Max-Planck-Institut für Informatik
max planck institut
mpii logo Minerva of the Max Planck Society


Labelled modal logics: quantifiers

Basin, David A. and Matthews, Seán and Viganò, Luca

MPI-I-97-2-001. January 1997, 31 pages. | Status: available - back from printing | Next --> Entry | Previous <-- Entry

Abstract in LaTeX format:
In previous work we gave an approach, based on labelled natural
deduction, for formalizing proof systems for a large class of
propositional modal logics, including K, D, T, B, S4, S4.2, KD45,
and S5. Here we extend this approach to quantified modal logics,
providing formalizations for logics with varying, increasing,
decreasing, or constant domains. The result is modular both with
respect to properties of the accessibility relation in the Kripke
frame and the way domains of individuals change between worlds.
Our approach has a modular metatheory too; soundness, completeness,
and normalization are proved uniformly for every logic in our class.
Finally, our work leads to a simple implementation of a modal logic
theorem prover in standard logical frameworks.

References to related material:

To download this research report, please select the type of document that fits best your needs.Attachement Size(s):
MPI-I-97-2-001.ps332 KBytes
Please note: If you don't have a viewer for PostScript on your platform, try to install GhostScript and GhostView

URL to this document:
Hide details for BibTeXBibTeX
  AUTHOR = {Basin, David A. and Matthews, Se{\'a}n and Vigan{\`o}, Luca},
  TITLE = {Labelled modal logics: quantifiers},
  TYPE = {Research Report},
  INSTITUTION = {Max-Planck-Institut f{\"u}r Informatik},
  ADDRESS = {Im Stadtwald, D-66123 Saarbr{\"u}cken, Germany},
  NUMBER = {MPI-I-97-2-001},
  MONTH = {January},
  YEAR = {1997},
  ISSN = {0946-011X},