Max-Planck-Institut für Informatik
max planck institut
informatik
mpii logo Minerva of the Max Planck Society
 

MPI-I-91-125

Edge separators for graphs of bounded genus with applications

Sýkora, Ondrej and Vrto, Imrich

MPI-I-91-125. November 1991, 10 pages. | Status: available - back from printing | Next --> Entry | Previous <-- Entry

Abstract in LaTeX format:
$n$-vertex graph of positive genus $g$ and
maximal degree $k$ has an $O(\sqrt{gkn})$ edge separator. This bound
is best possible to within a constant factor. The separator can be
found in $O(g+n)$ time provided that we start with an imbedding
of the graph in its genus surface. This extends known results on
planar graphs and similar results about vertex separators.
We apply the edge
separator to the isoperimetric problem, to efficient embeddings of
graphs of genus $g$ into various classes of graphs including trees,
meshes and hypercubes and to showing lower bounds on crossing numbers
of $K_n,K_{m,n}$ and $Q_n$ drawn on surfaces of genus $g$.
Acknowledgement:
References to related material:

To download this research report, please select the type of document that fits best your needs.Attachement Size(s):
MPI-I-91-125.pdfMPI-I-91-125.pdf9650 KBytes
Please note: If you don't have a viewer for PostScript on your platform, try to install GhostScript and GhostView
URL to this document: http://domino.mpi-inf.mpg.de/internet/reports.nsf/NumberView/1991-125
Hide details for BibTeXBibTeX
@TECHREPORT{SykoraVrto91b
,
  AUTHOR = {Sýkora, Ondrej and Vrto, Imrich},
  TITLE = {Edge separators for graphs of bounded genus with applications},
  TYPE = {Research Report},
  INSTITUTION = {Max-Planck-Institut f{\"u}r Informatik},
  ADDRESS = {Im Stadtwald, D-66123 Saarbr{\"u}cken, Germany},
  NUMBER = {MPI-I-91-125},
  MONTH = {November},
  YEAR = {1991},
  ISSN = {0946-011X},
}