added to the Type 3 formula. We also allow resolution between a disjunction
inside a Type 2 formula and a disjunction inside a Type 3 formula. The result
is added to the Type 2 disjunction that was used.

It is easily checked that the resolution rules are sound. If ¢’ is obtained from
¢ by a resolution step, then ¢’ « ¢. Termination follows from the fact that only
finitely many normalized disjunctions exist over a given signature.

Lemma 4. Let ¢o be defined as in Lemma 3. Let ¢3 be its closure under res-
olution, as defined in Definition 2. Let ¢4 be obtained from ¢3 by removing all
disjunctions containing a two-variable literal (other than =) from the Type 3
formula. Then ¢3 has a model iff ¢4 has a model

Proof. 1t is clear that if ¢3 has a model, then ¢4 has a model, since resolution
is a sound inference rule.

For the other direction, let B be a structure in which ¢4 is true. We will
modify B into a new structure 8%, in which ¢3 holds. We use B for the domain
of 8. The new structure B* will have the same domain B. It will be obtained
from B by changing the truth-values of the two-variable predicates. For the rest,
B* will be identical to B.

We assume that both ¢35 and ¢4 are decomposed as in Lemma 3. We write
B1 A~ A By for the decomposition of ¢3, and 5] A--- A G, for the decomposition
of ¢4. We define ; and o} accordingly. We use ¢ for the index of both Type 3
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subformulas. Obviously the (8 can be arranged in such a way that (i # ¢) =
(Bi = ;)

As said before, we intend to reinterprete the two-variable predicates in such
a way that (3, becomes true. When doing so, we run the risk of making a 3; of
Type 2 false. In order to avoid this we need the following:

For each Type 2 subformula 3; of ¢4, we assume a choice function f; of type
B — B. It is defined as follows: Because §; = VaJy(x % y A a;) is true in B,
for each by € B, there exists a by # by in B, s.t. B* = «;(b1,b2). The choice
function f; is defined by choosing one such by for each b;.

Let b; and by be two distinct elements of B. We define the pattern of B on
{b1,b2} as the vector of truth values for the binary predicates involving both of
by and bs. So, if py,...,p, are all the binary predicates symbols of ¢3, then for
each {b1,b2}, the pattern determines whether or not B8 = p;(z,y)(b1,b2) and
whether or not B = p,(y,z)(b1,b2). It does not say anything about the unary
predicates, nor about B = p;(z,y)(b1,b1) or B = p;(x, y) (b2, ba).

The intuition of the construction is as follows: If ¢3 is not true in B, this is
caused by the fact that there are (by,b2) € B, for which B F~ ay(by,bs). This
must be caused by the fact there is a disjunction v(z,y) V é(z) V n(y) € ay, for
which B £ d(z)(b1), B = n(y)(b2), and B £~ a(zx,y).

We will change the pattern on {b1,bs} in such a way that a(x,y) will become
true.

Before we can proceed, we need to define the subformulas that are involved:
Let Ai,..., A, ..., Ap, p >0 be the indices of the Type 2 subformulas of ¢3, for
which fy,(b1) = ba, Similarly, let p1,..., 5, ..., tq, ¢ > 0 be the indices of the
Type 2 subformulas of ¢3, for which f,; (b2) = b1.

The oy and the ay, and «y,; are formulas in conjunctive normal form, i.e.
conjunctions of disjuctions. We are going to select the disjunctions, whose truth
depends on the binary predicates on {b,b2}. For each i, (1 < i < p), let aii be
obtained from vy, by selecting those disjunctions of which the literals involving
one variable are false in B on (b1,b2). Let a3 be obtained by removing the
one-variable predicates from aj . For j,(1 < j < g), we define o, and o},
analogeously.

For a; we need two copies, because of the two directions involved. Let a%l be
obtained from «; be selecting those disjunctions of which the literals involving
one variable are false in B on (b1,b2). Let af, be obtained by deleting the
one-variable predicates from «f . Similarly, let aj, be obtained by selecting the
disjunctions, of which the one-variable predicates are false on (b2, b1). Then af,
is obtained by deleting the one-variable predicates from a%Q.

It is clear that in order to obtain 9*, it is sufficient to replace in B the
patterns on each {b1,b2},b1 # by by a pattern making the aii, aij, afl, afZ
true on (b1, be). The patterns can be replaced in 9B in parallel.

It remains to show that the patterns exist. This is guaranteed by the fact
that a; and the a; of Type 2 are sufficiently closed under resolution. Since we
are considering a fixed (b1, bs), we are dealing with a propositional problem.

We apply Lemma 11, using r = afl U afz, and using c; A --- A ¢y, = aii, aij.
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It is easily checked that all necessary resolvents are allowed by Definition 2.
The aii, O‘i; are consistent, because they are true in B on (b1,b2). It is also
clear of U of, cannot contain the empty clause, since it would originate from
a disjunction in «a; for which the one-variable literals are false in B on (b1, b2).
But this disjunction would be in «} as well, as it does not contain a two-variable

literal. This contradicts the assumption that ¢, is true in 8.

Thus, Lemma 4 tells us that, if we saturate ¢s under resolution, then we
can delete all the disjunctions a(z,y) V 8(z) V y(y) V « = y, for which a(z,y) is
non-empty. Although exhaustive application of resolution is computationally ex-
pensive, in the context of determining satisfiability in the two-variable fragment,
the transformation step from ¢3 to ¢4 in fact comes for free. This is because ex-
isting resolution-based approaches to determining satisfiability in £2 begin with
conversion to Scott normal form, followed by clausification and exhaustive ap-
plication of ordered resolution anyway. All the present procedure requires is that
we perform a resolution version of resolution first, and then pause to delete the
inseparable clauses, before resuming (pretty well) what we would have done even
if no equality were present. It hardly needs mentioning that the elimination of a
whole set of clauses requires no computation whatever: in particular, the model-
theoretic manipulations used to prove Lemma 4 form no part of the decision
procedure for £2.

The negative occurrences can be easily deleted by introducing a new, non-
reflexive predicate neq. We add a formula Va(—neq(z, z)), and replace each neg-
ative equality x % y by neq(z,y). We will do this later, we now first concentrate
on the positive equalities in the Type 3 formulas.

The remaining steps in our equality-deletion procedure are all straightfor-
ward. There is (at most) one positive occurrence of ~ left. In occurs in the
Type 3 subformula a; and the other literals in a; are unary. The following logi-
cal equivalence is simple to verify:

Lemma 5. Let v(x) be a formula not involving the variable y and let §(y) a
formula not involving the variable x. Then the formulas

Vavy(y(z) Vo(y) Ve~ y)

and
Vo y(z) VVz 6(z) vV 3z = vy(z) AVe(y(z) « 6(x)))
are logically equivalent.
Using this, we can use the splitting rule to decompose the disjunctions of
the Type 3 formula. The result is a formula, in all positive occurrences of =

belong to a 3! quantifier. These can be eliminated by introducing new individual
constants.

Lemma 6. Let n be a conjunction of constant-free L2-formulas in prenex form
with quantifier prefizes Va and Vx3y, and for each i (1 < i < m) let {; be a
quantifier- and constant-free formula of £2 not involving the variable y. Define
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0i :=Ci(ei) AN\, Va(Gi(z) — (p(z) < ple)))A
N, Y2y (Gi(2) — (a(z,y) < q(ei, y)))A
N Vavy(Gi(@) — (a(y, ) < q(y, €i)))

where e, . .. ey, are (new) individual constants, p ranges over all unary predicates
mentioned in n or any of the (;, and q ranges over all binary predicates mentioned
in n or any of the ;. Then the formulas

Yi=nA Algigm Nadi(x)

and

Y= A /\1gi§m 0;

are equisatisfiable.

Proof. If B = 4, then it is easy to expand B to a structure B’ such that
B’ E ¢'. Conversely, suppose that B’ = ¢, where the domain of B’ is B. Let
b1, ...bn be the denotations of the constants ey, ...e,, in B’, respectively. Now
define a function f on B as follows:

oy = { i

b otherwise.

And define the structure B with domain f(B) as follows:

B = plf (0)] iff B = p[b]
B = q[f(b), f(O)] iff B = glb, b']

where b ranges over B, p over the unary predicates mentioned in 1)’ and ¢ over
the binary predicates mentioned in ¢’. Since B’ | ¢', B is well-defined. It is
then easy to see that B = .

Theorem 1. Let ¢ be any formula of L2,. Then the steps described in this sec-
tion allow us to compute an equisatisfiable formula ¢* in the class L£2. Indeed,
if ¢* is satisfiable over some domain, then ¢ is satisfiable over a subset of that
domain. Moreover, ¢* can be written as a conjunction of prenex formulas with
quantifier prefives 3x, VxVy and VaIy.

Thus, the satisfiability problem for £2, has been reduced to that for £2. Moreover,
as we have observed, no significant extra computational cost is incurred in this
reduction.

Finally, we note that theorem 1 allows us to infer that £2, has the finite
model property from the corresponding fact about the Godel fragment. This
constitutes an alternative to the proofs cited in Section 2.
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4 The 2-Variable Fragment without Equality

In this section, we provide a new decision procedure for the two-variable frag-
ment without equality. Practically, the method does not differ from the method
given in [dNO0Oa], but the theoretical foundation is different. The method that
we give here is based on a liftable order, i.e. an order that is preserved by sub-
stitution. The advantage of liftable orders, is that they are better understood
theoretically. It is the (far) hope of the authors that this will eventually leed
to an understanding of what makes the resolution decision procedures work. At
this moment, the termination/completeness proofs are a collection of tricks. One
would hope for a real understanding of the relation between model based deci-
sion procedures, and resolution based decision procedures. Decision procedures
based on liftable orders appear to be a step in this direction.

As said before, procedure makes use of indexed resolution [B71], also called
lock resolution. It works as follows: one starts with some clause set upon which
we want to apply resolution. First, integers are attached to the literals in the
initial clause set. This can be done in any arbitrary way; and distinct occurrences
of the same literal can be indexed with different integers. After that, the integers
can be used by an order restriction for determining which literals can be resolved
away. When a resolvent is formed, the literals in the resolvent simply inherit their
indices from the parent clauses. In standard versions of lock-resolution, only the
literals indexed by a maximal integer can be resolved away. Our procedure is
slightly more general: we allow the selection function to look at both the index
and the the literal itself. The key property possessed by this selection function
is that is is obtained by lifting some order < on the ground indexed literals, as
we will explain below.

4.1 Indexed resolution

Definition 3. An indexed literal is a pair (L,a), where L is a literal, and a is
an element of some index set. We use the index set {0,1}. We write L:a instead
of (L,a). An indexed clause is a finite set of indexed literals.

The effect of a substitution © on an indexed literal A:a is defined by (A:a)© =
AB:a. The effect of a substitution on a clause is defined memberwise.

In the sequel we use the term clause to mean either a clause (in the usual
sense of a finite set of literals) or an indexed clause. It will be clear from the
context what type of clause we mean. When present, the indices play no role in
the semantics of the clause; however, they do play a role in determining which
literals are selected. Extending the notion of a selection function to indexed
clauses in the obvious way, we define:

Definition 4. A selection function X' is a function mapping indexed clauses to

indexed clauses for which always X(c) C c¢. For a clause ¢, we call the indexed
literals in X(c) selected.

142



Resolution Let ¢; = {A1:a1} U Ry and ca = {—Az:a2} U Ry be clauses, s.t. Ay
and Ay are unifiable and selected. Let © be the most general unifier of Ay
and As. Then the clause R1© U R3O is a resolvent of c1 and co.

Factoring Let ¢ = {Aj:a1,As:a2} U R be a clause, s.t. Aj:aq is selected, and
A1, Ay have most general unifier ©. Then {A2:a20} U RO is a factor of c.

In addition to resolution and factoring, our decision procedure for £2 uses
the following rules.

Subsumption If for clauses c1, co there is a substitution @, such that ¢;0 C ¢,
then ¢ subsumes co. In that case ¢y can be deleted from the database.
Splitting The splitting rule can be applied when a clause ¢ can be partitioned
into two non-empty parts that do not have overlapping variables. If ¢ can be
partitioned as R; V Ras, then the prover tries to refute Ry and Rs indepen-

dently.

Observe that the subsumption rule has to take the indices into account. The
clause {p(z,y):1} does not subsume the clause {p(x,0):0}.

Definition 5. Let < be an order on ground indexed literals. Let ¢ be a ground
clause containing an indexed literal A:a. An indexed literal A:a is maximal in c,
if there is no literal B:b € ¢ for which A:a < B:b.

We say that a selection function X is obtained by lifting < if it meets the con-
dition that, for every clause ¢ and indezed literal A:a € ¢, if ¢ has an instance
cO in which (A:a)O is maximal, then A:a € X(c).

The significance of Definition 5 lies in the following completeness result, which
has a simple proof. It can be obtained by modifying the completeness proof for
lock resolution of [CL73], or the one in [FLTZ93].

Lemma 7. Let C be a set of initial clauses. Let X' be a selection function ob-
tained by lifting some order < . Let C be a set of indexed clauses satisfying the
following:

— For every clause ¢ = {A1, ..., Ay} € C, there exists an indexed clause d € C
that subsumes some indexing {Ay:aq, . .. ,Ap: ap} of c.

— For every clause c that can be derived from clauses in C, either by resolution
or by factoring, there is a clause d € C that subsumes c.

Then, if C is unsatisfiable, C' contains the empty clause.

4.2 The S2?-Class

The S2-class characterizes the format of clauses obtained from clausifications of
formulas in the Gédel class. The equality-free formulas, produced by the transfor-
mation of Section 3, can be transformed directly into S? by Skolemization. For-
mula in full £2 can be transformed through the Gédel class, or directly through
a structural clause transformation, as is done in [FLTZ93].
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Definition 6. A clause c is in S? if it meets the following conditions:

1. ¢ contains at most 2 variables, and ¢ contains no nested function symbols.
2. If ¢ contains ground literals, then it is a ground clause.

3. Each functional term in ¢ contains all variables occurring in c.

4. There is a literal in ¢ that contains all variables of c.

Note that conditions 2 and 4 can be ensured by application of the splitting rule.

The results of section 3 thus suffice to reduce satisfiability in £2, to satis-
fiability in S2. However, closer examination of the transformation allows us to
be slightly more specific about the class of clauses we need to consider. Start-
ing with an arbitrary £2-formula ¢, theorem 1 guarantees the existence of an
equisatisfiable formula ¢* which is a conjunction of £2-formulas in prenex form
with quantifier prefixes Vz, VaVy and Va3y. Skolemizing and clausifying ¢* thus
yields a collection of clauses in which all function symbols have arity 1. Further-
more, given that the clauses in question are to be indexed in some way, there is
nothing to stop us indexing two-variable clauses with index 1 and clauses with
fewer than two variables with index 0. This leads us to the definition:

Definition 7. The class S*1? is defined as the class S?, but with additional
conditions:

5. All functions are 1-place.
6. If c contains 2 variables, then the indexed literals with 2 variables are exactly
the literals with index 1.

Notice, incidentally, that Conditions 3 and 5 immediately imply that all two-
variable clauses are function-free.

At first sight, it might appear that we are making no use of the possibil-
ity of giving different indices to distinct occurrences of the same literal. How-
ever, resolving {p(x,y): 1, ¢(z,y): 1, ¢(x, x):0} with {-p(z, x):1}, yields the clause
{q(z,2):1,¢(x,2):0}, in which different indices are used for distinct occurrences
of the same literal. To obtain a decision procedure for S2*¢, it suffices to de-
fine a selection function which is obtained by lifting, and which ensures that
all derived clauses are within S2*?. Correctness follows from the soundness of
resolution and lemma 7; termination follows from the fact that for a given finite
signature, there exist only finitely many non-equivalent clauses in S2*.

4.3 A decision procedure for the S2*¢-Class
We begin by establishing a suitable order on ground literals.

Definition 8. Let the order <5 on ground indexed literals be defined as follows:

— If literal A is strictly less deep than B, then A:a <2 B:b.
— If literal A and B have the same depth, and a < b, then A:a <4 B:b.

Next, we give the selection function X5 used in the second phase of resolution.
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Definition 9. Fvery indexed literal A:a in a clause c is selected, unless one of
the following two conditions holds:

— A has no functional terms, a = 0, and there is a literal B:b in ¢ with b= 1.
— A:a has no functional terms, and there are literals with functional terms in
c.

Lemma 8. Y5 is obtained by lifting <o .

Proof. Let ¢ be an arbitrary clause in S?*?. Let A:a be a literal in ¢ that is not
selected. We need to show that in every instance cO of ¢, the literal A@:qa is
non-maximal. First observe that A cannot have any functional terms.

If there is a literal B:b with functional terms in ¢, then this functional term
contains all variables of A. So, for every substitution © it is the case that BO is
deeper than AO. As a consequence, A@:a is non-maximal in cO.

If there is no literal B:b with functional terms, then a = 0 and there must be
a B:b € ¢ with b = 1. If ¢ is a one-variable clause, then A@ and BO always
have the same depth, for every substitution @. Because of this A©:0 <5 BO:1.
Otherwise Condition 6 applies to c. Literal A contains 1 variable and literal
B contains 2 variables. Write A[X]:0 and B[X,Y]:1. Let © be a substitu-
tion. If YO is deeper than X O, then B[X,Y]O is deeper than A[X]O and
A[X]6:0 <2 B[X,Y]O:1. Otherwise A[X]O and B[X,Y]O have equal depth
and also A[X]0:0 <3 B[X,Y]O:1. This completes the proof.

Note how the indices play an essential role in the definition of X5: no selection

function obatined by lifting an ordering on unindexed literals could ensure that

p(x,y) is always prefered over p(x, ), since the literals have a common instance.
The next step is to show that resolution with X5 never leads outside S2*¢.

Lemma 9. FEach literal selected by Yo contains all variables of its clause, and
contains a deepest occurrence of each variable in the clause.

Proof. If the clause is ground, then the lemma is trivial. If the clause has one
variable, then all literals have one variable, by condition 2. Moreover, if there
exist any functional literals in the clause at all, any selected clause is functional,
and so contains a deepest occurrence of its literal by condition 1. If the clause is
two-variable, it must be non-functional by conditions 3 and 5. Thus, any selected
literal must have index 1, and hence contains both variables by condition 6.

Lemma 10. The strategy keeps clauses inside S*1.

Proof. Tt is quite standard to show that every selection function that satisfies
the conditions of Lemma 9 preserves Conditions 1-4 of Definition 6. See for
example the remark on p. 115 of [FLTZ93]. Condition 5 is obviously preserved
by resolution. The only difficulty lies in showing that condition 6 applies to the
resolvent of any two clauses in S?*%. Let ¢ by such a resolvent, then, and assume
that c is a two-variable clause.
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Since all functions are unary, it is obvious that any two-variable literal in ¢ must
have come from a two-variable literal in one of the parent clauses, and hence
must have index 1.

Conversely, we must show that any 1-indexed literal in c¢ is two-variable. Let the
parents of ¢ be ¢; and co, let By € ¢; and Bs € ¢ be the literals resolved upon,
and let @ be the substitution used in this resolution. Without loss of generality,
any l-indexed literal in ¢ may be written A©:1, where A:1 € ¢;. By lemma 9,
Vars(ci) = Vars(B;) and Vars(cz) = Vars(Bz). Hence Vars(c;0) = Vars(B10)
and Vars(c2@) = Vars(B2O). But we also have Vars(B10) = Vars(B26), whence
Vars(c10) = Vars(c20). Thus, Vars(c) C Vars(c10) U Vars(ca©@) = Vars(c10).
Since c; is in S?T% condition 6 implies Vars(A) = Vars(c1), whence Vars(c) C
Vars(A) as required.

Gathering together the lemmas in this section, we have

Theorem 2. The rules of resolution, factoring and subsumption give us a de-
cision procedure for sets of clauses in the class S*1.

This completes the description of the resolution procedure for £2.
We end the section with a technical lemma that was needed for the proof of
Lemma 4.

Lemma 11. Letcy,...,c, andr be sets of propositional clauses. Let r be closed
under resolution. Furthermore assume that each possible resolvent between a
clause of a ¢ and a clause of v is in c. Then, if ¢4 N -+ A ¢y s consistent
and r does not contain the empty clause, then c1 A--- A ey AT 1S consistent.

Proof. The result can be easily obtained from the completeness of semantic
resolution. Semantic resolution is obtained by fixing an interpretation I, and by
forbidding resolution steps between two clauses, that are both true in I. Semantic
resolution is proven complete in [CL73].

Since ¢; A -+ A ¢y, is consistent, there is an interpretation I that makes
et N---ANey, true. If ¢y A--- A ey, AT were inconsistent, then r would contain the
empty clause. All clauses that are false in I, must be in r. Hence a resolution
step involving a false clause is always allowed.

5 Conclusions

In this paper we have given a practical procedure for deciding satisfiablity in the
two-variable fragment with equality. This procedure involves two new contribu-
tions. The first is the use of resolution to transform formulas in the two-variable
fragment with equality to the two-variable fragment without equality. The second
is a new resolution-based procedure for deciding satisfiability in the two-variable
fragment without equality based on a selection function obtained by lifting an
order on ground indexed literals.

At this moment, handling of constants is unsatisfactory. We hope to be able
to adapt Definition 2 and Lemma 4 in such a way that they can handle constants.
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