 max planck institut
informatik MPI-I-96-1-007

All-pairs min-cut in sparse networks

Arikati, Srinivasa R. and Chaudhuri, Shiva and Zaroliagis, Christos D.

MPI-I-96-1-007. March 1996, 27 pages. | Status: available - back from printing | Next --> Entry | Previous <-- Entry

Abstract in LaTeX format:
Algorithms are presented for the all-pairs min-cut problem in bounded tree-width, planar and sparse networks. The approach used is to preprocess the input $n$-vertex network so that, afterwards, the value of a min-cut between any two vertices can be efficiently computed. A tradeoff is shown between the preprocessing time and the time taken to compute min-cuts subsequently. In particular, after an $O(n\log n)$ preprocessing of a bounded tree-width network, it is possible to find the value of a min-cut between any two vertices in constant time. This implies that for such networks the all-pairs min-cut problem can be solved in time $O(n^2)$.
This algorithm is used in conjunction with a graph decomposition technique of Frederickson to obtain algorithms for sparse and planar networks. The running times depend upon a topological property, $\gamma$, of the input network.
The parameter $\gamma$ varies between 1 and $\Theta(n)$; the algorithms perform well when $\gamma = o(n)$.
The value of a min-cut can be found in time $O(n + \gamma^2 \log \gamma)$ and all-pairs min-cut can be solved in time $O(n^2 + \gamma^4 \log \gamma)$ for sparse networks. The corresponding running times4 for planar networks are $O(n+\gamma \log \gamma)$ and $O(n^2 + \gamma^3 \log \gamma)$, respectively. The latter bounds depend on a result of independent interest: outerplanar networks have small mimicking'' networks which are also outerplanar.
Acknowledgement:
References to related material:

To download this research report, please select the type of document that fits best your needs.Attachement Size(s):  318 KBytes; 317 KBytes
Please note: If you don't have a viewer for PostScript on your platform, try to install GhostScript and GhostView

URL to this document: http://domino.mpi-inf.mpg.de/internet/reports.nsf/NumberView/1996-1-007 BibTeX
@TECHREPORT{ArikatiChaudhuriZaroliagis96,
AUTHOR = {Arikati, Srinivasa R. and Chaudhuri, Shiva and Zaroliagis, Christos D.},
TITLE = {All-pairs min-cut in sparse networks},
TYPE = {Research Report},
INSTITUTION = {Max-Planck-Institut f{\"u}r Informatik},
ADDRESS = {Im Stadtwald, D-66123 Saarbr{\"u}cken, Germany},
NUMBER = {MPI-I-96-1-007},
MONTH = {March},
YEAR = {1996},
ISSN = {0946-011X},
}