
Logic Programming with

Pseudo-Boolean Constraints

Alexander Bockmayr

MPI–I–91–227 April/December 1991

Author’s Address

Alexander Bockmayr, Max-Planck-Institut für Informatik, Im Stadtwald, D-6600 Saarbrücken,

bockmayr@mpi-sb.mpg.de

Publication Notes

The present report has been submitted for publication elsewhere and will be copyrighted if

accepted.

Acknowledgements

I would like to thank Peter Barth, David Basin and Harald Ganzinger for their comments on a

preliminary version of this paper.

Abstract

Boolean constraints play an important role in various constraint logic program-

ming languages. In this paper we consider pseudo-Boolean constraints, that

is equations and inequalities between pseudo-Boolean functions. A pseudo-

Boolean function is an integer-valued function of Boolean variables and thus a

generalization of a Boolean function. Pseudo-Boolean functions occur in many

application areas, in particular in problems from operations research. An in-

teresting connection to logic is that inference problems in propositional logic

can be translated into linear pseudo-Boolean optimization problems. More

generally, pseudo-Boolean constraints can be seen as a particular way of com-

bining two of the most important domains in constraint logic programming:

arithmetic and Boolean algebra.

In this paper we define a new constraint logic programming language

CLP(PB) for logic progamming with pseudo-Boolean constraints. The lan-

guage is an instance of the general constraint logic programming language

scheme CLP(X) and inherits all the typical semantic properties. We show

that any pseudo-Boolean constraint has a most general solution and give

variable elimination algorithms for pseudo-Boolean unification and uncon-

strained pseudo-Boolean optimization. Both algorithms subsume the well-

known Boolean unification algorithm of Büttner and Simonis.

Keywords

Constraint Logic Programming, Operations Research, Pseudo-Boolean Unification, Pseudo-

Boolean Optimization, 0-1 Programming

Contents

1 Introduction 2

2 Boolean and Pseudo-Boolean Functions 3

3 Logic Programming with Pseudo-Boolean Constraints 7

4 Solving Pseudo-Boolean Constraints 8

4.1 A Variable Elimination Algorithm for Pseudo-Boolean Unification 8

4.2 Solving Arbitrary Pseudo-Boolean Constraints . 11

5 Pseudo-Boolean Optimization 11

5.1 The Basic Algorithm for Pseudo-Boolean Optimization 12

5.2 The Special Version of the Basic Algorithm . 16

6 Example 17

7 Conclusion and Further Research 18

A Tree-Width of a Graph 20

1

1 Introduction

Boolean constraints play an important role in various constraint logic programming languages

[Col87, DvHS+88, ASS+88]. In this paper we consider pseudo-Boolean constraints, that is equations

and inequalities between pseudo-Boolean functions. A pseudo-Boolean function is an integer-valued

function f : {0, 1}n → Z and thus generalizes the notion of a Boolean function f : {0, 1}n → {0, 1}.
Pseudo-Boolean functions have been studied for a long time [HR68]. There exist many inter-

esting methods and results on the solution of pseudo-Boolean constraints that have been developed

mainly in the area of operations research. It seems very natural to apply these techniques in the

context of constraint logic programming. A constraint logic programming language can be consid-

erably enhanced by allowing pseudo-Boolean constraints. Many problems from various application

areas can be expressed very naturally using pseudo-Boolean functions.

Consider for example the following knapsack problem. Suppose there is a vessel with capacity

w and goods gi with weight wi and value vi for i = 1, . . . , 12. We introduce a Boolean variable

Xi, i = 1, . . . , 12, which indicates whether or not the good gi is loaded on the vessel. The possible

cargos not exceeding the capacity of the vessel can be determined by the following Horn clause

involving a pseudo-Boolean constraint

cargo(X1,. . . ,X12) :-

w1*X1 +. . . + w12*X12 ≤ w.

If we want to find the most valuable cargo, this can be done using a metapredicate max/2 that

maximizes a pseudo-Boolean function subject to some pseudo-Boolean constraint.

most-valuable-cargo(X1,. . . ,X12) :-

max(v1*X1 +. . . + v12*X12, cargo(X1,. . . ,X12)).

An interesting connection between logic and pseudo-Boolean optimization is that inference

problems in propositional logic can be translated into linear pseudo-Boolean optimization problems.

For example, suppose we want to know whether X2 is implied by the set of clauses

X1 ∨ X2 ∨ X3,

X1 ∨ X2 ∨ X4,

X1 ∨ X3,

X1 ∨ X3 ∨ X4,

X1 ∨ X3 ?

In order to solve this problem we may minimize X2 subject to

+X1 +X2 +X3 ≥ 1,

−X1 +X2 −X4 ≥ 1− 2,

−X1 +X3 ≥ 1− 1,

−X1 −X3 +X4 ≥ 1− 2,

+X1 −X3 ≥ 1− 1

The logical implication holds if and only if the minimum of X2 is equal to 1.

There are many remarkable parallels between theorem proving and mathematical program-

ming. The logical concepts of resolution, extended resolution, input and unit refutation, the Davis-

Putnam-Procedure, and drawing of inferences pertinent to a given topic are closely related to the

2

mathematical concepts of cutting planes, Chvátal’s method, elementary closure, branch and bound,

and projection of a polytope, respectively (see [Hoo88] for a survey).

More generally, pseudo-Boolean constraints can be seen as a particular way of combining two

of the most important domains in constraint logic programming: arithmetic and Boolean algebra.

So far we considered only linear pseudo-Boolean functions. In many applications however one

has to deal with non-linear functions and non-linear constraints. For example, suppose that we

want to model the interaction of n objects ob1, ob2, . . . , obn, each of which can be chosen (Xi = 1)

or not (Xi = 0). For any pair of objects (obi, obj) let aij measure the interaction between obi and

obj . If the global interaction is given by the sum of the interactions between all pairs of chosen

objects, then it can be written as a quadratic pseudo-Boolean function
∑n

i=1

∑n
j=1 aijXiXj of the

n variables X1, . . . , Xn. Maximizing or minimizing the global interaction means maximizing or

minimizing this pseudo-Boolean function.

Typical applications of non-linear pseudo-Boolean functions include sequencing problems, time-

table scheduling, coding theory, plant location [HR68], inter-city traffic [Rhy70], kinetic energy in

spin-glass models [KGV83], or supply support of space stations [FGGB66].

The organization of the paper is as follows: We start in Section 2 with some basic facts about

Boolean and pseudo-Boolean functions. In Section 3 we define a new constraint logic programming

language CLP(PB) for logic progamming with pseudo-Boolean constraints which is an instance of

the general constraint logic programming language scheme CLP(X). In Section 4 we present some of

the ideas that can be used in order to solve pseudo-Boolean constraints. We show that any system of

pseudo-Boolean constraints has a most general solution and give a variable elimination algorithm

for computing most general pseudo-Boolean unifiers. In Section 5 we consider the problem of

optimizing pseudo-Boolean functions. We present a variable elimination algorithm for pseudo-

Boolean optimization and discuss its relationship to the well-known Boolean unification algorithm

of Büttner and Simonis [BS87]. In Section 6 we give a typical example for the application of our

concepts. Finally, Section 7 contains the conclusion and a discussion of further work.

2 Boolean and Pseudo-Boolean Functions

We begin with some basic facts about Boolean and pseudo-Boolean functions. At some places we

will use the terminology of equational logic (see [HO80] for additional information).

Definition 1 A Boolean function is a mapping f : {0, 1}n → {0, 1}.
A pseudo-Boolean function is a mapping g : {0, 1}n → Z where Z denotes the ring of integer

numbers.

If g : {0, 1}n → Z is a pseudo-Boolean function, then the Boolean function g ̸= : {0, 1}n → {0, 1}
defined by

g ̸=(X1, . . . , Xn) =

{
1 if g(X1, . . . , Xn) ̸= 0

0 if g(X1, . . . , Xn) = 0

is called the reduct of g.

Next we introduce a signature that allows to express Boolean and pseudo-Boolean functions as

terms.

3

Definition 2 Consider the order-sorted signature with two sort symbols bool ⊆ integer and the

sets of function symbols

Fbool = {0, 1 :→ bool, · : bool→ bool

⊕,∧,∨ : bool × bool→ bool}
Fpsbool = {0, 1 :→ integer,

+, ∗ : integer × integer → integer,

− : integer → integer}

Let

Vbool = {X,Y, Z,X1, X2, . . .}

Vinteger = {x, y, z, x1, x2, . . .}

denote countably infinite sets of variables of sort bool and integer. The terms in the term algebra

T (Fbool, Vbool) are called Boolean terms and those in T (Fpsbool, Vbool) pseudo-Boolean terms.

By interpreting · as negation, ⊕ as sum modulo 2, ∧ as conjunction, and ∨ as disjunction,

any Boolean term t ∈ T (Fbool, Vbool) containing n variables generates a n-ary Boolean function

t̂ : {0, 1}n → {0, 1}. Similarly, by interpreting the function symbols +, ∗,− as the usual arithmetical

operations on integer numbers any pseudo-Boolean term t ∈ T (Fpsbool, Vbool) containing n variables

generates a n-ary pseudo-Boolean function t̂ : {0, 1}n → Z.

For example, the Boolean term X ⊕ Y ⊕X ∧ Y generates the Boolean function f : {0, 1}2 →
{0, 1}, f(0, 0) = 0, f(0, 1) = f(1, 0) = f(1, 1) = 1. The pseudo-Boolean termX+Y +X∗Y generates

the pseudo-Boolean function g : {0, 1}2 → Z, g(0, 0) = 0, g(0, 1) = g(1, 0) = 1, g(1, 1) = 3.

Conversely, any Boolean or pseudo-Boolean function has a canonical term representation, the

polynomial normal form, which is introduced in the next proposition.

Proposition 3 1. For any Boolean function f : {0, 1}n → {0, 1} there is up to associativity and

commutativity of ⊕,∧ a unique Boolean term of the form⊕
I∈Ω

∧
i∈I

Xi, (1)

with a collection Ω of subsets of {1, . . . , n}, that generates f.

2. For any pseudo-Boolean function g : {0, 1}n → Z there is up to associativity and commuta-

tivity of +, * a unique pseudo-Boolean term of the form∑
I∈Ω

cI
∏
i∈I

Xi, (2)

with a collection Ω of subsets of {1, . . . , n} and coefficients cI ∈ Z \ {0}, that generates g.

Proof: See [HR68] 2

Example 4 The function g : {0, 1}3 → Z defined by the table

4

X Y Z g(X,Y,Z)

0 0 0 -5

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 -3

1 0 1 8

1 1 0 0

1 1 1 6

has the polynomial normal form

g(X,Y, Z) = −5 + 2X + 5Y + 5Z − 2XY + 6XZ − 5Y Z

Note that there exist also other representations, for example

g(X,Y, Z) = 2XY + 6XZ − 5Y Z,

where X is an abbreviation for 1−X.

In order to obtain a syntactic characterization of those terms that generate the same function

we need equational theories for Boolean and pseudo-Boolean terms. An equational theory is a

congruence relation ≡E on the term algebra which is generated by a set of equations E. For two

terms s, t we have s ≡E t if and only if s and t can be proven equal using the equations in E

[HO80].

Definition 5 1. The equational theory ≡B of Boolean terms is generated by the set of equations

B = {X ⊕ (Y ⊕ Z)
.
= (X ⊕ Y)⊕ Z,

X ⊕ 0
.
= X,

X ⊕X
.
= 0,

X ⊕ Y
.
= Y ⊕X,

X ∧ (Y ∧ Z)
.
= (X ∧ Y) ∧ Z,

X ∧ 1
.
= X,

X ∧ Y
.
= Y ∧X,

X ∧ (Y ⊕ Z)
.
= (X ∧ Y)⊕ (X ∧ Z),

X ∧X
.
= X,

X
.
= X ⊕ 1,

X ∨ Y
.
= (X ⊕ Y)⊕X ∧ Y }

2. The equational theory ≡PB of pseudo-Boolean terms is generated by the set of equations

PB = {x+ (y + z)
.
= (x+ y) + z,

x+ 0
.
= x,

5

x+ (−x) .
= 0,

x+ y
.
= y + x,

x ∗ (y ∗ z) .
= (x ∗ y) ∗ z,

x ∗ 1 .
= x,

x ∗ y .
= y ∗ x,

x ∗ (y + z)
.
= (x ∗ y) + (x ∗ z),

X ∗X .
= X}

The next proposition shows that two terms denote the same function iff they are congruent

modulo the equational theory ≡PB or ≡B respectively.

Proposition 6 1. Two Boolean terms s, t ∈ T (Fbool, Vbool) generate the same Boolean function

iff they are congruent modulo the theory B, that is ŝ = t̂ iff s ≡B t.

2. Two pseudo-Boolean terms s, t ∈ T (Fpsbool, Vbool) generate the same pseudo-Boolean function

iff they are congruent modulo the theory PB, that is ŝ = t̂ iff s ≡PB t.

Proof: We prove only the second part of the theorem. The first part is completely analogous.

“⇐=”: If s ≡PB t, then by the well-known theorem of Birkhoff [HO80] the equation s
.
= t

holds in all models of the set of equations PB, in particular in the algebra ({0, 1},Z). This means

that for any variable assignment σ : Vbool → {0, 1} the terms s and t have the same value. This is

equivalent to say that the pseudo-Boolean functions generated by s and t are the same.

“=⇒”: Using the equations in PB we may transform the pseudo-Boolean terms s, t to pseudo-

Boolean terms s↓ ≡PB s and t↓ ≡PB t such that s↓ and t↓ are of the form (2). From “⇐=” we

deduce that ŝ = ŝ↓ and t̂ = t̂↓. From the preceding proposition and the assumption ŝ = t̂ we know

that s↓ and t↓ are the same up to associativity and commutativity of +, ∗. This implies s↓ ≡PB t↓
and consequently s ≡PB t. 2

Boolean functions can be described by both Boolean and pseudo-Boolean terms. A canonical

transformation between the two representations is given in the next definition.

Definition 7 The pseudo-Boolean form tP ∈ T (Fpsbool, Vbool) of a term t ∈ T (Fbool ∪Fpsbool, Vbool)

is obtained by normalizing t using the canonical term rewrite system

P = {X ⊕ Y → X + Y − (X ∗ Y +X ∗ Y),

X ∧ Y → X ∗ Y,
X → 1−X,

X ∨ Y → X + Y −X ∗ Y }

Lemma 8 For any Boolean term t ∈ T (Fbool, Vbool) the functions generated by t and tP agree, that

is t̂ = t̂P .

Proof: The equations X ⊕ Y
.
= X + Y − (X ∗ Y +X ∗ Y), X ∧ Y

.
= X ∗ Y,X .

= 1−X,X ∨ Y
.
=

X +Y −X ∗Y hold in the algebra ({0, 1},Z). This implies ({0, 1},Z) |= t
.
= tP and we get t̂ = t̂P .

2

6

Lemma 9 Let s, t ∈ T (Fbool, Vbool) be two Boolean terms. Then s ≡B t iff sP ≡PB tP .

Proof: By proposition 6 we have s ≡B t iff ŝ = t̂. By the preceding lemma ŝ = ŝP and t̂ = t̂P .

Again by proposition 6, sP ≡PB tP iff ŝP = t̂P . Altogether this yields s ≡B t iff ŝ = t̂ iff ŝP =

t̂P iff sP ≡PB tP . 2

We close this section by an easy lemma that we will need several times in the sequel.

Lemma 10 Suppose f, g : {0, 1}n → Z are pseudo-Boolean functions and u : {0, 1}n → {0, 1} is a

Boolean function. Then f ∗ u+ g ∗ u = 0 implies f ∗ u = g ∗ u = 0 and f ∗ g = 0.

Proof: Assume f ∗u+ g ∗u = 0. Multiplying this equation with u yields 0 = f ∗u∗u+ g ∗u∗u =

f ∗ u. In the same way, multiplication with u yields 0 = f ∗ u ∗ u + g ∗ u ∗ u = g ∗ u. Finally,

f ∗ g = f ∗ g ∗ (u+ u) = f ∗ g ∗ u+ f ∗ g ∗ u = 0 + 0 = 0. 2

3 Logic Programming with Pseudo-Boolean Constraints

We now introduce a constraint logic programming language CLP(PB) over an algebraic structure

PB that allows us to handle equations and inequalities between pseudo-Boolean functions. The

language is an instance of the constraint logic programming language scheme CLP(X) of [JL86,

JL87].

The algebraic structure in question is the order-sorted algebra PB over the signature Σ =

(S, F, P) with

S = {bool ⊆ integer ⊆ tree}

F = Fbool ∪ Fpsbool ∪ {fi : treeni → tree | i = 1, . . . , k, k ≥ 0, ni ≥ 0}

P = { .=: tree× tree→ tree,≤, <,≥, >: integer × integer → integer}

where the interpretation of the sort, function and predicate symbols is the usual one.

V = Vbool ∪ Vinteger ∪ Vtree denotes a collection of countably infinite sets of variables of the

different sorts.

An atomic pseudo-Boolean constraint is of the form

s
.
= t, u ≤ v, u < v, u ≥ v, or u > v

with terms s, t ∈ T (F, V) and pseudo-Boolean terms u, v ∈ T (Fpsbool, Vbool). A pseudo-Boolean

constraint is a possibly empty finite set of atomic constraints.

An atom is of the form p(t1, . . . , tn) where p is a predicate symbol distinct from
.
=,≤, <,≥, >

and ti ∈ T (F, V), i = 1, . . . , n, n ≥ 0, are terms.

A CLP(PB) constraint logic program is defined over a signature Σ⋆ = (S, F, P ⋆) where P ⋆∩P =

Ø. It consists of a finite set of constraint rules each being of the form

H :- c ∥ B1, . . . , Bn

where c is a possibly empty pseudo-Boolean constraint and H,Bi, i = 1,. . . ,n, n ≥ 0, are atoms

over Σ⋆.

7

A CLP(PB) goal is of the form

?− c ∥ B1, . . . , Bn

where again c is a possibly empty pseudo-Boolean constraint and Bi, i = 1,. . . ,n, n ≥ 0, are atoms

over Σ⋆.

The structure PB is solution compact because it has no limit elements. From the general results

of [JL86, JL87] we can derive for the language CLP(PB):

• the existence of a canonical domain of computation

• the existence of a least and greatest model semantics

• the existence of a least and greatest fixpoint semantics

• soundness and completeness results for successful derivations of the underlying implementa-

tion model

• soundness and completeness results for finitely failed derivations of the underlying implemen-

tation model

• soundness and completeness results for negation as failure

4 Solving Pseudo-Boolean Constraints

In this section we describe how we may solve arbitrary pseudo-Boolean constraints. A detailed

account of this subject is beyond the scope of this paper. We will restrict ourselves mainly to

the case of equality constraints. In addition, we show how arbitrary pseudo-Boolean constraints

can be reduced to pseudo-Boolean equations. However, such a reduction is mainly of theoretical

interest. In practice, it will be more efficient to handle non-equality constraints by a specific solving

procedure.

4.1 A Variable Elimination Algorithm for Pseudo-Boolean Unification

Definition 11 A pseudo-Boolean unification problem is a system of equations

S : s1
.
= t1, . . . , sn

.
= tn

with pseudo-Boolean terms si, ti ∈ T (Fpsbool, Vbool), i = 1, . . . , n. A pseudo-Boolean unifier of S is

a substitution τ : Vbool → T (Fbool, Vbool) such that

τ(si)
P ≡PB τ(ti)

P , for all i = 1, . . . , n.

A most general pseudo-Boolean unifier of S is a substitution σ : Vbool → T (Fbool, Vbool) such that

for all pseudo-Boolean unifiers τ of S there is a substitution λ : Vbool → T (Fbool, Vbool) with

λ(σ(X)) ≡B τ(X), for all X ∈ Vbool.

8

Now we want to give a constructive proof that, similar to syntactic unification in classical logic

programming, any two unifiable pseudo-Boolean terms have a most general pseudo-Boolean unifier.

In the terminology of unification theory this means that pseudo-Boolean terms form a unitary

theory. The next theorem is a generalization of the well-known Boolean unification method of

[BS87] to the pseudo-Boolean case. For the proof we use previous results by P. Hammer [Ham64a].

Theorem 12 Pseudo-Boolean unification is unitary, that is any two pseudo-Boolean terms are

either not unifiable modulo PB or they have a most general pseudo-Boolean unifier.

Proof: It is sufficient to consider the pseudo-Boolean unification problem u
.
= 0, with a pseudo-

Boolean term u ∈ T (Fpsbool, Vbool). Let V ar(u) = {X1, . . . , Xnu} be the set of variables occurring

in u. The proof uses induction on nu and provides a decision procedure for the unifiability of u

and 0 as well as an algorithm for computing a most general unifier.

To simplify our notation we will identify throughout the proof a Boolean or pseudo-Boolean

term t with the corresponding function t̂. In particular, we will write s = t instead of ŝ = t̂. This

is justified by the considerations in Section 2.

First let nu = 0. If u = 0 then the empty substitution is a most general pseudo-Boolean unifier.

and if u ̸= 0 then the equation is unsolvable.

Suppose now that the theorem is true for pseudo-Boolean terms which contain at most n

variables, n ≥ 0, and let u be a pseudo-Boolean term with n+ 1 variables. Select a variable Xn+1

in u and write u in the form

u = v ∗Xn+1 + w ∗Xn+1

where {X1, . . . , Xn}, n ≥ 0, are the only variables occurring in the pseudo-Boolean terms v, w.

Let τ : Vbool → T (Fbool, Vbool) be a pseudo-Boolean unifier of u and 0. Then we have

τ(v) ∗ τ(Xn+1) + τ(w) ∗ τ(Xn+1) = 0.

From Lemma 10 we deduce that τ(v) ∗ τ(w) = τ(v ∗ w) = 0 or that τ is a pseudo-Boolean unifier

of v ∗ w and 0.

Conversely, if ρ : Vbool → T (Fbool, Vbool) is a unifier of v ∗ w and 0, then

σ(Xi)
def
= ρ(Xi), for i = 1, . . . , n

σ(Xn+1)
def
= ρ(v ̸=) ∧ Y ⊕ ρ(w ̸=) ∧ Y = ρ(v ̸=) ∗ Y + ρ(w ̸=) ∗ Y ,

with a new variable Y ∈ Vbool, defines a pseudo-Boolean unifier of u and 0. In fact, we have

σ(u) = σ(v) ∗ σ(Xn+1) + σ(w) ∗ σ(Xn+1)

= ρ(v) ∗ (ρ(v ̸=) ∗ Y + ρ(w ̸=) ∗ Y) + ρ(w) ∗ (ρ(v ̸=) ∗ Y + ρ(w ̸=) ∗ Y)

= ρ(v) ∗ ρ(v ̸=) ∗ Y + ρ(v) ∗ ρ(w ̸=) ∗ Y + ρ(w) ∗ (1− ρ(v ̸=) ∗ Y − ρ(w ̸=) ∗ Y)

= 0 + 0 + ρ(w)− ρ(w) ∗ ρ(v ̸=) ∗ Y − ρ(w) ∗ ρ(w ̸=) ∗ Y
= ρ(w)− ρ(w) ∗ (1− ρ(v ̸=)) ∗ Y − ρ(w) ∗ (1− Y)

= ρ(w)− ρ(w) ∗ Y + ρ(w) ∗ ρ(v ̸=) ∗ Y − ρ(w) + ρ(w) ∗ Y = 0

Here, we have used the identities ρ(v) ∗ρ(v ̸=) = 0, 0 = ρ(v) ∗ρ(w) = ρ(v ̸=) ∗ρ(w) = ρ(v) ∗ρ(w ̸=) =

ρ(v ̸=) ∗ ρ(w ̸=), and ρ(w) ∗ ρ(w ̸=) = ρ(w).

9

Solved
{u .

= 0}
true

if u ≡PB 0

Unsolvable
{u .

= 0}
fail

if u ̸≡PB 0 and V ar(u) = ∅

Variable Elimination
{u .

= 0}
{v ∗ w .

= 0} ∪ {X .
= v ̸= ∗ Y + w ̸= ∗ Y }

if u ̸≡PB 0,

u ≡PB v ∗X + w ∗X,

X ̸∈ V ar(v, w),

and Y is a new variable

Figure 1: Variable Elimination for Pseudo-Boolean Unification

It remains to show that if ρ is a most general pseudo-Boolean unifier of v ∗ w .
= 0, then σ is

a most general pseudo-Boolean unifier of u
.
= 0. Let τ be an arbitrary unifier of u and 0. The

restriction τ ′ of τ to the variables {X1, . . . , Xn} unifies v ∗ w and 0. Consequently, there exists a

substitution λ′ such that

τ ′(Xi) = λ′(ρ(Xi)), for all i = 1, . . . , n.

We define a substitution λ by

λ(X)
def
= λ′(X), for X ∈

∪
i=1,...,n

V ar(ρ(Xi))

λ(Y)
def
= τ(Xn+1).

Now we get

λ(σ(Xn+1)) = λ(ρ(v ̸=)) ∗ λ(Y) + λ(ρ(w ̸=)) ∗ λ(Y)

= λ′(ρ(v ̸=)) ∗ τ(Xn+1) + λ′(ρ(w ̸=)) ∗ τ(Xn+1)

= τ(v ̸=) ∗ τ(Xn+1) + τ(w ̸=) ∗ τ(Xn+1)

= (1− τ(v ̸=)) ∗ τ(Xn+1) + τ(w ̸=) ∗ τ(Xn+1)

= τ(Xn+1)− τ(v ̸=) ∗ τ(Xn+1) + τ(w ̸=) ∗ τ(Xn+1)

= τ(Xn+1)− 0 + 0 = τ(Xn+1)

The last equality holds, because τ is a unifier of u and 0. This means τ(v) ∗ τ(Xn+1) + τ(w) ∗
τ(Xn+1) = 0 which by Lemma 10 implies τ(v ̸=) ∗ τ(Xn+1) = τ(w ̸=) ∗ τ(Xn+1) = 0. Altogether we

have shown that σ is a most general pseudo-Boolean unifier of u and 0. 2

10

From the proof of the preceding theorem we derive a variable elimination algorithm for pseudo-

Boolean unification which subsumes the Boolean unification algorithm [BS87]. Given a pseudo-

Boolean term u, it computes a most general pseudo-Boolean unifier of u and 0 if it exists and fails

otherwise (see Figure 1).

4.2 Solving Arbitrary Pseudo-Boolean Constraints

We show in this section how arbitrary pseudo-Boolean constraints can be reduced to equality

constraints.

Lemma 13 The problem of solving a pseudo-Boolean inequality is reducible to that of solving a

pseudo-Boolean equation.

Proof: It is enough to consider a pseudo-Boolean inequality of the form

g(X1, . . . , Xn) ≤ 0. (3)

The following proof was first given in [Ham64b]. Let g(X1, . . . , Xn) =
∑

I∈Ω cI
∏

i∈I Xi be a poly-

nomial representation of g and let A
def
=

∑
cI<0 cI . Then A is a lower bound of the pseudo-Boolean

function g. Let −A = a02
0 + · · · + ak2

k, k ≥ 0, be the binary representation of −A ≥ 0. The

inequality (3) is equivalent to the equation

g(X1, . . . , Xn) + y
.
= 0 (4)

with the additional restriction y ≥ 0. Therefore we may write y = Y02
0 + · · · + Yl2

l, l ≥ 0, and

since y = −g(X1, . . . , Xn) ≤ −A we get l ≤ k. It follows that (3) and (4) are equivalent to the

pseudo-Boolean equation

g(X1, . . . , Xn) + Y02
0 + · · ·+ Yk2

k .
= 0 (5)

where in the case k > l we have Yl+1 = . . . = Yk = 0. 2

Lemma 14 The problem of solving a system of pseudo-Boolean equations is reducible to that of

solving a single pseudo-Boolean equation.

Proof: The system s1
.
= t1, . . . , sn

.
= tn, n ≥ 1, is equivalent to the equation

∑n
i=1(si − ti)

2 .
= 0.

2

The two lemmas together yield

Proposition 15 The problem of solving an arbitrary pseudo-Boolean constraint is reducible to that

of solving a single pseudo-Boolean equation.

5 Pseudo-Boolean Optimization

In the last section we have sketched a solution procedure for pseudo-Boolean constraints. In

practical applications, one is often not interested in all solutions of a pseudo-Boolean constraint

but only in those solutions which are optimal with respect to some objective function, which itself

is a pseudo-Boolean function.

11

This leads to the problem of pseudo-Boolean optimization also known as nonlinear 0-1 program-

ming.

Maximize the pseudo-Boolean function g(X1, . . . , Xn) subject to the pseudo-Boolean

constraint f(X1, . . . , Xn)
.
= 0.

A constrained pseudo-Boolean optimization problem can be transformed to an unconstrained

pseudo-Boolean optimization problem by first computing a most general solution

X1 = t1(Y1, . . . , Ym), . . . , Xn = tn(Y1, . . . , Ym)

of the constraint f(X1, . . . , Xn)
.
= 0 and then maximizing the pseudo-Boolean function

h(Y1, . . . , Ym)
def
= g(t1(Y1, . . . , Ym), . . . , tn(Y1, . . . , Ym)).

The unconstrained quadratic pseudo-Boolean maximization problem z
.
= max(g) with a

quadratic pseudo-Boolean function g : {0, 1}n → Z is NP-complete. As a matter of fact, most of

the well-known NP-complete problems (for example the minimum cut problem, balancing a signed

graph, maximum 2-satisfiability) can be very naturally formulated as unconstrained quadratic

pseudo-Boolean optimization problems. The same is true for broad classes of constrained pseudo-

Boolean optimization problems, such as the maximization of a linear function subject to a quadratic

Boolean equation or the maximization of a quadratic function subject to a system of linear equations

[HS86].

5.1 The Basic Algorithm for Pseudo-Boolean Optimization

There is an extensive literature on the solution of pseudo-Boolean optimization problems (see

the survey [HS86]) that we cannot cover in this paper. Because of its close relationship to the

variable elimination method for Boolean unification we present here a variant of the so-called Basic

Algorithm for pseudo-Boolean optimization. This algorithm was originally proposed in [HRR63a,

HRR63b] and allows to maximize an arbitrary nonlinear pseudo-Boolean function f : {0, 1}n → Z.
First we define the notion of a most-general maximizer of a pseudo-Boolean function f .

Definition 16 Let f : {0, 1}n → Z be a pseudo-Boolean function with the maximum value z ∈ Z.
Let tf ∈ T (Fpsbool, Vbool) be a pseudo-Boolean term representing f . A (most general) maximizer of

f (resp. tf) is a (most general) pseudo-Boolean unifier of the pseudo-Boolean equation t
.
= z.

From Theorem 12 we can conclude that any pseudo-Boolean function f : {0, 1}n → Z has

a most general maximizer σf which subsumes any other maximizer τ of f . However, we cannot

compute σf by the variable elimination algorithm for pseudo-Boolean unification, because we do

not know a priori the maximum value of f . The Basic Algorithm for pseudo-Boolean optimization

is a variable elimination method which computes simultaneously the maximum value z of f and a

most general pseudo-Boolean unifier of the equation f
.
= z.

In order to formulate the algorithm we need the following definitions.

Definition 17 Let g : {0, 1}n → Z be a pseudo-Boolean function. The pseudo-Boolean function

g+ : {0, 1}n → Z is defined by

g+(X1, . . . , Xn)
def
=

{
g(X1, . . . , Xn), if g(X1, . . . , Xn) > 0

0, if g(X1, . . . , Xn) ≤ 0.

12

Constant
z

.
= max(u)

z
.
= c

if u ≡PB c = constant

Variable Elimination
z

.
= max(u)

{z .
= max(v+ + w)} ∪ {X .

= v= ∗X ′ + v>}

if u ≡PB v ∗X + w,

X ̸∈ V ar(v, w),

v ̸≡PB 0,

and X ′ is a new variable

Figure 2: The Basic Algorithm for Pseudo-Boolean Optimization

Definition 18 Let g : {0, 1}n → Z be a pseudo-Boolean function. The Boolean functions g=, g> :

{0, 1}n → {0, 1} are defined by

g=(X1, . . . , Xn)
def
=

{
1, if g(X1, . . . , Xn) = 0

0, if g(X1, . . . , Xn) ̸= 0

and

g>(X1, . . . , Xn)
def
=

{
1, if g(X1, . . . , Xn) > 0

0, if g(X1, . . . , Xn) ≤ 0

Now we can describe the Basic Algorithm by a set of inference rules (see Figure 2).

The correctness proof of the Basic Algorithm depends on the following two lemmas that relate

a most general maximizer of a pseudo-Boolean function f = g ∗X +h to a most general maximizer

of g+ + h.

Lemma 19 Let f : {0, 1}n+1 → Z be a pseudo-Boolean function.

Suppose

f(X1, . . . , Xn+1) = Xn+1 ∗ g(X1, . . . , Xn) + h(X1, . . . , Xn)

with pseudo-Boolean functions g, h : {0, 1}n → Z. Then

max(f) = max(g+ + h).

If τ : {X1, . . . , Xn+1} → T (Fbool, Vbool) is a maximizer of f then the restriction of τ to {X1, . . . , Xn}
is a maximizer of g+ + h.

Moreover, τ satisfies the condition τ(Xn+1) = τ(g=) ∗ τ(Xn+1) + τ(g>).

Proof: As before, we will not distinguish a pseudo-Boolean function f and the corresponding

term tf .

From f = Xn+1∗g+h ≤ Xn+1∗g++h ≤ g++h we getmax(f) ≤ max(g++h). Let z ∈ Z denote

the maximum value of g++h. Then there exist a1, . . . , an ∈ {0, 1} such that (g++h)(a1, . . . , an) =

13

z. Let an+1
def
= g>(a1, . . . , an). Then f(a1, . . . , an+1) = an+1 ∗ g(a1, . . . , an) + h(a1, . . . , an) =

g+(a1, . . . , an) + h(a1, . . . , an) = z. This implies max(f) ≥ max(g+ + h) and altogether we get

max(f) = max(g+ + h) = z.

Now let τ : {X1, . . . , Xn+1} → T (Fbool, Vbool) be a maximizer of f .

First we show that τ(Xn+1) = τ(g=) ∗ τ(Xn+1) + τ(g>). Otherwise there would exist a ground

substitution γ : Vbool → {0, 1} such that (γ ◦ τ)(Xn+1) ̸= (γ ◦ τ)(g=) ∗ (γ ◦ τ)(Xn+1) + (γ ◦ τ)(g>).
Since

(γ ◦ τ)(g=) ∗ (γ ◦ τ)(Xn+1) + (γ ◦ τ)(g>) =


1, if (γ ◦ τ)(g) > 0

(γ ◦ τ)(Xn+1), if (γ ◦ τ)(g) = 0

0, if (γ ◦ τ)(g) < 0

,

we get a contradiction in the case (γ ◦ τ)(g) = 0. In the two remaining cases we can derive

(γ ◦ τ)(Xn+1) =

{
0, if (γ ◦ τ)(g) > 0

1, if (γ ◦ τ)(g) < 0
.

This is an obvious contradiction to the maximality of τ as we show now.

Define the substitution τ : {X1, . . . , Xn+1} → T (Fbool, Vbool) by

τ(Xi)
def
= (γ ◦ τ)(Xi), for i = 1, . . . , n

τ(Xn+1)
def
=

{
1, if (γ ◦ τ)(g) > 0

0, if (γ ◦ τ)(g) < 0
.

Then τ(f) = τ(g ∗ Xn+1 + h) = τ(g) ∗ τ(Xn+1) + τ(h) = (γ ◦ τ)(g) ∗ τ(Xn+1) + (γ ◦ τ)(g) >
(γ ◦ τ)(g) ∗ (γ ◦ τ)(Xn+1) + (γ ◦ τ)(h) = (γ ◦ τ)(f) = γ(z) = z, in contradiction to the maximality

of z. This allows us to conclude that τ(Xn+1) = τ(g=) ∗ τ(Xn+1) + τ(g>).

In order to show that the restriction of τ to {X1, . . . , Xn} is maximizer of g+ + h, we must

prove that τ(g+ + h) = z. Since we know that τ(f) = τ(Xn+1) ∗ τ(g) + τ(h) = z, it is enough

to show that τ(Xn+1) ∗ τ(g) = τ(g+). But, τ(Xn+1) ∗ τ(g) = (τ(g=) ∗ τ(Xn+1) + τ(g>)) ∗ τ(g) =
τ(g=) ∗ τ(g) ∗ τ(Xn+1) + τ(g>) ∗ τ(g) = 0 + τ(g+) = τ(g+), and the lemma is proved.

2

Lemma 20 Let f : {0, 1}n+1 → Z be a pseudo-Boolean function. Suppose

f(X1, . . . , Xn+1) = Xn+1 ∗ g(X1, . . . , Xn) + h(X1, . . . , Xn)

with pseudo-Boolean functions g, h : {0, 1}n → Z. Let ρ : Vbool → T (Fbool, Vbool) be a most general

maximizer of the pseudo-Boolean function g++h. Then the substitution σ : Vbool → T (Fbool, Vbool),

σ(Xi)
def
= ρ(Xi), for i = 1, . . . , n

σ(Xn+1)
def
= ρ(g=) ∧ Y ⊕ ρ(g>) = ρ(g=) ∗ Y + ρ(g>),

with a new variable Y ∈ Vbool, defines a most general maximizer of f .

Proof: Again we do not distinguish a pseudo-Boolean function f and the corresponding term tf .

Let z ∈ Z be the maximum value of f . By Lemma 19, z is also the maximum value of g++h. This

14

means that the substitution ρ is a most general pseudo-Boolean unifier of the equation g++h
.
= z.

In particular, we get ρ(g+) + ρ(h) = z. It follows that

σ(f) = σ(Xn+1) ∗ σ(g) + σ(h)

= (ρ(g=) ∗ Y + ρ(g>)) ∗ ρ(g) + ρ(h)

= ρ(g=) ∗ ρ(g) ∗ Y + ρ(g>) ∗ ρ(g) + ρ(h)

= ρ(g= ∗ g) ∗ Y + ρ(g> ∗ g) + ρ(h)

= ρ(0) ∗ Y + ρ(g+) + ρ(h)

= 0 + z = z.

Here we have used the identities g= ∗ g = 0 and g> ∗ g = g+. This shows, that σ is a maximizer of

f .

Let τ : Vbool → T (Fbool, Vbool) be an arbitrary maximizer of f , that is z = τ(f) = τ(Xn+1) ∗
τ(g)+τ(h). By Lemma 19, τ is also a maximizer of g++h. It follows that there exists a substitution

λ′ : Vbool → T (Fbool, Vbool) such that λ′(ρ(Xi)) = τ(Xi), for all i = 1, . . . , n.

We define a substitution λ by

λ(X)
def
= λ′(X), for X ∈

∪
i=1,...,n

V ar(ρ(Xi))

λ(Y)
def
= τ(Xn+1).

Then we get λ(σ(Xn+1)) = λ(ρ(g=)∗Y +ρ(g>)) = λ(ρ(g=))∗λ(Y)+λ(ρ(g>)) = τ(g=)∗τ(Xn+1)+

τ(g>) = τ(Xn+1). The last equality holds because of Lemma 19.

By definition, λ(σ(Xi)) = λ′(ρ(Xi)) = τ(Xi), for all i = 1, . . . , n. This shows that σ is even a

most general maximizer of f . 2

Now we are able to prove the correctness of our algorithm.

Theorem 21 Let f : {0, 1}n → Z be a pseudo-Boolean function represented by the pseudo-Boolean

term u ∈ T (Fpsbool, Vbool).

Starting with the problem z
.
= max(u) and applying the rules of the Basic Algorithm at most

n+ 1 times one obtains a solved form

{z .
= c,X1

.
= tn, . . . , Xn

.
= tn},

with c ∈ Z, ti ∈ T (Fpsbool, Vbool), such that c is the maximum value and {X1 ← t1}◦ . . .◦{Xn ← tn}
is a most general maximizer of f .

Proof: Let V ar(u) = {X1, . . . , Xnu} denote the set of variables occurring in the pseudo-Boolean

term u. The proof is by induction on nu.

First consider the case nu = 0. If u contains no variables, the function f is equivalent to a

constant function c :→ Z, the rule Constant applies, and we get max(f) = z = c.

Now suppose nu = n+ 1, n ≥ 0. We may assume that u is not congruent to a constant. Then

we can choose a variable Xn+1 in u and write u in the form

u = v ∗Xn+1 + w,

15

Constant
z

.
= max(u)

z
.
= c

if u ≡PB c = constant

Variable Elimination
z

.
= max(u)

{z .
= max(v+ + w)} ∪ {X .

= v>}

if u ≡PB v ∗X + w,

X ̸∈ V ar(v, w),

v ̸≡PB 0

Figure 3: The Basic Algorithm for Pseudo-Boolean Optimization (Special Version)

where {X1, . . . , Xn} are the only variables occurring in the terms v, w and v ̸= 0. We apply the

variable elimination rule and obtain the new problem

{z .
= max(v+ + w)} ∪ {Xn+1

.
= v= ∗X ′ + v>},

with a new variable X ′.

Applying the induction hypothesis to z
.
= max(v++w) then yields in at most n steps the solved

form

{z .
= c,X1

.
= tn, . . . , Xn

.
= tn},

with c ∈ Z, ti ∈ T (Fpsbool, Vbool), where c is the maximum value and {X1 ← v} ◦ . . . ◦ {Xn ← tn} is
a most general maximizer of v+ + w.

Using Lemma 19 and Lemma 20 we may conclude that c is also the maximum value of f and

that {X1 ← v} ◦ . . . ◦ {Xn ← tn} ◦ {Xn+1
.
= v= ∗X ′ + v>} defines a most general maximizer of f .

2

5.2 The Special Version of the Basic Algorithm

Sometimes one is interested only in one special maximizer of a given pseudo-Boolean function and

not in the most general maximizer. In this case, one can use a special version of the Basic Algorithm

(see Figure 3).

For the special version of the Basic Algorithm an interesting complexity result was recently

proved in [CHJ90]. In this paper it is shown that for some special class of pseudo-Boolean func-

tions, namely the pseudo-Boolean functions of bounded tree-width, the special version of the Basic

Algorithm runs in linear time.

Definition 22 Let f(X1, . . . , Xn) be a pseudo-Boolean function in polynomial form. The co-

occurrence graph G(f) has vertex-set V = {X1, . . . , Xn} and an edge between Xi and Xj , i ̸= j,

iff these variables occur simultaneously in at least one monomial of f. The tree-width of f is the

tree-width of the co-occurrence graph G(f).

16

The definition of the tree-width of a graph is rather technical and can be found in the appendix

(see also [Arn85]).

Theorem 23 ([CHJ90]) The Basic Algorithm has linear-time complexity when applied to pseudo-

Boolean functions with bounded tree width.

More precisely: For every fixed k ≥ 0, the Basic Algorithm can be implemented to run in O(n)

time on those pseudo-Boolean functions f(X1, . . . , Xn), expressed in polynomial form, for which

(X1, . . . , Xn) is a k-scheme of G(f).

If g : {0, 1}n → {0, 1} is a Boolean function, then the equation g(X1, . . . , Xn)
.
= 1 has a solution

iff max(g(X1, . . . , Xn)) = 1. This means that Boolean unification can be regarded as a special

pseudo-Boolean optimization problem. In this case, the Basic Algorithm can be used to compute

a special solution of the equation g(X1, . . . , Xn)
.
= 1.

Moreover, for Boolean functions the Basic Algorithm specializes to a variant of Büttner-Simonis’

Boolean unification algorithm [BS87]. Therefore we get the following complexity result for Boolean

unification.

Corollary 24 For every fixed k ≥ 0, Büttner/Simonis’ Boolean unification algorithm can be

implemented to compute in O(n) time a special solution of those Boolean unification problems

f(X1, . . . , Xn)
.
= 1, for which the Boolean function f(X1, . . . , Xn) has tree-width at most k.

Because of the close relationship between the two algorithms, experiences that have been gained

in the implementation of one of them have immediate consequences for the other one. For example,

[CHJ90] compare two variable elimination orderings, which are related to the co-occurrence graph of

the pseudo-Boolean function. The determination of a good elimination ordering is one of the main

problems in the implementation of Büttner-Simonis’ algorithm. It has a great influence on the size

of the most general unifiers that are computed. In this context, the orderings proposed in [CHJ90]

may be very interesting. On the other hand, there exist rather sophisticated implementations of

Büttner-Simonis’ algorithm. It is clear that the ideas which have been developed in this context

should be used also in the pseudo-Boolean case.

6 Example

In this section we present a typical application of pseudo-Boolean constraints [HR68] that is simple

enough to be considered here.

The problem is to assemble a radio set under the following conditions:

• Any one of the three types T1, T2, T3 of tubes may be utilized, but only one.

• The box may be either of wood W, or of plastic material P. When using P, dimensionality

requirements impose the choice of T2, and as there is no place for a transformer F, a special

power supply S is needed.

• T1 needs F.

• T2 and T3 need S (and not F).

17

The prices of the above components are

Tubes T1 28 units

Tubes T2 30 units

Tubes T3 31 units

Transformer F 25 units

Special Power Supply S 23 units

Wood Box W 9 units

Plastic Material Box P 6 units

The other necessary components of the radio set cost

27 units, if the tubes T1 are utilized

28 units, if the tubes T2 are utilized

25 units, if the tubes T3 are utilized

The price of the make is 10 units for each set in all the cases and a set is sold at 110 units when

it is enclosed in a plastic material box, and at 105 units in the other case. Which model is to be

constructed in order to maximize the profit? The following program solves this problem.

assemble(T1, T2, T3, F, S, W, P) :-

T1 + T2 + T3 = 1,

W + P = 1,

F + S = 1,

P ≤ T2 * S, % P = 1 implies T2 = S = 1

T1 ≤ F, % T1 = 1 implies F = 1

T2 ≤ S, % T2 = 1 implies S = 1

T3 ≤ S. % T3 = 1 implies S = 1

maximal-profit(T1, T2, T3, F, S, W, M) :-

max(110W + 105M - (28T1 + 30T2 + 31T3 + 25F + 23S

+ 9W + 6P + 27T1 + 28T2 + 25T3 + 10),

assemble(T1, T2, T3, F, S, W, M)).

Asking the query

?- maximal-profit(T1, T2, T3, F, S, W, M).

yields the unique answer

T1 = 0, T2 = 0, T3 = 1, F = 0, S = 1, W = 1, M = 0.

7 Conclusion and Further Research

In this paper we have introduced a new constraint logic programming language CLP(PB) for logic

programming with pseudo-Boolean constraints. The language is an instance of the constraint logic

programming language scheme CLP(X) and has therefore the usual declarative and operational

semantics of constraint logic programming languages. The main emphasis of the paper was on

18

the solution of pseudo-Boolean constraints. We showed that any pseudo-Boolean constraint has a

most general solution and gave an algorithm for pseudo-Boolean unification. Then we discussed the

problem of optimizing pseudo-Boolean functions. We presented the Basic Algorithm for pseudo-

Boolean optimization and discussed its relationship to the variable elimination method in Boolean

unification. Among others, we obtained a new complexity result for Boolean unification.

Several research directions can be outlined to continue this work. On the practical side, the

most important problem is to design an efficient constraint solver for pseudo-Boolean constraints.

This should be done using the techniques that have been developed for the Boolean case. The

next step is to extend this constraint solver by an algorithm for pseudo-Boolean optimization. On

the theoretical side, it would be interesting to find further classes of Boolean and pseudo-Boolean

functions that admit polynomial unification or optimization algorithms. Various such classes are

already known, however it is not clear which role they play in practical applications.

References

[Arn85] S. Arnborg. Efficient algorithms for combinatorial problems on graphs with bounded

decomposability. A survey. BIT, 25:2–23, 1985.

[ASS+88] A. Aiba, K. Sakai, Y. Sato, D.J. Kawley, and R. Hasegawa. Constraint logic program-

ming language CAL. In Fifth Generation Computer Systems, Tokyo, 1988. Springer-

Verlag, 1988.

[BR89a] A. Bockmayr and H.H. Rath. Algorithms for boolean unification. In Proc. FAW

Workshop on Boolean Functions, Propositional Logic, and AI Systems. FAW Ulm,

Germany, 1989.

[BR89b] A. Bockmayr and H.H. Rath. Extended prolog with boolean unification. Technical

Report 21/89, Fakultät für Informatik, Univ. Karlsruhe, 1989.

[BS87] W. Büttner and H. Simonis. Embedding boolean expressions in logic programming.

Journal of Symbolic Computation, 4(2):191–205, 1987.

[CHJ90] Y. Crama, P. Hansen, and B. Jaumard. The basic algorithm for pseudo-boolean pro-

gramming revisited. Discrete Applied Mathematics, 29:171 – 185, 1990.

[Col87] A. Colmerauer. Introduction to PROLOG III. In 4th Annual ESPRIT Conference,

Bruxelles. North Holland, 1987.

[DvHS+88] M. Dincbas, P. van Hentenryck, H. Simonis, A. Aggoun, and T. Graf. The constraint

logic programming language CHIP. In Fifth Generation Computer Systems, Tokyo,

1988. Springer-Verlag, 1988.

[FGGB66] R.J. Freeman, D.C. Gogerty, G.W. Graves, and R.B.S. Brooks. A mathematical model

of supply support for space operations. Oper. Research, 14:1–15, 1966.

[Ham64a] P.L. Hammer. The method of successive eliminations for pseudo-boolean equations.

Bulletin de l’Academie Polonaise des Sciences-Serie des Sciences Math., Astr. et Phys.,

XII(11):681–683, 1964.

19

[Ham64b] P.L. Hammer. Systems of pseudo-boolean equations and inequalities. Bulletin

de l’Academie Polonaise des Sciences-Serie des Sciences Math., Astr. et Phys.,

XII(11):673–680, 1964.

[HO80] G Huet and D. C. Oppen. Equations and rewrite rules, A survey. In R. V. Book,

editor, Formal Language Theory. Academic Press, 1980.

[Hoo88] J. N. Hooker. A quantitative approach to logical inference. Decision Support Systems,

4:45 – 69, 1988.

[HR68] P.L. Hammer and S. Rudeanu. Boolean Methods in Operations Research and Related

Areas. Springer-Verlag, 1968.

[HRR63a] P.L. Hammer, I. Rosenberg, and S. Rudeanu. Application of discrete linear program-

ming to the minimization of boolean functions. Rev. Math. Pures Appl., 8:459–475,

1963. (in Russian).

[HRR63b] P.L. Hammer, I. Rosenberg, and S. Rudeanu. On the determination of minima of

pseudo-boolean functions. Stud. Cerc. Mat., 14:359–364, 1963. (in Romanian).

[HS86] P.L. Hammer and B. Simeone. Quadratic functions of binary variables. In Combi-

natorial Optimization, volume 1403 of Lecture Notes in Mathematics. Springer-Verlag,

1986.

[JL86] J. Jaffar and J.-L. Lassez. Constraint logic programming. Technical Report 86/73,

Department of Computer Science, Monash University, June 1986.

[JL87] J. Jaffar and J.-L. Lassez. Constraint logic programming. In Proc. 14th ACM Symp.

Principles of Programming Languages, Munich, 1987.

[KGV83] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing.

Science, 220:671–680, 1983.

[Rhy70] J. Rhys. A selection problem of shared fixed costs and networks. Manag. Science,

17:200–207, 1970.

A Tree-Width of a Graph

Let G be a simple and undirected graph. A vertex v is simplicial in G if the neighbors of v

induce a complete subgraph of G. For k ≥ 0, a k-perfect elimination scheme of the graph G is an

ordering (v1, . . . , vn) of its vertices, such that vj is simplicial and has degree k in the subgraph Gj

of G induced by {vj , vj+1, . . . , vn} for j = 1, . . . , n − k. A graph is a k-tree if it has a k-perfect

elimination ordering. A partial k-tree is any graph obtained by deleting edges from a k-tree. Any

graph on n vertices is a partial n-tree. The tree-width of a graph is the smallest value of k for

which the graph is a partial k-tree. For instance, trees and forests have tree-width at most 1, and

series-parallel graphs have tree-width at most 2. Determining the tree-width of a graph is NP-hard.

However, for every fixed k, there is a polynomial algorithm to decide if a graph has tree-width k.

20

