MPI-INF Logo
MPI-INF/SWS Research Reports 1991-2021

2. Number - All Departments

MPI-I-2003-4-006

Visualization of volume data with quadratic super splines

Roessl, Christian and Zeilfelder, Frank and Nürnberger, Günther and Seidel, Hans-Peter

April 2003, 15 pages.

.
Status: available - back from printing

We develop a new approach to reconstruct non-discrete models from gridded volume samples. As a model, we use quadratic, trivariate super splines on a uniform tetrahedral partition $\Delta$. The approximating splines are determined in a natural and completely symmetric way by averaging local data samples such that appropriate smoothness conditions are automatically satisfied. On each tetrahedron of $\Delta$ , the spline is a polynomial of total degree two which provides several advantages including the e cient computation, evaluation and visualization of the model. We apply Bernstein-B{\´e}zier techniques wellknown in Computer Aided Geometric Design to compute and evaluate the trivariate spline and its gradient. With this approach the volume data can be visualized e ciently e.g. with isosurface ray-casting. Along an arbitrary ray the splines are univariate, piecewise quadratics and thus the exact intersection for a prescribed isovalue can be easily determined in an analytic and exact way. Our results confirm the e ciency of the method and demonstrate a high visual quality for rendered isosurfaces.
Note:
Das Paper war damals submitted, so da"s ich es nicht "offentlich machen wollte, der Report diente in erster Linie dem Jahresbericht und der Fachbeiratsbegehung

  • MPI-I-2003-04-006.pdf
  • Attachement: MPI-I-2003-04-006.pdf (2985 KBytes)

URL to this document: https://domino.mpi-inf.mpg.de/internet/reports.nsf/NumberView/2003-4-006

Hide details for BibTeXBibTeX
@TECHREPORT{RoesslZeilfelderNürnbergerSeidel2003,
  AUTHOR = {Roessl, Christian and Zeilfelder, Frank and N{\"u}rnberger, G{\"u}nther and Seidel, Hans-Peter},
  TITLE = {Visualization of volume data with quadratic super splines},
  TYPE = {Research Report},
  INSTITUTION = {Max-Planck-Institut f{\"u}r Informatik},
  ADDRESS = {Stuhlsatzenhausweg 85, 66123 Saarbr{\"u}cken, Germany},
  NUMBER = {MPI-I-2003-4-006},
  MONTH = {April},
  YEAR = {2003},
  ISSN = {0946-011X},
  NOTE = {Das Paper war damals submitted, so da"s ich es nicht "offentlich machen
wollte, der Report diente in erster Linie dem Jahresbericht und der
Fachbeiratsbegehung},
}