Max-Planck-Institut für Informatik
max planck institut
informatik
mpii logo Minerva of the Max Planck Society
 

MPI-I-92-122

A faster 11/6-approximation algorithm for the Steiner tree problem in graphs

Zelikovsky, Alexander

MPI-I-92-122. June 1992, 8 pages. | Status: available - back from printing | Next --> Entry | Previous <-- Entry

Abstract in LaTeX format:
The Steiner problem requires a shortest tree spanning a given
vertex subset $S$ within graph $G=(V,E)$. There are
two 11/6-approximation
algorithms with running time $O(VE+VS^2+S^4)$ and
$O(VE+VS^2+S^{3+{1\over 2}})$, respectively. Now we decrease
the implementation time to $O(ES+VS^2+VlogV)$.
Acknowledgement:
References to related material:

To download this research report, please select the type of document that fits best your needs.Attachement Size(s):
MPI-I-92-122.pdfMPI-I-92-122.pdf6618 KBytes
Please note: If you don't have a viewer for PostScript on your platform, try to install GhostScript and GhostView
URL to this document: http://domino.mpi-inf.mpg.de/internet/reports.nsf/NumberView/1992-122
Hide details for BibTeXBibTeX
@TECHREPORT{Zelikovsky92b,
  AUTHOR = {Zelikovsky, Alexander},
  TITLE = {A faster 11/6-approximation algorithm for the Steiner tree problem in graphs},
  TYPE = {Research Report},
  INSTITUTION = {Max-Planck-Institut f{\"u}r Informatik},
  ADDRESS = {Im Stadtwald, D-66123 Saarbr{\"u}cken, Germany},
  NUMBER = {MPI-I-92-122},
  MONTH = {June},
  YEAR = {1992},
  ISSN = {0946-011X},
}