MAX-PLANCK-INSTITUT

FUR
INFORMATIK

" N\

Special Cases and Substitutes for Rigid
FE-Unification

David A. Plaisted

MPI-1-95-2-010 November 1995

\

e

INFORMATIK

Im Stadtwald
D 66123 Saarbriicken

Germany

Authors’ Addresses

Department of Computer Science

CB# 3175, 352 Sitterson Hall

University of North Carolina at Chapel Hill
Chapel Hill, North Carolina 27599-3175
USA

plaisted@cs.unc.edu

Acknowledgements

I would like to thank A. Degtyarev and A. Voronkov for their comments on preliminary versions of this
paper, especially the undecidability proof. T would also like to thank Sergei Vorobyov for his detailed
comments on some of the early sections of the paper, and Uwe Waldmann for his detailed reading as
well. Of course, remaining errors are solely my responsibility. This research was partially supported by
the National Science Foundation under grant CCR-9108904. The author also gratefully acknowledges the
support of Max-Planck Institute, Saarbriicken during the summer of 1995.

Abstract

The simultaneous rigid F-unification problem arises naturally in theorem proving with equality. This
problem has recently been shown to be undecidable. This raises the question whether simultaneous rigid
F-unification can usefully be applied to equality theorem proving. We give some evidence in the affirmative,
by presenting a number of common special cases in which a decidable version of this problem suffices for
theorem proving with equality. We also present some general decidable methods of a rigid nature that
can be used for equality theorem proving and discuss their complexity. Finally, we give a new proof of
undecidability of simultaneous rigid E-unification which is based on Post’s Correspondence Problem, and
has the interesting feature that all the positive equations used are ground equations (that is, contain no
variables).

Contents

1

2

3

Introduction
Paths and Spanning Sets

Critical Pairs and Rigid E-Unification

3.1 NP-Completeness of Rigid F-Unification

Decidable Cases of Simultaneous Rigid E-Unification

4.1 Unitequations o o
4.2 Horn clauses e
4.3 Caseanalysis i e

Path Paramodulation

5.1 A modified system L oo oL,
5.2 Delayed path creation 0L,

Rigid Clause Paramodulation

6.1 Non-Horn equality problems

Sizes of Amplifications

A New Undecidability Proof

8.1 Expressing Finite Automata and Regular Sets
82 Listsof Lists o
83 Pairing Lists oo oo
8.4 Expressing PCP asa Regular Set
8.5 Expressing PCPasaListof Lists
8.6 The Final Simultaneous Problem

Conclusion

ICINN

12
12
13
19

22
28
28

29
31

33

34
34
36
38
39
40
43

44

1 Introduction

Simultaneous rigid E-unification, which is related to theorem proving with equality,
has recently been shown to be undecidable. However, we show that in many common
cases of interest, this problem is decidable and of reasonable complexity. We also
present some decidable rigid inference systems that can substitute for simultaneous
rigid F-unification, in a certain sense. Although first-order logic is not decidable,
it is possible to use decidable techniques as part of a method for theorem proving
in first-order logic with equality. Finally, we give another undecidability proof for
simultaneous rigid E-unification based on Post’s Correspondence Problem.

Simultaneous rigid E-unification is related to the matings method of Andrews
[1] as well as to the connection framework of Bibel [6]. In fact, [6] presents methods
closely related to rigid E-unification. Rigid E-unification is also used as a way to
incorporate equality into the semantic tableau framework [11] for theorem proving.
For simplicity, we discuss this problem in the context of sets of clauses, although
the semantic tableau framework is more general and the original paper of Andrews
[1] considers a more general structure of formulas (negation normal form) which has
certain advantages.

The organization of this paper is as follows. In section 2, we discuss the rigid
approach to first-order theorem proving in the absence of equality. In section 3, we
discuss rigid theorem proving with equality, and define the simple and simultaneous
rigid F-unification problems. We also give the NP-completeness proof for simple
rigid F-unification. The simultaneous problem, however, is of the most interest for
first-order logic with equality. Since the general problem is undecidable, we give
some decidable special cases of it in section 4. These involve unit equations and Horn
clauses. We also give a fully general method based on case analysis, but it involves
some explicit enumeration of terms, which is often inefficient. In section 5, we give
a fully general path-based method for equality in the context of rigid F-unification.
This method avoids the explicit enumeration of terms, and relies instead on unifica-
tion. Some modifications of this method are also presented, and complexity analyses
of some of the methods are given. Another paramodulation-based rigid approach
to equality reasoning is given in section 6, and a set of clauses is also given that
illustrates some of its properties. In section 7, we discuss some theoretical questions
related to the sizes of the amplifications needed for various methods, and a number
of open problems are presented. Finally, in section 8, we present a new proof of the
undecidability of the general problem of simultaneous rigid F-unification. In fact,
we show that the special case of positive ground equations is still undecidable, and
that for undecidability one needs only six simple rigid F-unification problems. This
proof makes use of a reduction from Post’s Correspondence Problem.

2 Paths and Spanning Sets

Rigid approaches to theorem proving make use of amplifications, paths, and span-
ning sets, which we now define. We restrict our attention to first-order logic. In
addition, although rigid methods are often used for non-clausal theorem proving,
we restrict our attention to sets of clauses, both fjor simplicity and also to bring
out the underlying ideas. An amplification of a set S of clauses is a set T' of clauses
including one or more copies of each clause in S, with variables renamed so that
each variable appears in at most one clause in T. Thus if S is {Clz,y], D[u,v]},
then {C[x,y], C[2’,y'], D[u,v]} is an amplification of S. Of course, there are also
many other amplifications.
The following result is an immediate consequence of Herbrand’s theorem:

Theorem 2.1 A set S of clauses of first-order logic is unsatisfiable iff there exist an
amplification T' of S and a substitution © such that TO is ground and unsatisfiable.

However, given an amplification T, it is not clear how one decides if such a
substitution © exists, other than by enumerating all substitutions. The matings
(connection graph, Prawitz [20]) methods have been developed for this purpose.
These involve paths and spanning sets, which we now define.

If S is aset {C1,Cy,...,Cyh} of clauses where all C; are distinct, then a path in
S is aset {L1,La,...,L,} of literals such that L; € C; for all ¢, 1 <7 < n.

A pairis a set of two elements.

A set Sp of pairs of literals is spanning for a set I" of clauses if for every path P
in T, there is a pair p in Sp such that p is a subset of P. We call such a set Sp a
spanning set.

A substitution O is a simultaneous unifier of a spanning set Sp if for all pairs
{L,M} in Sp, LO and M© are complementary literals.

As an example, suppose that 7' is {{p(a)}, {-p(z),¢(2)}, {—¢(a)}}. Then the
paths are {p(a), —=p(z), 7¢(a)} and {p(a), ¢(z), 7¢(a)}. A spanning set is {{p(a), ~p(z)},
{¢(x),~¢(a)}, and a simultaneous unifier is {z + a}.

Theorem 2.2 If S is a set of clauses, then there is a © such that SO is ground
and unsatisfiable iff there is a spanning set Sp for S and a simultaneous unifier ©

for Sp.

Proof. Let us express S = {C1,C5,...,C,} in disjunctive normal form as D; V
Dy V...V Dy, where each D; is a conjunction L1 A Ly A...A Ly, for literals L; € C;.
Then S= D1V DyV...VD,, and so SO is unsatisfiable iff D;© is unsatisfiable for
all i. But D;© can only be unsatisfiable iff it contains two complementary literals.
Also, each D; is the conjunction of the literals in some path in S. Therefore, SO
is unsatisfiable iff for every path P in S, PO contains a pair of complementary
literals. Let Sp be the set of pairs p C P for paths P in S, such that p© is a pair of
complementary literals. Then Sp is a spanning set for S, and © is a simultaneous
unifier for Sp. Conversely, if such a simultaneous unifier © exists, then PO is
unsatisfiable for all paths P of S, so (D1 V Dy V...V D)0 is unsatisfiable, so SO
is unsatisfiable. a

Combining this with theorem 2.1, we obtain the following result, which gives
the connection between amplifications, spanning sets, and satisfiability.

Theorem 2.3 A set S of clauses is unsatisfiable iff there is an amplification T of
S, a spanning set Sp for T, and a simultaneous unifier © of Sp.

Therefore, in order to show that S is unsatisfiable, we have to choose T, find
Sp, and test if © exist. Choosing T consists in deciding how many copies of each
clause of S are needed for the proof; of course, one cannot know these numbers
in advance, but must try increasing numbers of copies in the search for a proof.
Finding Sp involves a search through a large number of possible sets of pairs of
literals for a set that is spanning. The number of possible sets Sp one needs to
examine is at most exponential in the size of S. To show this, we note that the
number of pairs of literals is at most the square of the number of literals in S, so
each set Sp is of size polynomial in the size of S. The search for a spanning set
Sp can be time consuming, but at least it is possible to verify that a set Sp is a
spanning set in a small amount of space, by looking through all paths in some order,
one by one. Of course, this can be made somewhat more efficient. Formally, this
problem is in co-NP. Testing if © exists is (for first-order logic) easy, since solving

simultaneous unification problems is not more difficult than solving single problems,
which can be done in linear time. For this, it suffices to note that © unifies the
pairs {Ly, M1},...,{L,, M, } if © unifies f(L4,...,L,) and f(My,..., M,), where
f is a new function symbol.

This same approach can be applied to higher-order logic. The prover of Andrews
[1] uses higher-order logic, which is much more expressive, but also has a harder
unification problem. Here we are concerned with the extension to first-order logic
with equality.

3 Critical Pairs and Rigid E-Unification

The foregoing approach was extended to equality reasoning in [12]. The motivation
for this is that it is awkward to consider the equality axioms explicitly, so one would
like to build in equality in some way. Also, it is difficult to know how many copies
of the equality axioms to choose. This extension to equality is done as follows.

We say that a set p is Eq-unsatisfiable if p U Fq is unsatisfiable, where Fq are
the equality axioms (reflexivity, transitivity, symmetry, and substitutivity (x =y D
floo.w..)=f(...y...))). We similarly define Eq-satisfiability and Eq-validity.

Again, by the use of Herbrand’s theorem, we obtain the following result.

Theorem 3.1 A set S of clauses is Fg-unsatisfiable iff there is an amplification T
of S and a © such that TO is ground and Eg-unsatisfiable.

As before, we want to find computable criteria for the existence of such a ©. To
do this, we need to consider more closely the structure of minimal unsatisfiable sets
of equations and inequations. This will entail a translation to eliminate non-equality
predicates as well as a consideration of critical pairs and critical pair proofs.

We first translate the clause set so that the only predicate in S is the equality
predicate. This simplifies the formalism to some extent. In some sections of this
paper, we will assume that this equality translation has already been done, and in
other places we will not assume this. This translation is done by replacing a positive
literal P(rq,...,7,) by the equation fp(ry,...,r,) = true and replacing a negative
literal =P (r1...7,) by fp(ri,...,rn) # true, where fp is a new function symbol
depending only on P. Assuming that “true” is a new constant symbol, one can
show that this translation is satisfiability preserving. For now, we generally assume
that this translation has been done, although sometimes we refer to the equations
fe(ri,...,ry) = true as positive literals and fp(r1,...,7,) # true as negative
literals. We also refer to these new equations and inequations involving fp as literal
equations and literal inequations, respectively. If this translation is not done, then it
is necessary to consider non-equality literals and equality literals separately, leading
to more inference rules.

Definition 3.2 An equational set for a set S of clauses is a set of equations and
inequations from S containing exactly one inequation. We also require that if an
equational set contains a literal inequation fp(rq,...,r,) # true, then it contains
exactly one literal equation having the function symbol fp, possibly with other
non-literal equations. If the equational set contains no literal inequations, then it
contains no literal equations.

We will show later that any minimal unsatisfiable set of equations and inequa-
tions is an equational set. The intuition for this is that an unsatisfiable set of Horn
clauses needs only one negative clause. If we had not done the translation to equal-
ity, then we would also have to consider equational sets containing equations and a
positive and negative non-equality literal.

Definition 3.3 A simplification ordering > is a partial ordering on terms that is
well-founded and satisfies the following three properties:

1. The subterm property, that is, for all terms s, f(...s...) > s,

2. the replacement property, that is, for all terms r and s, » > simplies f(...r...) >
f(o..s...), and

3. the full invariance property, that is, for all terms r and s and all substitutions
O, r > s implies 7O > sO.

We say that a simplification ordering is total on ground terms if for all distinct
ground terms s and ¢, either s > ¢ or ¢ > s.

In the sequel, we will generally assume that > (or <) is a simplification ordering
that is total on ground terms.

Definition 3.4 Suppose ri[u] = s; and ry = s are two equations and r[u] has
a non-variable subterm wu that unifies with r5. Let o be a most general unifier of
uw and rg. Then (r1[s2]a, s1a) is a critical pair between the equations ri[u] = s
and rg = s5. We sometimes also call the equation (ri[s3] = s1)a a critical pair.
We call « the critical substitution of this critical pair. A eritical pair operation
infers R U {(r1[s2] = s1) }a from R, where R contains the equations r[u] = s; and
ry = 3. We also define the inequation (ri[sg] # s1)a as a critical pair between
ri[u] # s1 and 75 = s and define the associated critical pair operation that infers
RU{(r1[s2] # s1)}a from R if R contains rq[u] # s1 and ry = s3. In this case, too,
we call «v a critical substitution. We say that this critical pair is with respect to the
simplification ordering > if it is not the case that r;a < s;a.

Definition 3.5 A critical pair proof from a set g of equations and inequations is a
sequence €1, €2, . . . ¢, of equations and inequations where each e; is either an element
of ¢ or is a critical pair between two previous equations in the sequence. A critical
pair refutation is a critical pair proof ey, ..., e, where for some term ¢, e, is of the
form ¢ # t.

It is known [15, 2] that if ¢ is an Eq-unsatisfiable set of equations and inequations,
then there is a critical pair refutation from ¢ in which each critical pair is with
respect to >.

Theorem 3.6 Suppose that q is a set of equations and inequations from S. Then
if g is Eq-unsatisfiable, ¢ has a minimal Eq-unsatisfiable subset p such that p is an
equational set for S.

Proof. We first note that ¢ may contain non-literal equations and inequations as
well as literal equations and inequations. We know that if ¢ is unsatisfiable, then
there is a critical pair proof of an inequation of the form ¢ # ¢ from ¢. For this we
assume that > is an ordering such that true is minimal in the ordering. We prove
the theorem by observing what kinds of critical pair operations can contribute to
this proof. We note that the following kinds of critical pair operations are possible:

1. A critical pair between a non-literal equation and a non-literal equation, yield-
ing a non-literal equation.

2. A critical pair between a non-literal equation and a non-literal inequation,
yielding a non-literal inequation.

3. A critical pair between a non-literal equation and a literal inequation, yielding
a literal inequation.

4. A critical pair between a non-literal equation and a literal equation, yielding
a literal equation.

5. A critical pair between a literal equation and a literal inequation, yielding
true # true.

There are no other possibilities, because each critical pair operation must involve
at least one equation, and critical pairs between two literal equations must involve
literal equations with the same symbol fp, yielding true = true, which cannot
contribute to a proof. Also, the symbols fp occur only at the top level, so that the
result of step 4 always has a symbol fp at the top level and is therefore a literal
equation. For the same reason, there cannot be a critical pair between a literal
equation and a non-literal inequation.

Now, we can only obtain an equation of the form ¢ # ¢ from step 5 or 2. (The
result of step 3 will have a true on one side.) Working backwards, to obtain an
inequation from step 2, we only need a set of non-literal equations and one non-
literal inequation. Working backwards from step 5, we only need a set of non-literal
equations, a literal equation with a symbol fp, and a literal inequation with the
same symbol fp. We can let the set ¢ be the set of equations and inequations
actually used in the proof, and we observe in all cases that ¢ is an equational set.

0O

We again make use of paths. A path is defined as for the non-equational case.
A set Sp of equational sets is spanning for S if for every path P for § there is
an equational set p in Sp such that p C P. Such a set Sp is called an equational
spanning set for S.

Theorem 3.7 Suppose that T is a set of clauses and © is a substitution such that
TO is ground. Then TO is unsatisfiable iff there is an equational spanning set Sp
for T such that for all p in Sp, pO© is Fg-unsatisfiable.

Proof. Similar to that for the non-equational case, except that we note that
for Eq-unsatisfiability, we need to consider sets of more than two equations and
inequations. If T'© is unsatisfiable, the every path of T© is Eqg-unsatisfiable. By
theorem 3.6, we can find an unsatisfiable equational subset p of the path. Taking all
of these subsets together, we obtain an equational spanning set for T' as specified in
the theorem. For the reverse direction, if there is an equational spanning set Sp for

T as specified, then every path of TO is Eq-unsatisfiable, so TO is Eq-unsatisfiable.
O

Combining this with the previous result, we obtain the following.

Theorem 3.8 A set S of clauses is Fg-unsatisfiable iff there is an amplification T
of S, an equational spanning set Sp for I', and a © such that for all p in Sp, pO is
Fg-unsatisfiable.

Now, in contrast to the non-equality case, determining if such a © exists can be
very difficult. In order to study this question, we introduce rigid F-unification.

Definition 3.9 The (simple) rigid E-unification problem (E,e), where E is a set
of equations and e is a single equation, is to determine if there is a substitution
O such that EO |= e© (relative to equality). Such a substitution is called a rigid
FE-unifier of e relative to FE.

It is easy to see that this problem is equivalent to determining whether an
equational set (E U {—e})O is Eq-unsatisfiable, since (E A —e)© is Eq-unsatisfiable
iff FO |= €O relative to equality.

Definition 3.10 The simultaneous rigid E-unification problem (Eq,e1),..., (Ey,
en), where the E; are sets of equations and the e; are equations, is to determine if
there is a substitution © such that for all 7, E;© |= e;0 relative to equality. Such a
O is called a simultaneous rigid E-unifier of E; relative to e;, or a solution of the
simultaneous rigid E-unification problem.

Suppose (EU{—e}) is an equational set. Then the associated rigid E-unification
problem is to determine if there is a © such that F© = €O relative to equality. Sup-
pose Sp = {p1,...,pn} is a set of equational sets. Then the associated simultaneous
rigid E-unification problem is (Eq,e1),...,(En,e,), where (Ej;, ;) is the simple
rigid F-unification problem associated with p;.

Proposition 3.11 O is a solution of the simultaneous rigid E-unification problem
associated with Sp iff for all p in Sp, p© is Fqg-unsatisfiable.

We therefore say that a substitution © is a simultaneous rigid F-unifier of Sp if
for every p in Sp, p© is Eq-unsatisfiable.

Theorem 3.12 A set S of clauses is Fg-unsatisfiable iff there is an amplification
T of S, an equational spanning set Sp for T, and a simultaneous rigid E-unifier ©

of Sp.

As before, this gives us a way to prove theorems involving equality. To implement
this, one must choose an amplification, find equational spanning sets, and then test
if such a O exists. The first two may be done as in the non-equality case. The third
part involves simultaneous rigid E-unification. This problem has a history of faulty
attempts to develop algorithms, but was recently shown to be undecidable [10, 9].
However, the problem of performing a single rigid E-unification is NP-complete.
This motivates the search for other special cases of simultaneous rigid F-unification
that are decidable, or even NP-complete, for applications to deduction. We first
review the NP-completeness proof, to fix terminology. Then we present some special
cases in which simultaneous rigid F-unification is decidable. Next we present some
complete (decidable) techniques for incorporating equality into theorem proving;
these techniques have a rigid flavor. As mentioned before, the decidability of these
approaches does not contradict the fact that first-order logic is not decidable. We
also discuss some related questions. Finally, we give a new proof that the general
simultaneous rigid E-unification problem is undecidable.

3.1 NP-Completeness of Rigid E-Unification

To fix notation, we here review the proof that the simple rigid F-unification problem
is NP-complete. NP-hardness was shown in [16], so it suffices to show membership
in NP. For this, it suffices to show that if there is a © such that FO® | e®, then
there is a proof of this fact whose length is polynomial in (E, €).

From now on, for simplicity we assume that F is a set of equations and inequa-
tions, and we are concerned with the problem of whether there is a (ground) © such
that F©O is ground and Eqg-unsatisfiable.

We first note that the assumption of groundness does not lead to a loss of
generality, since if F© = e© then for all substitutions v, KO~y = eO®y. Thus we
can choose v to replace distinct variables in F© and €O by distinct new constant
symbols.

Definition 3.13 If F is a set of equations, then the subterm size St(E) of E is the
number of distinct subterms that appear in E. Note that a subterm is only counted
once, even if it appears many times. Also, subterms are only considered identical
if their variables are identical. We say that a quantity is polynomial in F if it is
polynomial in S?(F), and similarly for sets S of clauses.

Since a term may appear many times in F, the length of F, written out as a
string, may be exponential in St(E).

Definition 3.14 (Recall definition 3.4.) Suppose F is a set of equations and in-
equations. Suppose e[u] is an equation or inequation of F and and ro = s3 (or its
symmetric version) is an equation of E. Let a be a most general unifier of u with
r9. Then we call a a critical substitution for E. We also call « a critical substitution
between ef[u] and the rewrite rule ry — sg.

Theorem 3.15 Suppose E is a set of equations and « is a critical substitution for
E. Then St(Ea) < Si(E).

Proof. See [19]. O

Definition 3.16 A uniform rewriting step on a term-rewriting system R[r] con-
taining a rule r — s, infers the system R[s] in which all occurrences of the subterm
r in R have been replaced by s except for the occurrence on the left-hand side of
the rule r — s itself.

The following result, also from [19], will be useful to us.

Theorem 3.17 Suppose that R is a ground term-rewriting system and > is an ar-
bitrary simplification ordering that is total on ground terms. Then we can complete
R in a polynomial number of uniform rewriting steps to obtain R’ such that R and
R’ are equivalent (that is, the sentence R’ = R is Eq-valid), R’ is terminating and
confluent, for all rules r — s in R', r > 5, and St(R') < St(R). For this, it suffices
to choose at each step the rewrite rule r — s such that s is >-minimal subject to
the condition that R[r] and R[s] are not identical.

Proof. See [19]. O

Definition 3.18 If A is a formula, then Gr(A) is A with the variables « system-
atically replaced by new constant symbols ¢,. We similarly define Gr(R) for a
term-rewriting system R.

We now present a proof system in which polynomial length proofs of rigid E-
unifiability can be constructed. Others have also studied systems for dealing with
rigid F-unification. We are not sure of the relationships of these methods to our
own. In [17], a complete method is given for building in equality reasoning in the
connection calculus. In [5], a method is given to combine classical and rigid E-
unification. In [13], a rule-based method is given for finding complete sets of rigid
FE-unifiers. This uses congruence closure. In [4], a method is given to add rigid E-
unification to an ordered theory resolution calculus. An algorithm for simultaneous
rigid E-unification from [14] is apparently incomplete. An approach to equality
combining the matrix rule with equation solving is given in [8].

We represent inference rules in the format

A

— X,
B

meaning that B is derivable from A, and X is the name of the rule. We use
A D to indicate that D may be obtained from A by a sequence of zero or more
applications of such inference rules. We represent a set of equations and inequations
as a quadruple (R, N, C, @) where R is a set of rewrite rules, N is a set of inequations,
C is a constraint, and « is a substitution. The constraints are conjunctions of
inequalities of the form r > s for terms r,s. The constraints are not needed for
soundness or completeness, but help to prune the search space. We require that in
every inference rule, for a quadruple used as the hypothesis of the inference rule,
the constraint C' be satisfiable. This means that there must be a simplification
ordering satisfying the inequalities in the constraint. To test for this, we consider
the associated term-rewriting system Rc = {r — s : r > s is a conjunct of C'}. Then
C is satisfiable only if Gr(R¢) is terminating, and we note that ground termination
can be tested in polynomial time [18]. This proof system has four inference rules,
orientation, ground completion, critical substitution, and contradiction, as follows:

FE
(R,N,A{r>s:r—s€ R}, id)

Orientation

where R are the equations of F oriented into rewrite rules in an arbitrary manner
and N are the inequations of £ and id is the identity substitution.
(R,N,C,a)
(R,N',CAC)

Ground Completion

where Gr(R') is canonical and Eg-equivalent to Gr(R). Thus (R = R') is Eq-
valid. Also, Gr(N’) are in normal form with respect to Gr(R’). Furthermore,
RO (N =N')and (RUN) = (R'UN’) (relative to Eq). Note that it is possible
that the orientations of the rules of R’ are not uniquely determined by those of R.
The additional constraint C’ represents the orientation decisions that were made
during the ground completion of R, as explained below. The satisfiability of the
constraint C' A C” implies that Gr(R U R’) is terminating.

We now show in more detail how the ground completion step can be done in
(nondeterministic) time polynomial in St(R U N). For this, it suffices to use the
congruence closure method of [21]. It is also possible to perform this step using
the method of [19]. This will complete a ground system in a polynomial number
of rewrites. At each step, one chooses the rule r — s with the smallest right-hand
side s that can be applied somewhere, and applies it everywhere. When a rewrite
rule u — v is rewritten to u’ — v/, then it may be re-oriented as v’ — u’. Since we
are working with constraints, when a rule r — s is chosen, then we include in C'
all constraints of the form s’ > s for all rules ¥ — s’ that are also applicable. We
also add the constraint » > s. In this way, we complete R in a polynomial number
of steps and update the constraint C' to C' A C’. We also rewrite N to normal form
along with the rewrites done on R, as the method progresses. As in [19], we have
that $¢(R' UN') < St(RUN).

(R,N,C,a)
(RB,NB3,CB,aB)

where [is a (non-trivial) critical substitution for (R U NN). Thus we can create
critical substitutions involving rules and inequations, as well as critical substitutions
involving rules and rules. We require here too that G'r(RfS) be terminating. Note
that the critical substitution rule eliminates at least one variable, since 3 is not the
identity.

C'ritical Substitution

(R,NU{s#1},C,a)
(RB, false, C3, a3)

Contradiction

where s and ¢ are unifiable and 3 is a most general unifier of s and t.

From now on, for simplicity we often omit the constraint. We write (R, N, o) -
(R',N', o) if (R',N', &) can be derived from (R, N, «) using these rules. We first
remark that for each one-step derivation using these rules, if (R, N, o) F (R', N', o),
then there exists 3 such that o’ = a3. By transitivity, this also follows for many-
step derivations.

We now show that for each one-step derivation, if (R, N,a)F (R', N’, af3), then
(RUN)B = (R UN’) relative to Eq. This can be shown by examining the last
three rules. In particular, we consider the contradiction rule. If N has an inequation
s # 1 such that s, ¢ are unifiable with most general unifier 3, then N3 contains an
instance of @ # z and so is Eq-unsatisfiable. Thus (R U N)j is Eq-unsatisfiable
and equivalent to (R U false) relative to Flq. The arguments for the other rules are
straightforward. It follows by transitivity that, if (R, N,«) - (R, N',af) for an
n-step derivation, then (RU N)3 = (R’ U N’) relative to Eq.

Also, if E + (R, N, () by a one-step derivation then Ef = (R U N) relative
to Eq, since then 3 is the identity substitution. It follows by transitivity and an
above result that if £+ (R, N, /) by an n-step derivation, then ES = (RU N)
relative to Eq. Thus if F - (R/,false, 3), then Fj is Eq-unsatisfiable. Thus we
have found a rigid F-unifier, namely, 3. If we desire a 3’ such that F3 is ground
and Eq-unsatisfiable, then this can be found by modifying 3 to replace variables by
distinct new constant symbols.

We now show that if there is a © such that FO is Eq-unsatisfiable, then
E + (R false, ') for some R’ and o'. Furthermore, the length of this proof is
polynomial in the size of E. Since the result is already known, we will try to be
brief.

Definition 3.19 The length of a proof is the number of inference steps in it.

Theorem 3.20 Suppose R is a set of equations, N is a set of inequations, and © is
a substitution such that (RUN)O is ground and Eq-unsatisfiable. Then (R, N, o) F
(R/,false, af) for some (3 such that (R U N)B is Eq-unsatisfiable, and there is a
proof whose length is polynomial in St(RUN).

Proof. By induction. For this we order the triples (R, N, «) lexicographically,
first by the number of variables in R U N, and then by the ordering of a minimal
ground substitution such that (RUN)j is ground and Eq-unsatisfiable. Here we
are ordering substitutions using the simplification ordering < which is assumed to
be total on ground terms. That is, § < g’ iff for all variables z, z3 < /3. We know
that some such 3 exists at the beginning (namely ©), and we prove that given a
triple (R, N, «) such that for some 3, (RU N)g is Eq-unsatisfiable, there is a proof
step that generates a smaller Eq-unsatisfiable triple.

For the proof, we note that (RUN)®O is a ground system and can be completed by
ground completion. The result of this ground completion will be a system containing
an inequation of the form ¢ # ¢. We lift these ground completion steps to R and N
to obtain a proof as desired. This proof will generate something having ¢t # ¢ as an
instance. This must therefore be an inequation of the form r # s where r and s are
unifiable, in other words, an inequation that unifies with z # =.

We assume that the ground completion rule has already been applied to RUN.
We can always choose an ordering consistent with © for ground completion, that
is, we can order terms r and s by r >¢ s (for ground completion) if r® > s©. If
R U N is the result of a ground completion step with such an ordering, then we
know that if » = s is an equation in R and r®© > sO, then all occurrences of r in
R (other than in this equation) will have been replaced by s. Now, if (RU N)O
is Eq-unsatisfiable, then either IV contains already an inequation that unifies with

10

z # x, or (RUN)O has a critical pair. We often write a rewrite rule » — s as the
equation r = s in the following. Suppose the critical pair involves the two equations
(r19)[u] = 510 and r,© = s30, where (r10)[u] has a subterm u that is identical
to r,©. Since all terms (with © applied) are ground, ((r10)[s20], s10) is a critical
pair between the equations r1[u] = s; and 73 = s2. Now, we consider the position
of the subterm w in r1©. If u occurs inside a © term that replaces a variable y of
71, then we can write y© as (y©)[u] and let © be defined by 0 = @' if © # v,
and y©' = (y©)[s2©0]. We note in passing here that y© has v as a subterm. Then
©' < O and (RU N)©' is also Eq-unsatisfiable, and we can proceed by induction.
If the critical substitution is trivial (the identity), then this step would have been
done during ground completion. The only other possibility is that u occurs at a
non-variable position of r; and there is a critical pair with a non-trivial critical
substitution. This substitution must bind a variable to a term not containing that
variable, and therefore reduces the number of variables. So we can perform a critical
substitution step and again argue by induction.

There is a technicality to consider here. That is, we need to know that the
equation 7,0 = s20 still occurs in (R U N)©’ in order to know that (RU N)©' is
Eg-unsatisfiable. This will be true unless ro or s5 contains y, since © and ©’ are
identical on terms not containing y. We noted above that y© has u as a subterm,
and u = 0. Thus 720 is a subterm of y©. If ry contains y, then r2© has y©
as a subterm, so it must be that y© = r,0, and therefore y = r5. Also, y cannot
occur in sy since we are assuming that 7,0 > s20. Thus the equation ry = s
is of the form y = s2 for some variable y that does not appear in s3. We note
in passing that such equations cannot be derived if R has a nontrivial model. If
ry also has the variable y at the u position, then this replacement of y by sy in
r10 could have occurred already in the ground completion step, so we do not need
to consider this possibility. Otherwise, we perform a critical substitution step by
unifying ro with whatever term occurs at the u position of r1. This will reduce the
number of variables, so we can proceed by induction. Thus in all the cases we need
to consider, the equation r9® = 50 still occurs in (RUN)O’, and so (RUN)O’ is
Eq-unsatisfiable

We now need to show that the length of the proof is polynomial in St(RU N).
The number of variable eliminating steps (applications of critical substitutions) is
linear in the number of variables. We only have to check that the combined work
to ground complete is polynomial in the size of the original R U N. This is not
obvious, because it could be that RU N grows in size, and so although each ground
completion is polynomial, their combined time could be exponential in the size
of the original R U N. The polynomial bound is obtained by noting that ground
completion does not increase the subterm size, and the work to ground complete is
polynomial in the subterm size (for example, by the method of [19] or [21]). O

Corollary 3.21 Suppose F is a set of equations and inequations and © is a sub-
stitution such that E© is ground and Eq-unsatisfiable. Then E F (R, false, 3) for
some [such that E3 is Eqg-unsatisfiable, and there is a proof of this that can be
found in nondeterministic polynomial time (polynomial in St(E)). We can find '
such that EB' is ground and Eq-unsatisfiable, too, by replacing variables by distinct
new constant symbols.

Proof. One application of the orientation rule yields E F (R, N,id). Combining
this with the theorem, we obtain the desired result. a

Corollary 3.22 Rigid E-unification is in NP.

11

Proof. Ifforsome O, FO is ground and Eg-unsatisfiable, then in nondeterministic
polynomial time (polynomial in St(E)) we can find a proof of this fact, using the
preceding corollary. a

Since the NP-hardness of rigid E-unification is known by other methods [16],
we obtain that rigid F-unification is NP-complete.

4 Decidable Cases of Simultaneous Rigid E-Unification

We now present some special cases which are fairly common in which simultaneous
rigid E-unification is decidable and of reasonable complexity. This shows that the
rigid F-unification approach is still viable for theorem proving with equality, in
many cases. For these cases, we are still assuming that S is translated to eliminate
non-equality predicates.

4.1 Unit equations

We now assume that S is a set of clauses consisting of a set E of unit equations
(that is, clauses of the form {r = s} for some terms r and s) and a set S’ of clauses
not containing positive occurrences of the equality predicate. We say a spanning
set Sp for T is uniform if for all (non-literal) equations e in E, for all p; and p, in
Sp, e € py iff e € ps.

Theorem 4.1 Suppose S is a set of clauses consisting of a set E of unit equations
and a set S" of clauses not containing positive occurrences of the equality predicate
(for translated S, not containing positive non-literal equations). Then S is Eq-
unsatisfiable iff there is an amplification T of S, a uniform equational spanning set
Sp’ for T, and a © such that for all p' in Sp', p'O is Eq-unsatisfiable.

Proof. If such a uniform equational spanning set Sp’ exists, then S is Eqg-
unsatisfiable as before. We now show that if S is as stated, then such a uniform
equational spanning set Sp’ exists. We know from theorem 3.8 that if S is Eq-
unsatisfiable then there is an amplification T of S, an equational spanning set Sp
for T', and a © such that for all p in Sp, pO is Eq-unsatisfiable. Now, we modify Sp
to obtain a set Sp’ that is uniform. We define Sp’ to be {pU F : p € Sp}. Then if
pO is Eq-unsatisfiable, (p U E)© is Eq-unsatisfiable. This completes the proof. O

Now, the proof actually gives us more information than stated. In particular,
we have that Sp’ is a spanning set for the same amplification 7" as Sp. This means
that in order to use uniform spanning sets in this case, we do not need to increase
the size of the amplification.

We now show that simultaneous E-unification problems derived from uniform
spanning sets are NP-complete.

Theorem 4.2 Suppose Sp is a uniform spanning set. Let (Eq,e1),...,(Ep,e,) be
the simultaneous rigid F-unification problem corresponding to Sp. Then there is a
simple rigid E-unification problem (E,e) such that for all ©, © is a solution of the
problem (E,€) iff © is a solution of the simultaneous problem (E1,e1), ..., (Fn,en).
Also, (E,e) is obtainable from (Ey,e1),...,(Ey,e,) in polynomial time.

Proof. Counsider the simultaneous rigid E-unification problem corresponding to
Sp. This will be a set (E1,€1),...,(En,e,) of simple rigid E-unification problems
in which all sets of non-literal equations are identical. That is, all F; are identical

12

except possibly for some literal equations. Let E be this set of non-literal equations.
To obtain (E,e), we first eliminate these literal equations. The only kind of equa-
tional sets containing literal equations that we need to consider are those containing
a single positive literal equation fp(uj...u,) = true and a single negative literal
equation fp(vy...v,) # true. The literal equation fp(u;j...u,) = true would
then occur in some E; and then e; would be fp(vy...v,) = true. We can remove
the literal equation from Fj; and replace e; by the equation g(uy ... u,) = g(vy...vy)
where ¢ is a new function symbol, since the only way to obtain a contradiction is to
derive equality between (instances of) u; and v; for all 4. In this way, we can replace
(Ei,e;) by (E,g(uy...u,) = g(vy...v,)). We then obtain an equivalent simultane-
ous problem (E,¢}),..., (E,e),) by performing this translation on all (E;,e;). Also,
we can assume that there are no literal equations or inequations among FE or the €.

Let us express e} as r; = s; and let e be the equation f(ry,...,7,) = f(s51,--.,8n),
where f is a new function symbol. We then note that A;(FO |= ¢;0) iff EO E A;e;©
iff £O = e. O

Corollary 4.3 Suppose Sp is a uniform spanning set. Then the problem of deciding
if there is a © such that for all p in Sp, pO is Fg-unsatisfiable, is in NP.

Proof. A substitution © satisfies (for all p in Sp, p© is Eqg-unsatisfiable) iff ©
is a solution to the simultaneous rigid F-unification problem associated with Sp.
However, if the simultaneous problem is uniform, then there is a simple rigid E-
unification problem (E, e) such that © is a solution to (E, e) iff © is a solution to the
simultaneous problem. Furthermore, (E,¢€) is obtainable in polynomial time, and
the simple rigid E-unification problem is in NP. Putting all of these facts together,
we obtain the above corollary. a

Corollary 4.4 Suppose S is a set of clauses consisting of a set E of equations and
a set 8" of clauses containing no positive occurrences of the equality predicate (that
is, no positive non-literal equations). Suppose that T' is an amplification of S. Then
the problem of determining whether there exists a ground © such that TO is ground
and Eg-unsatisfiable is solvable in exponential time.

Proof. We know that T© is Eq-unsatisfiable iff there is a uniform spanning set
Sp such that for all p in Sp, pO is Eqg-unsatisfiable. Each spanning set Sp will
be of the form F U p’ where p’ has one or two elements. Therefore the number of
elements of Sp is polynomial in S, and the number of such Sp is exponential in
S. To determine whether T© is Eqg-unsatisfiable, we can enumerate all the uniform
spanning sets Sp of T' and test for each one whether such a O exists. There may be
exponentially many such spanning sets Sp, and testing for the existence of © will
take at most exponential time (since it is a problem in NP). Thus the total running
time is exponential. (Actually, we can bound the position of this problem in the
polynomial hierarchy better than this, if we like, but we still cannot improve the
exponential time bound at present.) a

This shows us (essentially) that the simultaneous rigid E-unification problem is
still NP-complete if all equations occur in unit clauses.

4.2 Horn clauses

Definition 4.5 A Horn clause is a clause containing at most one positive literal.
Thus {—p(z),—q(x),r(z)} and {-p(x), ~¢(z)} are Horn clauses.

13

Definition 4.6 We say that a clause C'is all-negative or just negative if every literal
in C'is a negative literal.

Definition 4.7 A Horn equational set h for a set S of clauses is a set such that for
all elements y of h, either either y is a literal from S or y is a Horn clause from S.
Also, h contains at most one all-negative clause.

Definition 4.8 A set h of Horn clauses covers a path P of S if P intersects every
clause in h.

Definition 4.9 A set Sp of Horn equational sets is spanning for S if for every path
P in S, there is a Horn equational set & in Sp such that A covers P. We call such
a set Sp a Horn spanning set for S.

Definition 4.10 A substitution © is a simultaneous unifier of a Horn spanning set
Sp if for all Horn equational sets h in Sp, hO is Eq-unsatisfiable.

Theorem 4.11 If S is a set of clauses, then there is a © such that SO is ground
and Eq-unsatisfiable iff there is a Horn spanning set Sp for S and a simultaneous

unifier © for Sp.

Proof. Similar to the proofs of theorems 2.2 and 3.7. If SO is Eqg-unsatisfiable,
then there is an equational spanning set, which we can take as Sp since it is also a
Horn spanning set. The only new part is to show that if a simultaneous unifier © for
Sp exists, then S is Eqg-unsatisfiable. This follows because if h© is Eq-unsatisfiable
and h covers a path P, then PO is also Eq-unsatisfiable. a

We note that this theorem doesn’t say much yet, since if SO is Eqg-unsatisfiable
we can just take Sp as an equational spanning set (without Horn clauses). But the
other direction of the theorem gives us some new information, and will be useful
later.

We now develop some special cases that will be useful for obtaining another
decidable subcase for rigid F-unification.

Definition 4.12 Suppose that H is a subset of S such that every clause C in H is
a Horn clause. Then we say that H is separable from S if H satisfies the following
conditions:

1. No clause D in S — H contains a literal M such that M is a non-literal
equation.

2. If there exists a clause C' of H and a literal L of C' such that L is of the form
fe(ri,...,ry) # true, then no clause D in S — H contains a literal M of the
form fp(s1,...,s,) = true.

3. H contains no all-negative clauses.

Briefly stated, 2. means that predicate symbols that appear negatively in H
cannot appear positively outside of H.

Definition 4.13 A Horn spanning set Sp for S is uniform for S relative to H if
H is separable from S and every Horn equational set h in Sp is of the form H U A’/
where I’ contains either

1. A non-literal inequation from a clause in S — H or

2. A literal inequation from a clause in § — H or

14

3. A literal inequation from a clause in S — H and a literal equation with the
same predicate, also from a clause in S — H.

We note that if H is separable from S and T is an amplification of S, then there
is a H' that is separable from T'; this is obtained by taking the copies of H that are
in T

Theorem 4.14 Suppose S is a set of clauses and H is a set of Horn clauses in S
that is separable from S. Then S is Fq-unsatisfiable iff there is an amplification T’
of S, a set H' of Horn clauses in T that is separable from T, a uniform (relative
to H) Horn spanning set Sp' for T, and a © such that for all p' in Sp’, p'O is
FEqg-unsatisfiable.

Proof. If such a uniform equational spanning set Sp’ exists, then S is Eq-
unsatisfiable as before. We now show that if S is as stated, then such a uniform
equational spanning set Sp’ exists. We know from theorem 3.1 that if S is Eq-
unsatisfiable, then there is an amplification T' of S and a © such that TO© is Eqg-
unsatisfiable. Let H’ be the part of I' consisting of copies of clauses from H and
let, P consist of all the paths in T — H'. Tet Sp be {pU H' : p € P}. Then we
know that for all p in Sp, p® is unsatisfiable. (This follows by simple propositional
reasoning.) Also, every path in T is covered by some element of Sp. Now, we
construct a spanning set Sp’ for T' which contains for each element p U H' in Sp
a path ¢ U H’, where ¢ is minimal such that (¢ U H')© is Eq-unsatisfiable. By
properties of Horn sets and equality, it follows that ¢ must contain exactly one all-
negative clause C'. Since H' has no all-negative clauses and ¢ consists only of single
literals, C' must be a negative literal L. If L is a non-literal inequation, then by the
definition of separable it follows that ¢ contains no other literals, and condition 1.
of the definition of uniformity is satisfied. If L is a literal inequation, then by the
definition of separable it follows that ¢ may contain no other literals or perhaps one
other literal M which is a literal equation having the same symbol fp as L. These
cases correspond to conditions 2. and 3. of the definition of uniformity, respectively.
Therefore Sp’ is uniform and satisfies the conditions of the theorem.

We may see that this condition on ¢ is satisfied by considering that H’ and the
equality axioms are Horn clauses, and so we can obtain a proof of unsatisfiability
by Prolog-style backward chaining from the inequation L. By the definition of
separable, it follows that when we back chain into the H’ region we never get out
of it again. The only way that the H' region can contribute to the proof is by
deriving a set GG of literal equations and non-literal equations that, together with
g, are Eqg-unsatisfiable. By theorem 3.6, we know that a minimal set ¢ U G of
this form either contains (a) no literal equations or inequations, or (b) a literal
inequation of the form fp(r1,...,7,) # true and a literal equation of the form
fr(s1,...,8n) = true. The set ¢ UG may also contain non-literal equations, and
since no non-literal equations occur in T'— H’, these must be elements of G. If (a)
holds, then condition 1 of the definition of uniformity is satisfied. If (b) holds, then
Lis fp(r1,...,r,) # true. Depending on whether the literal fp(sq,...,s,) = true
is a lemma derived from H' or in g, we obtain conditions 2 and 3 of the definition
of uniformity, respectively.

This completes the proof. a

We note here as in theorem 4.1 that the proof actually gives us more informa-
tion than stated. In particular, we have that Sp’ is a spanning set for the same
amplification 1" as Sp. This means that in order to use uniform spanning sets in
this case, we do not need to increase the size of the amplification.

15

Definition 4.15 The (simple) rigid Horn unification problem (H,e), where H is
a set of Horn clauses (possibly involving equality) and e is a single equation, is to
determine if there is a substitution © such that HO £ e© (relative to equality).
Such a substitution is called a rigid Horn unifier of e relative to H.

It is easy to see that this problem is equivalent to determining whether a Horn
set (HU{—e})O is Eq-unsatisfiable, since (H A—¢)© is Eq-unsatisfiable iff HO = e©
relative to equality.

Definition 4.16 The simultaneous rigid Horn unification problem (Hy,eq),...,
(Hp, e,), where the H; are sets of Horn clauses (possibly involving equality) and
the e; are equations, is to determine if there is a substitution © such that for all ,
H;0 £ €,0. Such a © is called a simultaneous rigid Horn unifier of the H; relative
to e;.

Suppose that e is an equation and (H U {—e}) is a Horn equational set. Then
the associated rigid Horn unification problem is to determine if there is a © such
that HO = €O relative to equality. Suppose Sp = {pi1,...,pn} is a set of Horn
equational sets. Then the associated simultaneous rigid Horn unification problem
is (Hi,€1),...,(Hp,en), where (H;, e;) is the simple rigid Horn unification problem
associated with p;.

Proposition 4.17 O is a solution of the simultaneous rigid Horn unification prob-
lem associated with Sp iff for all p in Sp, pO© is Eq-unsatisfiable.

We now show that if Sp is uniform, the simultaneous rigid Horn unification
problem associated with Sp can be converted to an equivalent simple rigid Horn
unification problem. Then we show that this simple problem is in NP.

Theorem 4.18 Suppose Sp is a uniform Horn spanning set relative to H. Let
(Hi,e1),..., (Hp, e,) be the simultaneous rigid Horn unification problem corre-
sponding to Sp. Then there is a simple rigid Horn unification problem (H,e)
such that for all ©, © is a solution of the problem (H,e) iff © is a solution of
the simultaneous problem (Hy,e1),...,(H,,e,). Also, (H,e) is obtainable from
(Hi,€1), ..., (Hp,epn) in polynomial time.

Proof. Very similar to the proof of theorem 4.2. It is only necessary to modify
(H;,e;) to (H,e;) and then introduce the new function symbol f as before. The
only difference is that we may have either 1) H; = H and e; is a single non-literal
equation, or 2) H; = H and e; is a single literal equation, or 3) H; = HUL; where L;
is a non-literal equation, and e; is a non-literal equation with the same symbol fp.
This follows by the definition of uniformity of Sp relative to H. Cases 1) and 3) are
handled as for the unit equational case. Thus in case 3), we introduce a new equation
e} as in theorem 4.2 such that (H,e}) is equivalent to (H;,e;). Case 2) is new, but
this does not matter, since it is in any event a single equation and can be treated the

same as case 1). We thus obtain an equivalent system (H,e}),...,(H,e,). Then
we introduce e equivalent to the conjunction €} A... A€}, as in theorem 4.2, so that
(H,e) is equivalent to (H,€}),..., (H,e,). O

We now present a set of inference rules in order to show that the simple rigid
Horn unification problem is in NP. We refer to a Horn clause, all of whose literals are
equality or inequality literals, and which contains at least one positive literal, as a
Horn equational clause. Note that this includes ordinary equations as a special case.
A non-positive clause is a clause containing at least one negative literal, and in this
context, refers to a Horn equational clause containing at least one negative literal.

16

Note that every Horn equational clause is either a unit equation or a non-positive
clause.
We need to redefine the notion of a critical substitution, as follows:

Definition 4.19 Suppose H is a set of Horn equational clauses. Suppose e[u] is
a clause of H and and ry; = sy (or its symmetric version) is a unit equation of
H. If e is a non-positive clause, suppose that u is a term occurring in its leftmost
inequation. Let o be a most general unifier of u with 5 . Then we call « a critical
substitution for E. We also call « a critical substitution between e[u] and the rewrite
rule ro — s9.

As before, we represent a set of Horn equations and Horn inequations as a
quadruple (R, N,C, «) where R is a set of rewrite rules, N is a set of non-positive
clauses, C'is a constraint, and « is a substitution. The constraints are conjunctions
of inequalities of the form r > s for terms r,s. As before, the constraints are not
needed for soundness, but help to prune the search space. We require that in every
inference rule, for a quadruple used as the hypothesis of the inference rule, the
constraint (' be satisfiable. This proof system has four inference rules, orientation,
ground completion, critical substitution, and inequation elimination, as follows:

H
(R,N,A{r>s:r—s€ R}, id)

Orientation

where H is a set of Horn equational clauses and R are the (unit) equations of H
oriented into rewrite rules in an arbitrary manner and N are the non-positive clauses
of H and d is the identity substitution.

(R,N,C,a)
(R,N",CAC",a)

Ground Completion

where G'r(R') is canonical and Eg-equivalent to Gr(R). Thus (R = R') is Eq-
valid. Also, Gr(N’) are in normal form with respect to Gr(R’). Furthermore, R D
(N =N')and (RUN) = (R UN’) (relative to Eq). The additional constraint C”
represents the orientation decisions that were made during the ground completion of
R. The satisfiability of the constraint C'AC” implies that Gr(RUR') is terminating.
Ground completion is done exactly as for the non-Horn equational case; it is only
necessary to rewrite NV as R is rewritten.

(R,N,C,a)
(BB, NB,CB,ap)

where 3 is a (non-trivial) critical substitution for (RU N). Note that in the Horn
case which we are now considering, we can generate critical substitutions between
rules and non-positive clauses. We require here too that G'r(R3) be terminating.
Note as before that the critical substitution rule eliminates at least one variable,
since [is not the identity.

(RRNU{{s #t, Lo, ..., L,}},C\a)
(RﬁaN U {{L27 .. 7Ln}}ﬁa Cﬁv O‘ﬁ)

where s and ¢ are unifiable and 3 is a most general unifier of s and t. We note that
the resulting clause {Ls,..., L, }3 can be empty, and we consider an empty clause
as equivalent to “false.”

We also have a special case of inequation elimination:

Critical Substitution

Inequation Elimination

(RNU{{s#1t,r1 =r2}},C,)
(RU{ry = r})B,NB, (C A (r1 > r2)) 3, af)

Inequation Elimination

17

Here 3 is a most general unifier of s and ¢, as before. The equation r;1 = 72
(or r9 = rq) is converted to a rewrite rule and added to R, and the constraint is
modified.

From now on, for simplicity we often omit the constraint. We write (R, N, a) -
(R',N', /) if (R', N’,&’) can be derived from (R, N, &) using these rules. As before,
for each one-step derivation using these rules, if (R, N,«) F (R', N’, &), then there
exists a substitution 3 such that o’ = o3. By transitivity, this also follows for many-
step derivations. Also, as for the unit equational case, if (R, N, «) F (R', N’, a3) for
an n-step derivation, then (RU N)3 = (R’ U N’) relative to Eq. That is, the rules
are equivalence (hence satisfiability) preserving. Similarly, if H F (R, N, 3) by an
n-step derivation, then H3 = (RUN) relative to Eq. Thusif H F (R, N'U{{}}, 8),
then H3 is Eq-unsatisfiable. This means that we have found a rigid Horn unifier,
namely, 8 (suitably grounded, if desired).

We now show that if there is a © such that HO is Eqg-unsatisfiable, then H +
(R, N'U{{}}, &) for some R', N’, and o'. Furthermore, the length of this proof is
polynomialin the size of H. Since the result is similar to that for the unit equational
case, we will omit some details.

Theorem 4.20 Suppose H is a set of equational Horn clauses and © is a substitu-
tion such that HO is ground and Eq-unsatisfiable. Then H F (R', N’ U {false}, 3)
for some R', N', and 3 such that Hpj is Eq-unsatisfiable, and there is a proof whose
length is polynomial in St(H).

Proof. The basic idea of the proof is to observe that we can ground complete the
system HO by applying ground completion to the pure equational part of H. We
also rewrite literals in inequations of H. If some inequation rewrites to the form
r # r, then we can delete it. We note that when all the inequations in a Horn
clause are deleted, we either obtain “false” or a new equation, which can then be
added in to the unit equations, which in turn can be ground completed again. If
no inequation rewrites to this form then we can do nothing more and unless {} has
been derived, HO is consistent. This ground proof from HO can then be lifted to
a proof from H.

Formally, let H be E'U N, where E are unit equations and N are non-positive
clauses. We showed in theorem 3.20 that the ground completion of F©O could
be lifted to E, and the same proof applies here since all necessary critical pair
operations can still be performed. Thus we obtain H - (R, N',), where © = ad/,
o’ is a substitution such that (RU N')a’ is ground, and Re’ is a confluent ground
term-rewriting system equivalent to FO. Also, we can assume that N’ is in normal
form relative to R (by the ground completion inference rule).

Suppose that N’a’ has some clause C' with an inequation of the form r # r.
Then there is an inequation elimination rule that can be applied to (R, N’ «),
simplifying the system.

Suppose that none of the inequations of N’«’ are of the form r # r. Suppose
also that false (i.e., {}) has not been derived. Then (RU N')a’ is consistent, since
we can interpret every term to its Ra’ - normal form. Also, we interpret “=" as
equality. Let us call this interpretation /. Now, all remaining inequations s # ¢ have
s, t with different Ra-normal forms. This means that these inequations are true
(satisfied) in the interpretation I. Also, the unit equations are in R and thus are
true in the interpretation I. Thus every clause in (RUN')a’ has a true literal, so all
clauses are satisfied by I. But we know as in theorem 3.20 that (RU N')o’ = HO,
which is unsatisfiable.

The only other case is that N’a’ and thus N’ contains {}. In this case we have
already derived a proof of a contradiction.

18

We now show that this proof is of polynomial length. This is straightforward
since the ground completion rule is polynomial time, the orientation rule is only
applied once at the beginning, the critical substitution rule eliminates a variable,
and the inequation elimination rule eliminates an inequation. By polynomial time
we mean polynomial in St(H). This is valid since all steps can be done in time
polynomial in SZ(R U N) and none of the inference steps increase St(RUN). O

Corollary 4.21 Simple rigid Horn unification is NP-complete.

Proof. Iffor some ©, HO is ground and Eqg-unsatisfiable, then in nondeterministic
polynomial time (polynomial in St(H)) we can find a proof of this fact, using the
preceding result. Also, rigid Horn unification has rigid E-unification as a special
case, and the latter is known to be NP-hard. Hence simple rigid Horn unification
is NP-complete. a

Corollary 4.22 Suppose S is a set of clauses, H is a subset of S that is separable
from S, and Sp is a Horn spanning set for S that is uniform relative to H. Then the
problem of deciding if there is a © such that for all h in Sp, h© is Eq-unsatisfiable,
is in NP.

Proof. A substitution © satisfies (for all A in Sp, h© is Eq-unsatisfiable) iff ©
is a solution to the simultaneous rigid Horn unification problem associated with
Sp. However, if the simultaneous problem is uniform, then by theorem 4.18 there
is an equivalent simple rigid Horn unification problem (H,e¢). Furthermore, (H,e¢)
is obtainable in polynomial time, and the simple rigid Horn unification problem is
in NP. Putting all of these facts together, we obtain the corollary. a

Corollary 4.23 Suppose S is a set of clauses consisting of a set H of equational
Horn clauses that is separable from S. Suppose that T is an amplification of S.
Then the problem of determining whether there exists a © such that TO is ground
and Eg-unsatisfiable is solvable in exponential time.

Proof. Let H' be the part of T containing copies of clauses in H. Then H’
is separable from T. Also, we know by theorem 4.14 that T'© is Eg-unsatisfiable
iff there is a uniform (relative to H’) spanning set Sp’ such that for all & in Sp/,
h© is Eq-unsatisfiable. In addition. any such Sp’ must be of size polynomial in
T, since each set p in Sp’ consists of H' together with one or two literals from
T — H’, and there are only a polynomial number of such combinations to consider.
So to determine whether T© is Eq-unsatisfiable, we can enumerate all the uniform
spanning sets Sp’ of T" and test for each one whether such a © exists. There may be
exponentially many such spanning sets Sp, and testing for the existence of © will
take at most exponential time (since it is a problem in NP). Thus the total running
time is exponential. a

4.3 Case analysis

We now present yet another special case in which the rigid F-unification problem
can be solved in nondeterministic polynomial time (in a certain sense). From now
on in this paper, we will not assume that the equality translation (introduction of
fp terms) has been done.

19

Definition 4.24 Suppose that S is a set of clauses. We say that S is splittable if
for every clause C' in S and for every literal L in C, if L is a (positive) equation
then L has no variables in common with C' — {L}.

Definition 4.25 Suppose S is a set of clauses. Then we say that S7,...,5, is a
splitting of S iff the following properties hold:

1. S is unsatisfiable iff for all ¢z, S; is unsatisfiable.

2. For all §;, if a clause C' in §; contains a positive equality literal, then C'is a
unit equation.

Theorem 4.26 Suppose S is splittable. Then there is a splitting Sy,...,5, of S
such that n is at worst exponential in the number of literals in S. This splitting can
be found in time exponential in S.

Proof. One obtains the S; by recursively performing the following operation:
Given S, we find a clause C' of S containing L such that I is a positive equation.
We then consider the two sets (S —{C}HU{{L}}and (S—{C})U{C— L}. Since L
shares no variables with the remainder of S, S is unsatisfiable iff both of these two
sets are unsatisfiable. Also, each of these two clause sets has fewer literals than S.
The same transformation can be applied to each of these clause sets, if they have
non-unit equations. The theorem then follows by induction. 0O

We note that if S is splittable and SyS, is a splitting of S, then (essentially)
by corollary 4.4, we can reduce simultaneous rigid F-unification for each S; to simple
rigid F-unification, which is decidable and NP-complete. Thus we can decide in
exponential time whether for all 7, there exists a substitution ©; such that S;0; is
Eq-unsatisfiable.

Definition 4.27 We say that a set of clauses S is rigidly Eq-unsatisfiable if there
is a substitution © such that S© is ground and Eq-unsatisfiable.

Now, if S is an amplification, we can determine if it is rigidly Eq-unsatisfiable
by splitting it and then testing each S; for rigid Eq-unsatisfiability. Testing S5; for
rigid Eg-unsatisfiability is in exponential time, by corollary 4.4. However, even if all
S; are rigidly Eq-unsatisfiable, it does not follow that S is, because the S; together
have more copies of clauses. But if all 5; are rigidly Eq-unsatisfiable, then § is
Eq-unsatisfiable, which is what we are really interested in anyway. Thus we have
the following definition:

Definition 4.28 An interpolation test is a predicate P on clause sets such that
if S is rigidly Eq-unsatisfiable, then P(S) is true, and if P(S) is true, then S is
Eqg-unsatisfiable.

We note that as far as theorem proving goes, interpolation tests are as good as
rigid Eq-unsatisfiability tests. We can test if S is Eq-unsatisfiable by enumerating
amplifications Ty, 75, ..., T, of S and applying an interpolation test to each one.
Formally,

Theorem 4.29 Suppose P is an interpolation test. Then a set S of clauses is
Eq-unsatisfiable iff there is an amplification T of S such that P(T) is true.

Proof. Suppose S is Eq-unsatisfiable. Then there is an amplification T" of S such
that T is rigidly Eq-unsatisfiable. Since P is an interpolation test, P(T) is true.
Now, suppose that there is an amplification T" of S such that P(7T') is true. Then S
is Eq-unsatisfiable, by the definition of an interpolation test. a

We have such a test for clause sets that are splittable.

20

Theorem 4.30 Suppose S is a splittable clause set. The the following is an inter-
polation test for S':

1. Generate a splitting Sy, ...,5, of S.

2. Test each S; for rigid Fg-unsatisfiablity; we note that this test is in exponential
time.

3. Return ‘true” if all these tests succeed.

Proof. By the definition of splitting, if 2. succeeds, then S is unsatisfiable. Also,
if S is rigidly unsatisfiable, then so is each 5;. a

Thus in this case we have an interpolation test whose complexity is exponential.
The question arises whether in the general case such an interpolation test exists.
If so, it could take the place of simultaneous rigid F-unification, even though the
latter is undecidable. The author has invested considerable effort to find such an
interpolation test or to prove it does not exist, without success in either direction.
However, the large number of special cases for which efficient methods exist suggests
that some method might work in general.

We now indicate how the above splitting method can be extended to the general
case, that is, to non-splittable clause sets. However, we cannot give any complexity
bound in terms of §.

Definition 4.31 Suppose S is an arbitrary set of clauses. Then a substitution ©
is a splitting substitution for S if SO is splittable.

Definition 4.32 A shared variable for S is a variable x such that for some clause
C in S and some literal L in C, L is a positive equality literal and = appears both
in L and in C' — {L}. Note that we are not assuming that the equality translation
has been done on S.

Proposition 4.33 If S is a set of clauses, and O is a substitution such that for all
shared variables z, x© is a ground term, then © is a splitting substitution for S.

We then obtain the following result.

Theorem 4.34 An arbitrary set S of clauses is Eq-unsatisfiable iff there is an
amplification T of S, a splitting substitution © for T, and a splitting Ty, ..., T, of
TO such that each T; is rigidly Eq-unsatisfiable.

Proof. If S is Eq-unsatisfiable, then there is an amplification T of S and a ground
substitution © such that TO is ground and Eq-unsatisfiable. Now, such a © is a
splitting substitution for 7, and for any splitting 71,...,7T, of TO, all T; will be
rigidly Eqg-unsatisfiable. Conversely, if such a splitting substitution © exists, then
TO is Eq-unsatisfiable, hence S is also Eq-unsatisfiable. a

This implicitly gives a fully general equality theorem proving method based on
rigid F-unification. To test if S is Eq-unsatisfiable, we enumerate amplifications T
of S, and for each T, we enumerate splitting substitutions © and splittings for 70,
testing the T; for rigid Eq-unsatisfiability using the method of theorem 4.30. The
drawback is that it is necessary to enumerate such substitutions ©. However, one
can easily see that it is only necessary to enumerate splitting substitutions © whose
domain is the set of shared variables of 5. Also, in many cases there are only a
small number of shared variables, making the task easier. Finally, we can make this

21

method somewhat more efficient by choosing a simplification ordering > on terms
and noting that if S itself contains an equation » = s, then we need not consider
substitutions © containing subterms r« such that ra > sa. That is, we need only
consider O that are irreducible with respect to ordered rewriting. The combination
of these techniques yields a simple and fully general equality method that may be
sufficient for many purposes.

The set of shared variables can be made smaller, too, by splitting 7" to obtain
clauses sets T; having Horn subsets H; that are separable from T;. For this, we can
say that a variable of a clause C' is shared if it appears

1. in two (positive) equations in C', or
2. in an equation of C' and in a non-equality literal of C.

This suffices because any set T; without such shared variables must consist of a
set H; of equational Horn clauses, together with clauses not containing positive
occurrences of equality. It follows that H; is separable from T}, and so one can test
in exponential time if a © exists making T;© Eqg-unsatisfiable, by corollary 4.23.

5 Path Paramodulation

We now give another fully general solution method for the problem of rigid Eq-
unsatisfiability. We cannot say much in general about the complexity of this method,
but it avoids the necessity to enumerate substitutions. This method, path paramod-
ulation, is based on paramodulation. This path-based equality method is complete
(in a sense to be described) and has a rigid flavor. Path paramodulation converts
an amplification S to a set of paths, then performs rigid operations on the paths.
If all paths can be contradicted, then we know that S is Eq-unsatisfiable. Also,
because of its rigid flavor, the search space for a given amplification S is finite. For
this inference system, we consider a path to be a multiset of literals, one literal from
each clause. Path paramodulation has five inference rules, as follows.

S

— Path Creation
S D P1yeyPn

where S is an amplification and p;y ...p, is a listing of the set of paths in S. Note
that for large S, just to list the set of all paths can be impractical. Therefore, it
may be better for practical purposes to let py,...,p, be an equational spanning set
for S. We do not know, however, if this preserves completeness.

S5 i TULLL 7 = sh oo pn
Sa D pa,...,TaU Lalsal,...,pha

Paramodulation

where « is a most general unifier of u and r. Here we do not distinguish » = s from
s = r. Note that I is either an equation, an inequation, or a non-equality literal
and L has the non-variable term u as a subterm. (We are not assuming that the
equality translation has been done on S.) Also, note that the two “parent” clauses
of the paramodulation are deleted.

Often we will want to specify a termination ordering < that is total on ground
terms and restrict paramodulation so that the inference is not performed if ra < sa.
We call this paramodulation with respect to the ordering <.

SDpla"'api—laTU{La_'M}api-I—la-"apn

Resolution
Sa D P10y . oy Pi—1Q Pigp1 Xy . ooy Pn Y

22

where L and =M are literals and « is a most general unifier of I and M. The path
pi has been deleted since a contradiction has been derived.

SDplv"'vpi—l-,TUTlU{L}api-l-la"'aTUTZU{Ll}a"'vpn
Sa D pray ..y Pic10, P10y ..oy (TU{L Pay ..., pra

Factoring

where « is a most general unifier of L and L’. Note that the T parts of the paths
TUTyU{L} and TUT,U{L'} are identical even before the application of a. As a
special case, if two non-empty paths are identical, one of them can be deleted.

SDplw--vTU{r#S}a"wpn
Sa D P10y ey P10, Pig 10 e vy Pp (X

Inequation Removal

where « is a most general unifier of r and s. Again, the path p; has been deleted
because a contradiction has been derived.

We consider an empty set of paths as equivalent to “false”. An empty path,
however, is equivalent to “true.”

Theorem 5.1 (Soundness) If we can derive S D p1,...,pn in this system, then
S D (Ap1) V (Ap2) V...V (Apy) (relative to Eq), where Ap; is the conjunction of the
literals in the path p;. For this, we interpret an emply disjunction (when all paths
have been contradicted) as ‘false.”

Proof. For the path creation rule, we note that (Ap1) V (Ap2) V...V (Ap,) is
essentially a digjunctive normal form of S, which is logically equivalent to S.
Now, for each inference rule

SDpla"'apn
SaDqiy...qp

we show that if S D (Ap1) V (Ap2) V ...V (Apy) (relative to Eq) then Sa D
(Ag1) V (Ag2) V ...V (Agn) (relative to Eq). By induction, this yields the desired
result. We show this for each inference rule separately. For example, consider the
paramodulation rule. By equality reasoning, it follows that from Cy[u] A r = s one
can derive Ciafsa], where « is a most general unifier of u and r. Therefore, if S D
(Ap1)V.. V(TACi[u]Ar = $)V...V(Apy), then Sa D (Apr)aV.. .V (TaACq[u]laA(r =
s)a) V...V (Apy)a, hence Sa D (Ap1)aV...V(TaACia[sa]) V...V (Ap,)a. This
corresponds to the conclusion of the paramodulation rule. The other rules can be
handled similarly. a

Corollary 5.2 If S F (S8 D false) in this system, then Sp is Eq-unsatisfiable,
hence S is Fq-unsatisfiable.

We now want to show the converse, that is, if S is Eg-unsatisfiable, then for
some 3, S3 D false can be derived in this system. That is, this system is complete.
However, for this we have to place some restrictions on the amplification S. That
is, we show that if S is Eq-unsatisfiable, then there is an amplification T' of .S and
a substitution g such that T3 D false can be derived. In order to specify T, it is
necessary to define resolution-paramodulation proofs and proof trees.

Definition 5.3 A resolution-paramodulation proof of C, from S is a sequence
C1Cy...C, of clauses such that each C; is either in S or is a resolvent or paramod-
ulant of two previous clauses in the sequence. We also call such a proof a linear
proof, since it is a linear sequence. This is not meant to imply anything about the
theorem proving strategy used to obtain the proof.

23

Definition 5.4 A resolution-paramodulation proof tree of C' from S is a binary
tree in which the root node is labeled with the clause C, the leaves are labeled with
clauses in 5, and if the two children of a node N are labeled with clauses €7 and
Cjy, respectively, then N is labeled with a resolvent or a paramodulant of C; and
C5. The distinctive feature of a proof tree is that each clause is used only once.

We use the greek letters T and TI' to refer to resolution-paramodulation proofs
(or proof trees). Also, I'n(II) is the set of input clauses of the proof II, that is, the
set of C; such that C; € S for a linear proof, or, the set of labels of leaf nodes, for a
proof tree. Note that any linear proof can be converted to a proof tree by (possibly)
duplicating some inference steps.

Definition 5.5 For a resolution-paramodulation proof tree II of “false” from S,
we define an amplification Ap which has one clause Cy for each leaf node N in the
tree II, and such that for two leaf nodes M and N, Cjs and Cy share no variables.

We note that Aj; will be an amplification of I'n(IT) for all II. Furthermore, every
clause in In(Il) will appear exactly once in Ap (assuming that all the clauses in
IT are distinct). Also, the number of clauses in Ay will be one greater than the
number of resolution-paramodulation steps in II. This observation follows from a
property of binary trees.

For the following proof, we need to consider paths in S as multisets of literals,
one from each clause in .S, and we need the following definition.

Definition 5.6 Suppose that ¢; and p} are paths, considered as multisets of literals.
Let {q1...q9m} and {p}...p,} be multisets of paths. A path correspondence is a
function ¥ : {q1...q¢m} — {p|...p} } from multi-sets of paths to multi-sets of paths
which is onto, such that for all ¢ and j, if F(¢;) = p}, then ¢; is a super-multiset of

i

Theorem 5.7 (Completeness) If S is Eq-unsatisfiable, then there is an amplifi-
cation T of S and a substitution 8 such that T\ (T3 D false) in this system.

Proof. Suppose S is Eq-unsatisfiable. Then there is a (non-rigid) resolution-
paramodulation proof of the empty clause from S U {z = z}, since resolution and
ordered paramodulation are complete relative to equality [15, 3]. Tt follows that
there is a (rigid) resolution-paramodulation proof tree II of the empty clause from
S. In particular, we can choose II so that all of the labels of the leaves have disjoint
variables. We show that there is a substitution 8 such that Ap - (Apg D false),
that is, we can let 1" be Ap.

We prove the theorem by induction on the size (number of resolution-paramod-
ulation steps) of the proof tree II. We first do the base case, that is, II consists of a
single node, labeled by the empty clause. Thus S contains the empty clause. Then
Ar will contain one copy of the empty clause, and nothing else. Then Ap has no
paths, that is, the set of paths of A is empty. Since we are considering an empty
set of paths as equivalent to false, we obtain a proof simply by the path creation
rule from Ap, with 3 as the identity substitution.

Now we do the inductive step. Suppose that Il contains more than just a single
node, and that one of the resolution-paramodulation steps of Il derives D from
C1 and C5, where Cy and C are labels of leaves of the proof tree. Let II’ be the
remaining proof from (7' —{C1,C2})U{D}. Since Il is a proof tree, so is II'. (This is
not always true for linear proofs, since C'; and C'; may be used elsewhere in a linear
proof.) Then A is (Ag—{C4, C2})U{D}. Let 1" be Ay, for ease of notation. Since
IT" has fewer inference steps than II, we can assume by induction that for some 3,

Tk (T'3 D false). We then show that for some 8, T+ (T3 D false).

24

Let pf ...p/, be the paths of T”. Then we assume by induction that 77+ (T3 D
false). Since this proof must begin with the path creation rule, we have that
(T" D py...p,) F (T'G" D false). Let py...p, be the paths of T. Then by the
path creation rule we obtain T'F (T D py...pm). We show that there is a (partial)
proof (' D pi...pm) F (Ta D q1...Gm) such that every ¢; is a superset (super-
multiset) of some p} and every p/ is a sub-multiset of some ¢;. More precisely, there
is a path correspondence F : {q1...¢m} — {p}...p,}. We will show that such a
partial proof exists below. For now, let us just assume this and see how the rest of
the proof can be carried out.

Assuming that we have a proof (T' D p1...pm) F (Ta D ¢1...¢m) as specified,
the steps in the proof (7" D py...p,) F (I3 D false) can be simulated on (Tew D
q1-.-¢m), in the sense that a path correspondence exists. For this, every step on
p; has to be performed on all the ¢; such that F(¢;) = p;. Suppose that v is
the substitution generated by the application of this inference rule on pj. Let s(g)
for a path ¢ denote the path obtained by applying an inference rule to ¢ as in
the simulating or simulated proof. Thus s(p}) is pivy with some literals deleted or
modified according to the inference rule used. Then if F(q;) = pi, ¢; has p} as a sub-
multiset and we can apply the same inference rule on ¢;, generating the substitution
v also. We may have other paths ¢ such that F(gq;) = p}; these paths will now
become ggy. These will have the path piy as a sub-multiset. Thus we can apply
the same inference rule to g,y as we applied to ¢;, but since v has already been
applied, and we are in a rigid framework, v need not be applied again. We then
update the path correspondence F so that F(s(g;)) = s(p;) and F(s(qx)) = s(p}).
This will preserve the fact that F is a path correspondence.

The factoring rule is slightly different, since a pair of paths are involved. How-
ever, as before, one can simulate a factoring operation on paths p; and p} by fac-
toring operations on paths ¢ and r such that F'(q) = p; and F(r) = p;. Suppose p;
is T'UTy U{L} and pj is TUT> U {L'}. Then the result of the factoring operation
on p; and pj is the path (T'U {L})y for some most general unifier v of L and L'.
Now, since ¢ and r have p; and pj as sub-multisets, ¢ is 7'U T, U {L} and r is
TUT, U{L'} for some T, and 7T,. By a factoring operation on ¢ and r, we obtain
(T U {L})y, which still preserves the path correspondence. Then we perform the
same operation on other paths ¢ and r such that F(q) = p} and F(r) = p}. The
effect is similar, except that the substitution v will have already been applied and
need not be applied again.

At the end, all the paths p} are removed, yielding that (77 D p} ...p,) F (T8 D
false). Now, if we have a path correspondence F : Py — P, for sets Py and P,
of paths and P, is empty, P; is empty, also. Therefore, if the simulated proof is a
proof of (1" D false), by simulating it we also obtain a proof of (T'ag’ D false).
That is, we have a proof (Te D q1...¢m) F (Taf' D false). Together with the
proof (' D p1...pm) F (Ta D ¢1...¢m), this yields the result (T' D p1...pm)
(Tap' D false). Therefore, using the path creation rule, T'F (Taf’ D false).

Now, it remains to do the step that we left out, namely, to show that there is a
proof (T' D p1...pm) F (T D q1...¢m) such that there is a path correspondence
between ¢1 ... ¢, and pj ... p,. Thisimplies that every ¢; is a super-multiset of some
pi. We show that such a proof exists by case analysis on the inference steps. Suppose
D is obtained by a paramodulation step between C; and C5. Let us write (7 as
By U{L[u]} and Cy as BoU{r = s}. We can then write D as ByjaU{La[sa]}U Bya,
where « is a most general unifier of r and u. Let 7} be such that 7' = Ty U{C4, Cs}.
(Here we use U for multiset union.) Every path p; of T includes one of the literals
Ly from C; and one of the literals Ly from Cy, together with a path in 77. We
now consider several cases, depending on whether the literal Ly from Cj is in By
or not, and depending on whether the literal Ly in C5 is in By or not. Let p; be
a path in T that includes the literals L[u] and r = s, together with a path p} in

25

T, . Performing the paramodulation rule on the path p;, we remove the literals L[u]
and r = s and add the literal La[sa]. The result of this operation will be the path
(pi — {L[u],r = s})a U {La[sa]}. The same operation can then be done on all the
other paths p; of T" which are of the form pjl- U {L[u]a(r = s)a} for some path p} in
Tya. All these paths will contain the literals L{u] and » = s, which will have been
instantiated to L{u]a and (r = s)a because we are in a rigid framework, and so will
not require any further substitution. In all these other paths, the paramodulation
rule will remove the literals L[u]a and (r = s)a and replace these literals by La[sa].
In this way, we obtain the proof (T'D p1...pm) F (Te D ¢1...qm), by performing
all of these paramodulation inference steps.

Now, every path p’ in 77 will include one of the literals of D, plus literals from
other clauses in T'. We note that 7/ = (T — {C1, C32})aU D. Consider a path g¢;. It
must include a literal of By« and a literal of Baa, or else it includes the literal La[sa]
resulting from the paramodulation step. In addition, ¢; must include a literal from
each of the other clauses T« in T'o. We show that a path correspondence F' exists.
For this step, we need to have that paths are multisets of literals. If ¢; includes this
literal La[sa] then we can let F(g;) be g¢;, since ¢; will be a path in 7", too. If ¢;
includes a literal from Bja and an arbitrary literal Lo from Cya, then we can let
F(q;) be q; — {L2}, which will be a path in T since Bj« is a subset of D. If ¢;
includes a literal from Byo and the literal Lo from Cye, then we can let F(g;) be
g; — {L1}, which will be a path in 7", since By« is a subset of D. If ¢; does not
include literals from Bja or Bya, then it must include both L{u]a and (r = s)e,
but this cannot be, because we have already applied the paramodulation operation
to all such paths.

The reasoning is similar for the other operations (resolution between Cy and
('3, and resolution of C'; with z = x). We use the factoring rule on paths for
the factoring operations on clauses that may be performed as part of a resolution
inference. The factoring rule on paths was designed not only to simulate clause
factoring, but also to be compatible with path correspondences, which is needed
for the rest of the argument. For clause resolution with z = z, we use inequation
removal on paths, which has the same effect.

This completes the proof. a

We note that in an implementation, one might want to modify these inference
rules so that the literals involved in paramodulation, resolution, or equation removal
are not deleted from their paths. One might also want to allow additional rules,
such as simplification (rewriting) relative to some ordering. However, here we are
only interested in establishing a general framework, which others may refine.

One interesting feature of this method is that it solves the simultaneous rigid
F-unification problem, in a sense. In particular, if § consists entirely of equational
clauses (that is, all literals are equations or inequations), and T' is an amplification
of S, then every path in T will be a conjunction of equations and inequations.
Therefore, if S is Eq-unsatisfiable, and T is an amplification of S, and T + (T3 D
false), then (3 is a simultaneous rigid E-unifier of all the paths in 7. We have
just shown that if S is Eqg-unsatisfiable, then some such T and /3 exist such that
T+ (T8 D false), that is, our inference system will find the simultaneous rigid
F-unifier 5. Even though the general simultaneous rigid F-unification problem
is undecidable, this technique finds enough simultaneous rigid F-unifiers to make
it sufficient for theorem proving purposes. This fact makes clear the mismatch
between simultaneous rigid E-unification and theorem proving, in the sense that it
is still possible that there are efficient complete applications of simultaneous rigid
F-unification to theorem proving, even though simultaneous rigid E-unification is
undecidable.

26

Theorem 5.8 Suppose that T is an amplification and there is a proof T + (T8 D
false) in this system. Then this proof has a number of steps equal to at most the
number of paths of T times the number of clauses in T.

Proof. Each inference rule except for path creation reduces the number of literals
in at least one path. a

The implication of this is that it is decidable whether there is a proof T + (T8 D
false) in this system, and one need only examine proofs of length exponential in 7'
(since the number of paths is at most exponential in 7). This does not contradict
the undecidability of rigid F-unification, since this system may need much larger
amplifications.

We now consider sets S of ground clauses and amplifications T" of 5. Such an
amplification T" must be considered as a multiset, since all copies of a ground clause
are identical. We would like to know how large an amplification 1" of S is needed to
find a proof by path paramodulation if S is Eq-unsatisfiable. We have the following
result.

Recall that if S is a set of clauses, St(S) is the number of distinct subterms
appearing in clauses of S, each subterm being counted only once, regardless of how
many times it appears in S.

Theorem 5.9 There is a fired polynomial w such that for all m, n and for all Eq-
unsatisfiable sets S of ground clauses with St(S) = n having at most m literals per
clause, there is an amplification T of S having m % 2™"") copies of each clause of S,
such that there is a path paramodulation proof T &+ (T3 D false).

Proof. We use a counting argument. Let 7 be the polynomial from [19] such that
if a set E of ground equations and inequations has at most n distinct subterms,
then there is a critical pair proof of some inequation of the form s # s from F, that
has at most m(n) steps. Consider a path p in T. For each clause C' in S, let L be
the literal in C' that appears the greatest number of times in p. Let ¢ be the path
in S consisting of the set of such literals .. Note that every element of ¢ appears
at least 27(") times in ¢, since C' has at most m literals. Now, using a completion
approach such as that in [19], we know that there is a completion proof of some such
inequation s # s from ¢ involving m(n) critical pair steps. Expanding this proof
to a tree, we obtain a paramodulation proof tree of s # s with at most 27(*) — 1
steps. The path p has enough copies of each element of ¢ to enable this proof to be
accomplished in path paramodulation. One application of inequation removal on
the inequation s # s yields a proof of false, that is, the path is removed. This can
be done for all paths, obtaining an empty set of paths, which represents false. In
this way we obtain the desired proof T'+ (7' D false). O

Corollary 5.10 Under the conditions of the theorem, if S has k clauses, there is
a path paramodulation proof T - (T3 D false) having at most m*27(") steps.

Proof. Each path requires 27(") steps for a proof. The number of paths in § is
at most m*. O

We note (by the arguments given in [19]) that this still applies if we do path
paramodulation with respect to an arbitrary termination ordering < that is total
on ground terms. That is, we never do paramodulations replacing a subterm ra by
sa if ra < sa. This is better than the situation for clause paramodulation, as we
shall see.

27

5.1 A modified system

We now consider path paramodulation with the same set of inference rules as above
except that the paramodulation rule is replaced by the following:

SDOp1,...,TU{Lul,r =5} ...,pn
Sa D pia,...,TaULa[sa]U (r = s)a, ..., ppa

Paramodulation

where « is a most general unifier of u and r. As above, we do not distinguish r» = s
from s = r. Note that L is either an equation, an inequation, or a non-equality
literal and L has the non-variable term u as a subterm. The difference between this
rule and the corresponding rule for path paramodulation is that the equation r = s
is not deleted.

Theorem 5.11 Suppose S is an Eq-unsatisfiable set of ground clauses. Then S+
(S D false) in this system. That is, for ground clause sets, we do not need larger
amplifications.

Proof. Each path is Eq-unsatisfiable, and therefore we can obtain a contradiction
by equational completion and resolution. The substitution 3 generated will be the
identity substitution, and thus does not appear explicitly. The proof can even be
obtained by a sequence of rewriting operations, as in [19]. This means that the
literal paramodulated into can be deleted, as in modified path paramodulation.
Thus we can simulate this proof by a sequence of paramodulations using the above
inference rule, followed by an inequation removal operation or a resolution operation
on each path. Using ideas from [19], we can also show that there is a proof in which
the number of operations is a polynomial in St(S) times the number of paths in S.
Also, for ground sets S, we do not need the factoring rule. o

We note that this theorem does not seem to be true for the original path
paramodulation system, because it is difficult to bound the length of a resolution-
paramodulation proof even from a set of ground clauses.

We now consider modified path paramodulation for non-ground clause sets. In
general, each inference rule either binds a variable or else essentially treats the
system as a ground system. The number of variable bindings is limited by the
number of variables. We would expect a result such as the following;:

Suppose S is an Eq-unsatisfiable set of clauses and 7" is an amplification of S such
that for some substitution g, T+ (TS D false) in modified path paramodulation.
Then there is a proof of 7'+ (T3 D false) whose length is at most a polynomial in
T times the number of paths in 7.

We would expect this to be true, because the number of variable binding steps
is linear in 7. In between variable bindings, the set 7' is treated essentially as a
ground system. Unfortunately, this result is not true. Later, in the discussion of our
undecidability proof, we will construct sets S of clauses such that S+ (S5 D false),
but such that there is no recursive bound on the length of these proofs. If we
perform paramodulation with respect to a size-respecting term ordering, we can
probably limit the length of the proof to be recursive in 7', but it might be a stack of
exponentials in 7" since unification can increase term size by an exponential amount.
Also, restricting paramodulation in this way would miss some proofs, because of the
undecidability result.

5.2 Delayed path creation

We now modify the above two path paramodulation systems to avoid the need to
explicitly list all of the paths in 5. This is done by modifying the path creation rule

28

so that the paths are only generated as needed, and not all at once at the beginning.
In this delayed path creation system, paths can contain clauses as well as literals,
and such paths can be split up into more paths by partitioning one of the clauses
they contain. The new version of the path creation rule is simply the following:

SDLS Path Creation
We also have a path splitting rule as follows:
S Dpla"'api—laTU{{L}Uc}vpi-l—la"'apn
SD PLy -+, Pi—1, TU {{L}}a TU {C}7Pi+17 ceyPn

where L is a literal and C'is a non-empty clause. This splits the path TU{{L}UC'}
containing the clause {{L} U C'} into two paths, one containing just {L} and one
containing C. The other rules are unchanged, except that instead of literals L in
paths, we now have to consider unit clauses {L}. Thus the paramodulation rule for
the original path paramodulation inference system would look like this:

SDpl,...,TU{{L[U]},{T:3}},...,pn
Sa D pa,...,TaU{La[sal},..., prna

Path Splitting

Paramodulation

Soundness and completeness follow easily from the soundness and completeness of
the original systems. However, delayed path creation is more practical for large sets
of clauses, since one does not have to explicitly create all the paths, but only those
that are needed for subsequent inference rules.

6 Rigid Clause Paramodulation

Another approach to theorem proving with equality is rigid clause paramodulation,
which is related to path paramodulation. We distinguish this from ordinary non-
rigid clause paramodulation. Rigid clause paramodulation is essentially paramodu-
lation and resolution in which all the variables in a set of clauses are treated rigidly.
This system has the following five inference rules, where T is a set of clauses:

TU{C1[u],{r=s}UD}
TaU{Ci[u], {r=s} U D}aU{Cia[sa] U Da}

Paramodulation

where « is a most general unifier of © and r. Here we do not distinguish r = s
from s = r. Note that Cy is an arbitrary clause having the non-variable term u as a
subterm. Also, note that neither of the two “parent” clauses of the paramodulation
are deleted.

TU{CU{L}, {~-M}Uu D}

luti
TaU{CU{L}, (=M} U D}a U{CU D}a ‘tesolution

where L and =M are literals and « is a most general unifier of L and M.

TUu{Cu{L, M}}
TaU{CU{L}}a

Factoring

where « is a most general unifier of L and M.

TU{CU{r#s}}
TaU{C}la

Inequation Removal

where « is a most general unifier of r and s.

Tu{{}}

Contradiction
false

29

The idea is that we do resolution and paramodulation on T', but all substitutions
are applied to the whole set of clauses, not just to the one or two clauses involved
in the inference.

Theorem 6.1 Rigid paramodulation is sound, that is, if there is a proof of {} from
T, then T is Eq-unsatisfiable.

Proof. Except for inequation removal, rigid paramodulation is a restriction
of ordinary non-rigid resolution and paramodulation, which is sound. Also, the
inference rule for inequation removal is sound, by properties of equality. a

Theorem 6.2 Rigid paramodulation is complete, that is, if S is an Eqg-unsatis-
fiable set of clauses, then there is an amplification T of S such that there is a rigid
paramodulation proof of false (that is, {}) from T

Proof. Suppose S is Eq-unsatisfiable. Then, since ordinary resolution-paramodulation
is complete, there is a resolution-paramodulation proof of {} from S U {z = z}.
Therefore there is also a resolution-paramodulation proof tree II of {} from SU{z =
z}. Recall that Ap is an amplification having one clause for each use of an element
of S in this proof. Suppose that we rename variables in A so that all clauses have
disjoint sets of variables. Then the proof from S can be simulated by a rigid proof
from Ap. The reason for this is that IT itself, with variables possibly renamed, is
a rigid proof, since each clause is only used once. Now, the (rigid) proof II may
use instances of the clause # = z. These can all be eliminated by applications of
the inequation removal rule. Thus we can let T be Arp with the instances of x =
removed. a

We consider whether the proof length for rigid paramodulation-resolution can
be recursively bounded in terms of the amplification T. Since there are only a
linear number of variable binding steps, we only need to consider portions of the
search in which no new variables are bound. If there are a bounded number of
literals, then the search space is bounded, because resolution can only generate
an exponential number of clauses from a given set of literals. Therefore, if the
minimal proof length cannot be recursively bounded, neither can be the number
of literals generated. These new literals can only be generated by paramodulation
steps (without binding variables), and so there must be a non-recursive upper bound
on the number of paramodulation steps. Even if we do ordered paramodulation,
we might have a non-recursive number of paramodulation steps. In fact, we cannot
even show finiteness of the search space. We could conceivably generate a sequence
e1,€9,e3... of equations and using these to paramodulate into a given literal L,
generate a sequence Ly, Lo, L3 ... of literals with Ly < Ly < Ls.... It is possible
that by using ideas analogous to those of [19], we might get a better bound or at
least show finiteness. We consider it an interesting question whether one can do
paramodulation even on ground clause sets in a more efficient manner.

We note that it is possible to get a better result for path paramodulation, as
remarked earlier, since we can bound the size of a ground amplification needed in
order to be able to obtain a proof. Also, non-rigid clause paramodulation and rigid
paramodulation are identical for sets of ground clauses, since there are no variables.
However, for clause paramodulation from sets S of ground clauses, if we choose a
termination ordering that respects term size, then there are only an exponential
number of new literals that can be generated.

Definition 6.3 An ordering < on terms respects term size iff for all ground terms
s,t, if s <t then s (as a character string) is no longer than ¢.

30

Definition 6.4 The length of a literal is the number of characters in it, written out
as a character string. We can similarly speak of the length of a term.

Definition 6.5 A clause C is a tautology if for some literal L, C' contains both L
and - L.

Theorem 6.6 Suppose that S is a set of ground clauses. Suppose we perform
resolution and paramodulation on S, with respect to an ordering that respects term
size. Then the set of non-tautologous clauses C' that can be generated from S by
resolution and paramodulation has at most 3% elements, where a is the number of
function, constant, and predicate symbols in S and n is the length of the longest
literal in S

Proof. The only literals that can be generated are those whose length is at most
n. There are at most ¢” such literals (not counting negations). Each such literal
can appear either positively, negatively, or not at all in a non-tautologous clause.
Assuming tautologous clauses are deleted, we obtain 3¢" possibilities in all. o

Corollary 6.7 Under the conditions of the theorem, if S is Eq-unsatisfiable, then
there is a resolution-paramodulation proof whose length is at most 3%" .

This is worse than the situation for path paramodulation, where we can use
an arbitrary termination ordering and still obtain an exponential bound on proof
length, by the remark after corollary 5.10.

6.1 Non-Horn equality problems

Let us consider the following simultaneous rigid F-unification problem, which illus-
trates some properties of ordered paramodulation:

Y=doEr=4dp (z is fi(do) for some 1)
do) = d1 A f(dl) = do ': r = dl (Z is Odd)
do) = d1 A f(dl) = dg A f(dg) = do ': r = dg (Z = 3k - 1, some]{7)
do)

xr

=ds (1 =4k — 1, some k)

Fldo) =di A f(di) =das A A fdns) = dp
Af(dn-1) = do |5 2 = dny (1 =nk — 1, some k)

This formulation is a modification by Harald Ganzinger of a similar one by the
author. Any solution substitution binds z to f(do), where 7 is congruent to —1
modulo 2,3,4,..., and n. Such an ¢ will be of the form km — 1 for some & > 0,
where m is the least common multiple of 1,2,3,..., n. We note that since there are
about n/(logn) primes less than n, and each one is at least 2, m is asymptotically
at least 27/(1987) "and therefore exponential in n. We consider whether this solution
f#(do) can be found by rigid paramodulation. We obtain the following set of clauses
whose simultaneous rigid F-unification problem is that given above:

31

Pg(él‘) ox 75 d2

Pg(T) D) f(do) = dl
Pg(l‘) D) f(dl) = d2
P3(£L‘) D) f(dg) = do
P4(£L‘) ox 75 ds

P4(l‘) D f(do) = dl
P4(l‘) D) f(dl) = d2
Py(z) D f(d2) = ds3
P4(l‘) D) f(dg) = do

Py(z) Dx#dy_1

PH(CL‘) D) f(do) = dl
Pn(l‘) D) f(dg) = dg
Py(x) D f(d3) = da
Pn(x) D .f(dn—Z) - dn—l
Pn(x) D f(dn_l) = do

Py(x)V Py(x) V P3(z) V...V Py(x)

Such clause sets are unsatisfiable for every n, since we can let x be f*(dp) where i is
m — 1. However, such clause sets are difficult for some good theorem provers. We
feel that these clause sets are interesting, because non-Horn equality problems are
not common.

Suppose that we do ordered rigid paramodulation using an ordering that respects
term size. The equations in this set of clauses are all ground equations, and the only
other terms in these clauses are occurrences of the variable . The only possible
paramodulations are therefore between two ground equations or between a ground
equation and z. After a paramodulation between a ground equation and z, z will
be bound to a constant symbol. Also, by paramodulating between two equations of
the form f(d;) = di, we may obtain equations of the form s = ¢ where both s and ¢
are constant symbols. More equations of this type can then be obtained by further
paramodulations. However, these are the only kinds of equations and bindings for
x that may be obtained using ordered rigid paramodulation on the given clause set.

For this proof, we need to consider a larger amplification in order to get a proof.
Without a larger amplification, only the instance = = f7(c) or something larger will
lead to a contradiction, and this instance can never be constructed by ordered rigid
paramodulation with the ordering we have chosen (which respects term size).

The conclusion is that even if there is a © such that T© is ground and unsat-
isfiable, it may be that ordered rigid paramodulation from 7" cannot find a proof.
This may not be true for unrestricted rigid paramodulation, since we can always
paramodulate backwards to derive pi(z) D z # f(do), p2(z) D = # fi(do), and
so on, and then obtain the proof using the axiom x = x. Of course, ordered non-
rigid paramodulation can find a proof from this set of clauses, because it implicitly

32

generates a larger amplification. We see then that ordered paramodulation trades
larger terms for a larger amplification.

The question then arises, how many more instances in general will ordered rigid
paramodulation with a size-respecting ordering, need to get a proof? At present,
we cannot say much about this problem.

7 Sizes of Amplifications

We now consider the general question of how large an amplification one needs
for rigid theorem proving using various methods. For example, using the above
paramodulation-based approach, the size of the amplification Ay depends on the
length of a resolution-paramodulation proof II. Tt is not clear how this depends on
the size of a minimal amplification 7" of S such that T is rigidly unsatisfiable.

In general, given a rigid theorem proving method M and a set S of clauses, let
Ampyy (S) be the number of clauses in the smallest amplification T' of S such that the
unsatisfiability of T can be demonstrated by method M. The question we would like
to propose is how the quantities Ampyy (S) relate to one another for various methods
M. For example, we can let My be unrestricted simultaneous rigid F-unification;
thus Ampas, (5) is the number of clauses in the smallest T" such that T is rigidly
Eq-unsatisfiable, that is, there is a © such that 7O is Eg-unsatisfiable. We can
let M5 be path paramodulation. Note that this reduces to rigid completion in the
pure equational case. We can let M3 be resolution on the equality transformation of
Brand [7]. (Note that this is not the same as the equality translation used earlier,
which involves the new function symbols fp.) This method converts a set S of
clauses to a set S’ such that S’ U {z = z} is unsatisfiable (without the equality
axioms) iff S is Eq-unsatisfiable. Then Ampyys,(S) is the size of the minimal 7' such
that T is an amplification of S’ U{x = x} and T is rigidly unsatisfiable. Also, we can
let My be rigid clause paramodulation, and M5 be modified path paramodulation
(in which parents of paramodulations are not deleted).

The question we would like to study is the relationships between Ampyy,(S) for
i=1,2,3,4,5. In particular, is there a recursive function fi; such that Ampas, (5) <
[i;(S(S), Ampys; (S)) for all S7 Can one give a better bound on f;;, such as
exponential? Let us call a function f an ij-bounding function if Ampy,(S) <
Jij (5t(S), Ampyy, (S)) for all S. We note that if no recursive ij-bounding function
exists, then for some sets S of clauses, method M; will require much larger am-
plifications than method M;. If such a recursive ij-bounding function exists, and
especially if it is small, this means that method M; never requires many more copies
of clauses than method M. Either conclusion would be very interesting, we feel.

For some ¢ and j, this question is easily settled. For example, the function
f(z,y) = y is an ii-bounding function for all 7. It is also fairly straightforward
to show that f(z,y) = y is an li-bounding function, since M; gives the smallest
amplifications of any method. Since Brand’s transformation simulates paramodu-
lation, and path paramodulation uses an amplification whose number of clauses is
bounded by the size of a paramodulation proof, it may be possible without much
work to find a recursive 23-bounding function. We have worked some on the 31 and
21-bounding functions, but the 32-case is also unknown. Results of Voda [22] seem
to suggest that there are no recursive i1-bounding functions for ¢ # 1.

The systems M, and M, are closely related. We note that using proof trees,
we can get an exponential relation between amplifications for path paramodulation
and rigid clause paramodulation. Path paramodulation will never need more clauses
than are needed for a (rigid) resolution-paramodulation proof tree. Also, any rigid
resolution-paramodulation proof can be converted to a proof tree with at most
an exponential increase in the number of inferences. Thus we obtain that there

33

is a recursive 24-bounding function, in fact, there is an exponential 24-bounding
function. We do not know if there is a recursive 42-bounding function.

We can also study this question for specialized S, for example, when S is a
set of unit equations and unit inequations. In this case, M5 is similar to rigid
completion, that is, M4. Rigid completion can be regarded as a sequence of ground
completions, and in between there are critical substitutions (unifications) applied to
S that eliminate a variable. The ground completions do not generate new instances
of the input clauses, and the critical pair operations merely apply a substitution
to the entire clause set. Therefore, we never increase the size of the amplification.
It follows by theorem 3.20 that if SO is a set of equations and inequations that is
ground and Eq-unsatisfiable, then M4 and M5 can generate a proof of unsatisfiability
from S. Thus one only needs to consider amplifications having a number of clauses
equal to the number of clauses in S. Thus fy1(2,y) = y and fs51(2,y) = y in this
special case.

Despite a lot of work trying to resolve some of the remaining cases one way or the
other, we have not been able to. We invite others to attempt the remaining cases.
This is not only of interest theoretically, but has implications for the comparative
efficiencies of various approaches to theorem proving with equality. One might think
that the recent discovery that simultaneous rigid F-unification is undecidable would
have implications for this question concerning the functions f;;, but it does not seem
to directly answer the questions. Another related question is how the existence of
interpolation tests influences bounds on the sizes of the f;;.

8 A New Undecidability Proof

A number of undecidability proofs for simultaneousrigid E-unification have recently
been given, including [9]. We present another one, which we feel is interesting
because it is based on Post’s Correspondence Problem and also because it has a
bearing on the existence of interpolation tests. In addition, this test has the feature
that all of the (positive) equations used are ground equations. The construction
can easily be modified (and possibly simplified) to give a direct reduction from
Turing machines, as well. We consider sets of clauses that correspond to such hard
instances of the simultaneous rigid F-unification problem, and find that for these
clause sets, small © always exist when a larger amplification is taken.

8.1 Expressing Finite Automata and Regular Sets

We begin by giving some simple rigid E-unification problems to illustrate the tech-
niques involved. For these constructions, we represent lists [a, b, ¢, a] using “cons”
by cons(a, cons(b, cons(c,cons(a, NIL)))), as is standard. Here NIL represents the
empty list, and from now on we use [] for this instead of NIL. In this section, we
use 8, 80, ...,Sp, and t,1g, ..., t, for unspecified ground terms or constant symbols.
Consider this rigid E-unification problem:

cons(c,[]) = | Acons(d,[]) = [l Fa =]

The solutions are substitutions © binding « to lists of the constants ¢ and d, that
is, lists such as cons(c,cons(d, cons(d, []))). We can also give a simultaneous rigid
F-unification probem whose solutions © bind z to non-empty lists of the constants
¢ and d. This consists of the above rigid F-unification problem together with the
following;:

cons(c,[]) = s Acons(d,[]) = s Acons(c,s) = s

Acons(d,s) =sEx=s

34

Definition 8.1 If X is a language over some finite alphabet T, where T is a finite
set of ground terms, then Listx is the set of lists [a1, ag, .. ., a,] such that the string
ajas...a, € X.

We recall also that T is the set of strings ayas...a, such that a; € T for all 7,
and Tt is the set of non-empty strings in T™*.

Theorem 8.2 Suppose T' is an arbitrary finite set of ground terms. Then there is
a set eq” of ground equations such that © is a solution to the rigid E-unification
problem

eq" Fa=]
iff x© is in Listp«.

Proof. Let T = {t1,12,...,tn}, where the ¢; are ground terms distinct from []
and not containing the symbol “cons.” Consider the following rigid F-unification
problem:

cons(ty,[]) =[] Acons(ta, [) =[|A ...

Acons(ty,[]) = E z =]

This problem then has solutions that bind x to lists of elements of 7. a

Theorem 8.3 Suppose T is an arbitrary finite set of ground terms. Then there
is a constant symbol s (not in T') and a set eq™* of ground equations such that a
substitution © is a solution to the simultaneous rigid F-unification problem

eq" =]

=
iff x© is in Listp+.

Proof. Let T = {t1,t2,...,t,} where the #; are ground terms. Consider the
following rigid E-unification problem eq”"* = x = s:

cons(ty,[]) = s Acons(ta,[]) = s A ... Acons(ty,[]) = sA
cons(ty, s) = s Acons(ta,s) =sA...ANcons(t,,s) =sEx=s
This problem, together with eq” |= x = [], has solutions that bind # to non-empty
lists of elements of 7. a

We can express relations that must hold between adjacent elements in a list.
For example, to express that the constants ¢ and d must alternate in a list, we have
the simultaneous rigid F-unification problem

cons(e,[]) = [| Acons(d,[) =[o= = [

cons(c,[]) = s1 Acons(d,[]) = s2 A cons(c, s2) = 51

Ncons(d, s1) = sy ANg(s1) =cNg(s2) =cEgx) =c
We can think of s; and s, as states of a finite automaton traversing the list. In
general, we can express regular sets in this way. In this example, both s; and s
would be accepting states. In general, since there may be more than one accepting
state sy ...s,, we need to express disjunctions of equalities such as ¢z = s1V...Vo =

sn, where the s; are constants (or terms). We can express that is either s; or ...or
Sy, by the rigid F-unification problem

g(s1) =cA...Ag(sp)=cEyg(z)=c

where ¢ is a new function symbol.

35

Definition 8.4 If A is a finite automaton with input alphabet 7', where T is a
finite set of ground terms, then £(A) is the set of strings a;...a, in T* such that
A accepts aq...a,.

Theorem 8.5 Suppose that A is a deterministic finite automaton. Then there is a
Junction symbol g, a constant symbol c, and a sel eqa 4. of ground equations such
that © is a solution to the simultaneous rigid E-unification problem

eq’ =]

eqagec Fg(r)=c

iff O is an element of List; 4.

Proof. Suppose that A is a deterministic finite automaton with start state
so, set of states {sg,s1...s,}, input alphabet T, and accepting states {si...sp}.
Let Fy(a,s) for s in {sg,...,s,} and a in T be the next-state function for A
when reading a in state s. Consider the following simultaneous rigid F-unification
problem:
eq" Fr=]
(] = s0 A (Asefso...s.},aer(cons(a, s) = Fa(a, 5)))
/\(/\5651~~~3pg(5) =c)fg(z)=c

The solutions will bind z to lists [a1,as,...,a,] such that T accepts the string
a1ag ...04y,. O

We note that if A has only one accepting state, then there is a simultaneous
problem of the form
eq” o=

ctac s =c
that has solutions that bind « to elements of Listz (4.

8.2 Lists of Lists

For our construction, we will need two levels of lists, that is, simple lists and lists of
lists. A list of lists is of the form [list1, lists, ..., list,] where each list; is a simple
list, that is, a list of elements from an arbitrary finite alphabet T'. Simple lists will
be terminated by [], but we will use []’ to signify the end of a list of lists. Thus a list of
lists is represented by a term of the form cons(listq, cons(listy, . .., cons(list,,[|')...)).
The reasons for this will become clearer later.

Definition 8.6 If X is a set of strings over the finite alphabet T, where T is
a finite set of ground terms, then LListx is the set of lists of lists of the form
[listy,listy, ..., list,] where each list; is in Listx.

We can give a rigid F-unification problem whose solutions are in L Listp+, that
is, the solutions bind z to lists of the form [{isty,lists, ..., list,] where each list; is
a non-empty list of elements of an arbitrary finite set T' of ground terms. This can
be done by the simultaneous rigid F-unification problem

eq" Neons([,1N =0"EFz=1['

eq™* Acons(s,[) = [V z = [
where eqT and eq”+* are as defined above. We can also express membership in
LListg(y) for a finite automaton A.

T,s

36

Theorem 8.7 Suppose A is a finite automata whose alphabet is a (finite) set T
of ground terms and such that A does not accept the empty word. Then there is a
set eq of ground equations and a constant symbol ¢’ such that a substitution © is a
solution to the simultaneous rigid E-unification problem

eq" Neons([,[N=0"EL=1

eqE=L=1¢
iff LO is a non-empty element of LListg(ay.

Proof. Let S4 be the states of A. Let 5, be the accepting states of A. Suppose
so is the start state of A. Then we have the following simultaneous problem:

(Aacr(cons(a,[) =) Acons(, [) = [F L =

1= 50 A (Avcsaact(cons(a, 5) = Fa(a s))A
(Asesrcons(s,[') = ¢') A (Asesr cons(s,c') =) B L =¢

The first problem constrains L to be a list of elements list; in which each list; is a list
of elements of T'. Consider a list of lists of the form [{ist, listy, list3] where list; are
in Listz(a). Then using the equations [| = soA (Ases,,ae7 (cons(a,s) = Fa(a, s))),
we equate this list to [s1, s2, s3], where s; are accepting states of S4. Then using
the equations Aseg,cons(s,[') = ¢, this equals cons(s1, cons(sg,). Finally, two
applications of the equations Ase s, cons(s, ') = ¢’ equate the entire list to ¢/. The

same argument works in general for a list [listy, ..., list,]in LList;(4,). Conversely,
one shows that any solution to the above rigid E-unification problem must be of
this form. a

We can express the fact that 7 is the first element of a list (of lists) L by the
equation cons(Z,L1) = L. We can also express the fact that the last element of
a list of lists L is in Listz(4,) and the remaining elements of L are in Lists(a,),
where A; are finite automata.

Definition 8.8 If X and Y are two sets of strings over finite alphabets of ground
terms, then LListxy is the set of lists of the form [listq,lists, ..., list,,] where
list,, € Listy and list; € Listx for 1 <i < m.

Theorem 8.9 Suppose Ay and As are two finite automata whose alphabets are
(finite) sets of ground terms and such that neither A; accepts the empty word.
Then there is a set eq of ground equations and a constant symbol ¢’ such that a
substitution © is a solution to the simultaneous rigid F-unification problem

eq" Neons([,[N =0"EL=1

eqE=L=1"¢
iff LO is an element of LListgia,y c(a,)-

Proof. For this, we let A be a product automaton, that is, A simulates 4; and
As simultaneously, and the states of A are pairs of states from A; and A;. Let T
be the union of the alphabets of Ay and Ay and let S4 be the states of A. Let Sy 1
be the states of A that correspond to acceptance by A, and let S4 2 be the states
of A that correspond to acceptance by A,. That is, if we make S4,; the accepting
states of A, A is equivalent to A4, and if we make S4 2 the accepting states of A, A

37

is equivalent to A;. Suppose sq is the start state of A. Then we have the following
simultaneous problem:

(Aaer (cons(a, [I) = [) Acons([, 1) = 0" L =1

[] = so A (Asesa,aer(cons(a, s) = Fa(a, s)))A
(Ases, ,c0ns(s, 0 =c)A /\segA)lcons(s,c') =dYEL=¢

The first problem constrains L to be a list of elements [2st; in which each [ist; is
a list of elements of 7. Consider a list of lists of the form [listq, lists,lists] where
list; and listy are in Listg(q,) and lists is in Listg(a,). Then using the equations
[l = 50A (Asesa,acT (cons(a,s) = Fa(a, s))), we equate this list to [sq, s2, s3], where
s1 and sy are states of S4 1 and s3 is an accepting state of S4 5. Then using the
equations Ases, ,cons(s,[]') = ¢, this equals cons(sy,cons(sz,c’)). Finally, two
applications of the equations Aces, ,cons(s, ¢) = ¢’ equate the entire list to ¢’.

The same argument works in general for a list [list1,...,list,] in LListg(ay),ciaz)-
Conversely, one shows that any solution to the above rigid F-unification problem
must be of this form. a

We can also extend this to three automata, as follows:

Definition 8.10 If X, V., and Z are three sets of strings over finite alphabets of
ground terms, then LListx y 7z is the set of lists of the form [listq,lists,. .., listy,]
where m > 2, list,, € Listy, list; € Listy for 1 < i < m, and list; € Listx.

Theorem 8.11 Suppose A1, Ay, and As are three finite automata whose alphabets
are (finite) sets of ground terms and such that none of the A; accepts the empty
word. Then there is a set eq of ground equations and a constant symbol ¢’ such that
a substitution © is a solution to the simultaneous rigid E-unification problem

eq Aeons([,1N=0"E L=

eqEL="¢

iff LO is an element of LListr(a,) c(A.),c(A5)-

Proof. A fairly straightforward extension of the construction in theorem 8.9. O

8.3 Pairing Lists

We also need a way to pair lists up to specify how a list can be modified by a
sequence of operations. For this we need some definitions. Recall that [t1,..., 5]
is an abbreviation for the term cons(ty, cons(ta, ..., cons(t,,[])...)).

Definition 8.12 Let uy...u, be ground terms. Suppose that M is a list of the
form [f(t1,u1),..., f(tn,upn)] and Ly is the list [t1,...,t,]. Then we call L; the I-
projection of M. We call the list Ly = [uy...uy,] the 2-projection of M. We call M
a pairing of Ly and Ls. Thus [a, b,a] is the 1-projection of [f(a,c), f(b,d), f(a,d)]
and [e, d, d] is the 2-projection of this list. Also, the list [f(a,c), f(b,d), f(a,d)] is a
pairing of [a, b, a] and [c, d, d].

If Ty and T, are arbitrary finite sets of ground terms and f is a binary function
symbol, let f(11,13) be the set of terms f(z,y) for x € 11 and y € 13. We can
express the fact that M is a list of elements of f(Ty,T3) and L is the 1-projection
of M by the simultaneous problem

38

et = L=
=

eq/ T T2) M=
/\CL‘EThZ/GTQf(x? y) =z): M=1L

We can express the fact that L is the 2-projection of M by the simultaneous problem

e« L=
eqf(Tl qu)): M = []
/\WEThyGTzf(r? y) =Y): M=1L

Definition 8.13 We say that the list of lists Lp is a shifted pairing of the list of
lists L if Lp is of the form [My, Ms, ..., M,,] where the M; are lists of elements of
J(T,T), the list of lists L is of the form [listy,...,listy,], the lists list; are lists of
elements of 7', and M is a pairing of list; and listy, M2 is a pairing of [isty and
lists, ..., and M,, is a pairing of list,, and some list of the form [#, #, ..., #].

As an example, the list of lists Lp = [[f(a,b), f(b,)], [f(b,a), f(e,d)], [f(a, #),
J(d,#)]] is a shifted pairing of the list of lists L = [[a, b], [b,c], [a d]] Thus the
elements of Lp are a pairing of [a,b] and [b,c], a pairing of [b,c] and [a,d], and a
pairing of [a, d] and [#, #], respectively.

Theorem 8.14 Suppose that T is a set of ground terms and # and is a constant
symbol not inT'. Then there is a simultaneous rigid E-unification problem such that
O is a solution to the problem iff LO is a list of lists of elements of T and Lp®© is
a shifted pairing of LO.

Proof. Consider the following simultaneous problem:

eq" Neons([,[) =0 E L=
ea! TN pcons([,[) = ' £ Lp=[
/\xET,yETU{#}f(1y) =T ': Lp =1L
-

cons([#],[I') = [I' A cons(#, cons(#,[])) = conb‘)(; []))

ANAseryeruizy [z, L = cons(Z, Lp)

The equation cons([#],[]') = [’ means that any list of lists can be viewed as hav-
ing an arbitrary number of lists of the form [#] on the end. Thus [listq,...,list,] =
[listy, ... listy,, [#], ..., [#]]. The equation cons(#, cons(#, [])) = cons(#, []) means
that any one of these lists [#] can be expanded to include an arbitrary number of
occurrences of #, that is, can be expanded to a list of the form [#, #, ..., #]. That
is, [#] = [, # o, .

The first (simple) rigid E-unification problem given expresses the fact that L is
a list of lists of elements of T. The second problem expresses the fact that Lp is a
list of lists of elements of f(7,7 U {#}). The third problem expresses the fact that
elements of I are 1-projections of corresponding elements of Lp. The fourth problem
expresses the fact that elements of L are 2-projections of preceding elements of Lp.
Together this implies that Lp is a shifted pairing of L. We can also show that any
solution of this simultaneous problem will be of this form. a

8.4 [Expressing PCP as a Regular Set

With this machinery, we can express Post’s Correspondence Problem (PCP). An
instance of PCP is two sequences aj...ap and B1...08, of strings over a finite
alphabet X. A solution to this instance of PCP is a sequence 1 ...%; of integers
such that a;, ...y, = B;, ... B, - It is known to be undecidable whether an instance
of PCP has a solution.

39

We construct a regular set R from a PCP instance such that this PCP instance
is solvable iff there is a string y in R having a certain property, which we will call
index consistency. Using this regular set R, we express the Post Correspondence
Problem as a simultaneous rigid E-unification problem that has a solution iff the
instance of PCP is solvable. We represent a solution to this instance of PCP as a list
of lists L = [listy,...,list,,], where list,, is a string in R and the index consistency
of list,, is checked using the other lists [ist;. We represent a string as before by a
list of constants, so the string abca would be represented by the list [a, b, ¢, a], that
is, cons(a, cons(b, cons(c, cons(a,[])))).

Definition 8.15 Consider an instance of the PCP as given above. Let I'y be the
set of indices a} for 1 < j < n, and let I'y be the set of indices b} for 1 <j<n.
Let T be T'y UT5. Let o} be the regular set consisting of strings obtained from o
by inserting arbitrary occurrences of the indices b"i at arbitrary places. Thus if a;
is c1¢2...¢m, then o} is T'5eqlSes .. . T5en 5. Let 3 be the regular set consisting
of strings obtained from the §3; by inserting arbitrary occurrences of the indices a"i
at arbitrary places. The regular set R is the intersection of the two regular sets
(e + ...+ alal)*T5 and (B)0) + ...+ 8,b,)*T5.

Since the intersection of two regular sets is a regular set, R is a regular set.
Note that R is a subset of (¥ UT)*. Recall that a solution to this instance of
PCP is a string that can be written either as «;,...q;, or as 5;, ...05;,. The
intuitive idea of R is to represent the solution as the string «;, ...q;, with the new
constants a; ...a; inserted after the strings a;, ...a;,, respectively, and with the

new constants b; ..., inserted after the strings 8;, ... 3;,, respectively.

Definition 8.16 The a-index trace of a string cicz...¢, is the string ¢(c1)d(c2)
...¢(cn), where ¢ maps the indices a; onto j and other elements of ZUT are mapped
onto the empty string. Thus the a-index trace of a string is a list of integers. The
B-index trace of a string ¢icz. .. ¢, is the string ¢(cq)¢(cz) ... ¢(cy), where ¢ maps
the indices b} onto j and other elements of X U are mapped onto the empty string.
A string v in (ZUT)* is index consistent if its a-index trace is identical to its S-index

trace.

Thus the string ¢ abcsb]csbl is index consistent, because its a-index trace is 1,2
and its S-index trace is also 1,2. However, ajajesbcab) is not index consistent,
because its a-index trace is 1,2 and its S-index trace is 1, 1.

Theorem 8.17 The given instance of PCP has a solution iff there is a string y in
R such that y is index consistent.

Proof. Ifsuch an y exists, then we can determine the strings «; of a PCP solution
using the a-indices and we can determine the strings 3; of a PCP solution using the
b-indices. Thus we can obtain a solution to the PCP instance. Conversely, if the
PCP instance is solvable, we can take a solution oy, ..., = B;, ... 5, and insert
a and b-indices to obtain an element of R that is index consistent. a

8.5 Expressing PCP as a List of Lists

Let Ay be a finite automaton accepting (¥ UT)*. Since R is a regular set, it can
be expressed as the set of strings accepted by a finite automaton Ay. Therefore, it
is possible to express List;(a,) using a rigid E-unification problem as mentioned
earlier. We can then express the fact that L is in LListz(a,),c(4,) by a simultaneous
rigid F-unification problem, by theorem 8.9 above. What cannot easily be expressed
is the fact that list,, is index consistent. To express this, we need to constrain the
other elements listy,...,list,,_1 of the list L in a manner which we now explain.

40

Definition 8.18 We say that a string 2 is a legal transposition of vy if s is
obtained from 4; by exchanging two adjacent symbols, at least one of which is
an element of I'. However, we do not permit two indices of the same type to be
permuted. That is, we do not permute two elements of I'; or two elements of T'5.
Thus the string ¢qa) cab) is a legal transposition of the string ¢1c2a b}, but the string
c1ajaley is not a legal transposition of the string ciabales, since that involves an
exchange two indices of the same type (a-indices).

Note that if 5 is a legal transposition of #q, then v; and 72 have the same
a-index trace and the same [-index trace.

Definition 8.19 A string v is a simple correspondence if every occurrence of a} is
immediately followed by b} and every occurrence of b} is immediately preceded by
aj.

Note that the set of simple correspondences is a regular set. Also, all simple

correspondences are index consistent.

Definition 8.20 A transposition history is a list Lp of the form [listy,lists,. ..,
listy,] where listy, is an element of R, each list; is a legal transposition of list;41,
and listy is a simple correspondence.

Note that if Lp is a transposition history, then all the lists [ist; have the same
a-index trace and the same (-index trace.

Theorem 8.21 The given PCP instance is solvable iff a legal transposition history
Lp exists.

Proof. If the PCP instance is solvable, then we can choose list,, as an element
of R that is index consistent. By a sequence of legal transpositions, we can obtain
listy that is a simple correspondence. Conversely, if there is a transposition history,
then list,, is an element of R that is index consistent, hence the PCP instance is
solvable. a

Theorem 8.22 There is a finite automata A such that for any lists listy and lists
of elements of X UT, lists list1 and listy are legal transpositions of each other iff A
accepts lists, where lists is a pairing of list1 and listy.

Proof. The list list3 can only be of the form

[f(alaal)af(a2aa2)a . 'af(aiaai-l-l)a f(ai-l-l’ai)v .. -7f(an7an)]

where a; and a;41 are elements of X UT that are not both in I'y or both in I';. This
can easily be checked by a finite automaton (with one accepting state). a

We recall here by theorem 8.14 above that there is a simultaneous rigid E-
unification problem whose solutions are lists I and Lp such that Lp is a shifted
pairing of L. In fact, we can find such a problem of the form

By B L=]

Bk Ip=[

By | Ip=1

Ey, E L=cons(Z,Lp),

41

by theorem 8.14.

What remains is to find a way to constrain the lists list; to be obtained by
permutations in this manner from list; ;1. For this we use the list pairing mechanism
developed above.

Theorem 8.23 There is a rigid E-unification problem whose solutions consist of
the lists L and Lp such that L is a transposition history for the given PCP instance
and Lp is a shifted pairing of L.

Proof. We just showed (recalled) how to express the fact that Lp is a shifted
pairing of L. What remains is to express the fact that adjacent elements of L are
obtained by legal transpositions. By theorem 8.22, there is a finite automaton A to
check if each element of Lp is a pairing of two lists that are legal transpositions of
each other. We have to modify this automaton A to also accept lists of the form
[flax,#), flaz,#),-.., flan,#)] for a; in X UL, since the last element of Lp will
be of this form. By theorem 8.7, there is a rigid F-unification problem

Ey E Lp=['

Es E Lp=¢
expressing membership in LListz(a), where Ej is as above. Therefore we obtain a
simultaneous problem of the form

Ey L=

By E Ip=]

Es B Lp=1

E, = L =cons(Z, Lp)
Es E Lp=¢

which expresses the fact that Lp is a shifted pairing of L and that adjacent elements
of L are legal transpositions. The only parts that remain are to check that the first
element of L is a simple correspondence and that the last element of L is an element
of R. This is equivalent to checking that L is in LListz(a,)c(A.),c(4,) Where A;
are finite automata and A; checks for simple correspondences, Ay accepts anything,
and Ajs checks for membership in R. By theorem 8.11, this can be checked by the
problem Fy = L =[]’ above together with a problem of the form

E6 ': L IC”.

These six problems together then satisfy the conditions of the theorem. a

Corollary 8.24 The given simultaneous rigid E-unification problem is solvable iff
the PCP instance is solvable. Therefore, simultaneous rigid E-unification is unde-

cidable.

We note here that we could just as easily specify that list; of L be obtained
from list;y1 by one step of a Turing computation, since this can also be checked
by a finite automaton, and thus obtain a simple reduction directly from Turing
machines. This Turing construction might be interesting, because it might lead to
a smaller undecidable subclass of simultaneous rigid F-unification.

42

8.6 The Final Simultaneous Problem

Putting this all together, we obtain a simultaneous problem of the following form:

(3L, Z,Lp) [E: L= (alphabet of L)
NE; Lp=1 (alphabet of Lp)
AEs3 Lp=1L (first element of pairs in Lp)
AE4 L =cons(Z,Lp) (second element of pairs in Lp)

AFEs
are obtained by legal transpositions)

™ T

AFg
last element of L is in R)

This corresponds to the following set of clauses:

-pi(L, Z,Lp)V L £

—|p1(L Z Lp) V E1
—p2(L, Z,Lp) V Lp # [
_|p2(L Z Lp) vV Ez
—ps(L, Z,Lp)V Lp # L
_|p3(L, Z Lp) V E3
—pa(L, Z, Lp) V L # cons(Z, Lp)
_'p4(L7 Za Lp) Vv E4
-ps(L, Z,Lp)V Lp # ¢/
—ps(L, Z, Lp) V E5
—pe(L, Z,Lp)V L # ¢"
_'p6(L7 Za Lp) V Eg

pl(La Za Lp) VPZ(La Za Lp) VpS(La Za Lp) Vp4(L7 Za Lp) vp5(L7 Za Lp) va(La Za Lp)

We use =p1(L, Z, Lp) V E; to abbreviate the set of clauses of the form —pq(L, Z,
Lp)Ve for e in E4, and similarly for the other sets of equations. For a spanning set of
these clauses, we can take the equational sets (L # [|', E1), (Lp # [I', E2), ..., (L #
¢, Eg) together with the pairs of literals {-p;(L, Z, Lp), p;(L, Z,Lp)}. This is a
spanning set because if a path does not include any of the equational sets, then
it must include all the —p; literals (at least one of each) and it also must contain
some p; literal from the bottom clause, leading to a contradiction. Unifying on the
sets p; and —p; binds all the variables, whence we obtain the simultaneous problem
above.

This implies that the following problem is undecidable: Given a set S of clauses,
is there a substitution © such that S© is Eq-unsatisfiable. For a proof, consider
the above set of clauses. Then SO is Eq-unsatisfiable iff the PCP instance has a
solution. We note that the equations appearing in each separate rigid unification
problem are ground equations.

A problem is that there don’t seem to be many ordered paramodulations possible
here, since the only available function symbols to use for ordered paramodulation
(except for ground equations) is “cons.” It would be interesting to check this con-
struction by deriving an ordered paramodulation refutation from the above clause
set for a particular PCP instance; this would also help to check the completeness
of ordered paramodulation.

We note that this set of clauses is splittable. This implies that there is an inter-
polation test of fairly low complexity which can substitute for simultaneous rigid
F-unification in this case. Thus the relevance of the undecidability of simultaneous
rigid F-unification to theorem proving is still unclear. However, some results of
Voda [22] may be relevant here. He shows that by considering larger amplifications,
one cannot always remove the undecidability property.

43

Lp=~¢ (check Lp that successive elements of L

L= (first element of L has indices matching,

9 Conclusion

Despite the undecidability of simultaneous rigid F-unification, we have shown that
in many common special cases of interest, decidable alternatives exist, and some of
these have a complexity essentially the same as that of simple rigid F-unification.
We have also presented some fully general alternatives that can be substituted for si-
multaneous rigid F-unification, and have analyzed their complexity to some extent.
Finally, we presented a new proof of undecidability for the simultaneous problem.
This proof is based on a reduction from the Post Correspondence Problem, and has
the interesting feature that all of the positive equations used are ground equations
in the instances constructed. This shows that simultaneous rigid E-unification is
still undecidable when all the positive equations used are ground equations, a fairly
restrictive special case. A number of open problems and directions for future re-
search are also given. In general, we feel that the analysis of the complexity of
theorem proving procedures is a challenging research area, besides giving insight
into the behavior and utility of various approaches to theorem proving.

References

[1] P. B. Andrews. Theorem proving via general matings. Journal of the Associ-
ation for Computing Machinery, 28:193-214, 1981.

[2] Leo Bachmair, N. Dershowitz, and D. Plaisted. Completion without failure.
In Hassan Ait-Kaci and Maurice Nivat, editors, Resolution of Equations in
Algebraic Structures 2: Rewriting Techniques, pages 1-30, New York, 1989.
Academic Press.

[3] Leo Bachmair, Harald Ganzinger, Christopher Lynch, and Wayne Snyder. Ba-
sic paramodulation. Information and Computation, 121(2):172-192, September
1995. To appear.

[4] Peter Baumgartner. An ordered theory resolution calculus. In A. Voronkov,
editor, Logic Programming and Automated Reasoning (LPAR’92), pages 119-
130, 1992. Volume 624 of Lecture Notes in Computer Science.

[5] B. Beckert. A completion-based method for mixed universal and rigid F-
unification. In A. Bundy, editor, Automated Deduction — CADE-12. 12th
International Conference on Automated Deduction., pages 678-692, Nancy,
France, June/July 1994. Volume 814 of Lecture Notes in Artificial Intelligence.

[6] W. Bibel. Automated Theorem Proving. Vieweg, Braunschweig/Wiesbaden,
1987. second edition.

[7] D. Brand. Proving theorems with the modification method. STAM J. Comput.,
4:412-430, 1975.

8] A. Degtyarev and A. Voronkov. General connections via equality elimination.
g
UPMAIL Technical Report 93, Uppsala University, Computing Science De-
partment, January 1995.

[9] A. Degtyarev and A. Voronkov. Reduction of second-order unification to simul-
taneous rigid F-unification. UPMAIL Technical Report 109, Uppsala Univer-
sity, Computing Science Department, June 1995. To appear in Proc. CSL’95.

[10] A. Degtyarev and A. Voronkov. Simultaneous rigid E-unification is undecid-
able. UPMAIL Technical Report 105, Uppsala University, Computing Science
Department, May 1995.

44

[11]

[12]

[13]

[19]

[20]
[21]

[22]

M. Fitting. First-order modal tableaux. Journal of Automated Reasoning,

4:191-213, 1988.

J. Gallier, P. Narendran, S. Raatz, and W. Snyder. Theorem proving using
equational matings and rigid E-unification. J. ACM, 39(2):377-429, 1992.

Jean Goubault. A rule-based algorithm for rigid E-unification. In Georg Got-
tlob, Alexander Leitsch, and Daniele Mundici, editors, Computational Logic
and Proof Theory. Proceedings of the Third Kurt Godel Colloquium, KGC’93,
pages 202-210. Brno, August 1993. Volume 713 of Lecture Notes in Computer
Science.

Jean Goubault. Rigid E—uniﬁability is DEXPTIME-complete. In Proceedings
of the 9th Annual IEEE Symposium on Logic in Computer Science, pages 498—
506, Paris, France, July 1994.

J. Hsiang and M Rusinowitch. Proving refutational completeness of theorem-
proving strategies: the transfinite semantic tree method. J. Assoc. Comput.
Mach., 38(3):559-587, July 1991.

D. Kozen. Positive first-order logic is NP-complete. IBM Journal of Research
and Development, 25:4:327-332, 1981.

U. Petermann. A complete connection calculus with rigid E-unification. In
JELTA 94, pages 152-166, 1994. Volume 838 of Lecture Notes in Computer
Science.

D. Plaisted. Polynomial time termination and constraint satisfaction tests. In
Claude Kirchner, editor, Fifth International Conference on Rewriting Tech-
niques and Applications, pages 405-420, June 1993.

D. Plaisted and Andrea Sattler-Klein. Proof lengths for equational comple-
tion. Technical Report SEKI Report SR-95-06, University of Kaiserslautern,
Kaiserslautern, Germany, 1995.

D. Prawitz. An improved proof procedure. Theoria, 26:102-139, 1960.

W. Snyder. Efficient ground completion: an O(nlogn) algorithm for generating
reduced sets of ground rewrite rules equivalent to a set of ground equations E.
In Proceedings of the 3rd International Conference on rewriting techniques and
applications, pages 419-433, 1989. Lecture Notes in Computer Science, Vol.
355.

Voda. Personal communication from A. Voronkov, 1995.

o

INFORMATIK

Below you find a list of the most recent technical reports of the research group Logic of Programming
at the Max-Planck-Institut fiir Informatik. They are available by anonymous ftp from our ftp server
ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most of the reports are also accessible via
WWW using the URL http://www.mpi-sb.mpg.de. If you have any questions concerning ftp or WWW
access, please contact reports@mpi-sb.mpg.de. Paper copies (which are not necessarily free of charge)
can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut fiir Informatik
Library

attn. Regina Kraemer

Im Stadtwald

D-66123 Saarbriicken

GERMANY

e-mail: kraemer@mpi-sb.mpg.de

MPI-1-95-2-009

MPI-1-95-2-008

MPI1-1-95-2-007

MPI-1-95-2-005

MPI-1-95-2-003

MPI-1-95-2-002

MPI-1-95-2-001

MPI-1-94-261

MPI-1-94-257

MPI-1-94-254

MPI-1-94-252

MPI-1-94-251

MPI-1-94-246

MPI-1-94-241

MPI-1-94-240

MPI-1-94-239

MPI-1-94-238

MPI-1-94-235

P.

. Bachmair, H. Ganzinger

. J. Ohlbach, R. A.Schmidt,
. Hustadt

. Nonnengart, A. Szalas

. Baader, H. J. Ohlbach

. Barth

. J. Ohlbach, R. A. Schmidt
. Vorobyov

. Barth, A. Bockmayr

. Vorobyov

. Madden
. Madden

Graf

M. Hanus

J. Hopf

p.

p.

p.

D.

Madden

Madden, I. Green

Madden

A. Plaisted

Ordered Chaining Calculi for First-Order Theories
of Binary Relations

Translating Graded Modalities into Predicate Logic

A Fixpoint Approach to Second-Order Quantifier
Elimination with Applications to Correspondence
Theory

A Multi-Dimensional Terminological Knowledge
Representation Language

A Davis-Putnam Based Enumeration Algorithm for
Linear Pseudo-Boolean Optimization

Functional Translation and Second-Order Frame
Properties of Modal Logics

Proof normalization and subject reduction in
extensions of Fsub

Finite Domain and Cutting Plane Techniques in

CLP(PB)

Structural Decidable Extensions of Bounded
Quantification

Report and abstract not published

A Survey of Program Transformation With Special
Reference to Unfold/Fold Style Program
Development

Substitution Tree Indexing

On Extra Variables in (Equational) Logic
Programming

Genetic Algorithms within the Framework of
Evolutionary Computation: Proceedings of the

KI1-94 Workshop

Recursive Program Optimization Through
Inductive Synthesis Proof Transformation

A General Technique for Automatically Optimizing
Programs Through the Use of Proof Plans

Formal Methods for Automated Program
Improvement

Ordered Semantic Hyper-Linking

