Max-Planck-Institut für Informatik
max planck institut
informatik
mpii logo Minerva of the Max Planck Society
 

MPI-I-94-156

Dynamic algorithms for geometric spanners of small diameter: randomized solutions

Arya, Sunil and Mount, David and Smid, Michiel

MPI-I-94-156. December 1994, ? pages. | Status: available - back from printing | Next --> Entry | Previous <-- Entry

Abstract in LaTeX format:
Let $S$ be a set of $n$ points in $\IR^d$ and let $t>1$ be
a real number. A $t$-spanner for $S$ is a directed graph
having the points of $S$ as its vertices, such that for any
pair $p$ and $q$ of points there is a path from $p$ to $q$
of length at most $t$ times the Euclidean distance between
$p$ and $q$. Such a path is called a $t$-spanner path.
The spanner diameter of such a spanner is defined as the
smallest integer $D$ such that for any pair $p$ and $q$ of
points there is a $t$-spanner path from $p$ to $q$ containing
at most $D$ edges.

A randomized algorithm is given for constructing a
$t$-spanner that, with high probability, contains $O(n)$
edges and has spanner diameter $O(\log n)$.
A data structure of size $O(n \log^d n)$ is given that
maintains this $t$-spanner in $O(\log^d n \log\log n)$
expected amortized time per insertion and deletion, in the
model of random updates, as introduced by Mulmuley.

Previously, no results were known for spanners with low
spanner diameter and for maintaining spanners under insertions
and deletions.
Acknowledgement:
References to related material:

To download this research report, please select the type of document that fits best your needs.Attachement Size(s):
MPI-I-94-156.pdfMPI-I-94-156.pdf15384 KBytes
Please note: If you don't have a viewer for PostScript on your platform, try to install GhostScript and GhostView
URL to this document: http://domino.mpi-inf.mpg.de/internet/reports.nsf/NumberView/1994-156
Hide details for BibTeXBibTeX
@TECHREPORT{AryaMountSmid94,
  AUTHOR = {Arya, Sunil and Mount, David and Smid, Michiel},
  TITLE = {Dynamic algorithms for geometric spanners of small diameter: randomized solutions},
  TYPE = {Research Report},
  INSTITUTION = {Max-Planck-Institut f{\"u}r Informatik},
  ADDRESS = {Im Stadtwald, D-66123 Saarbr{\"u}cken, Germany},
  NUMBER = {MPI-I-94-156},
  MONTH = {December},
  YEAR = {1994},
  ISSN = {0946-011X},
}