Max-Planck-Institut für Informatik
max planck institut
informatik
mpii logo Minerva of the Max Planck Society
 

MPI-I-92-102

Maintaining the visibility map of spheres while moving the viewpoint on a circle at infinity

Lenhof, Hans-Peter and Smid, Michiel

MPI-I-92-102. January 1992, 16 pages. | Status: available - back from printing | Next --> Entry | Previous <-- Entry

Abstract in LaTeX format:
We investigate 3D visibility problems for scenes that consist of
$n$ non-intersecting spheres. The
viewing point $v$ moves on a flightpath that
is part of a ``circle at infinity'' given by
a plane $P$ and a range of angles $\{\alpha(t)|t\in [0:1]\}\subset
[0:2\pi]$. At
``time'' $t$, the lines of sight are parallel to the ray $r(t)$ in the
plane $P$, which starts in the origin of $P$ and represents the angle
$\alpha(t)$ (orthographic views of the scene).
We describe algorithms that compute the visibility graph at the
start of the flight, all time parameters $t$ at which
the topology of the scene changes, and the corresponding topology
changes.
We present an algorithm with running time
$O((n+k+p)\log n)$, where $n$ is the number of spheres in the scene;
$p$ is the number of transparent topology changes (the number of
different scene topologies visible along the flightpath, assuming that
all spheres are transparent); and $k$ denotes the number of
vertices (conflicts)
which are in the (transparent) visibility graph at the start
and do not disappear during the flight.
Acknowledgement:
References to related material:

To download this research report, please select the type of document that fits best your needs.Attachement Size(s):
92-102.pdf92-102.pdf45769 KBytes
Please note: If you don't have a viewer for PostScript on your platform, try to install GhostScript and GhostView
URL to this document: http://domino.mpi-inf.mpg.de/internet/reports.nsf/NumberView/1992-102
Hide details for BibTeXBibTeX
@TECHREPORT{LenhofSmid92a,
  AUTHOR = {Lenhof, Hans-Peter and Smid, Michiel},
  TITLE = {Maintaining the visibility map of spheres while moving the viewpoint on a circle at infinity},
  TYPE = {Research Report},
  INSTITUTION = {Max-Planck-Institut f{\"u}r Informatik},
  ADDRESS = {Im Stadtwald, D-66123 Saarbr{\"u}cken, Germany},
  NUMBER = {MPI-I-92-102},
  MONTH = {January},
  YEAR = {1992},
  ISSN = {0946-011X},
}