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Abstract

Crease surfaces are two-dimensional manifolds along which a scalar field as-
sumes a local maximum (ridge) or a local minimum (valley) in a constrained
space. Unlike isosurfaces, they are able to capture extremal structures in
the data. Creases have a long tradition in image processing and computer
vision, and have recently become a popular tool for visualization. When ex-
tracting crease surfaces, degeneracies of the Hessian (i.e., lines along which
two eigenvalues are equal), have so far been ignored. We show that these
loci, however, have two important consequences for the topology of crease
surfaces: First, creases are bounded not only by a side constraint on eigen-
value sign, but also by Hessian degeneracies. Second, crease surfaces are not
in general orientable. We describe an efficient algorithm for the extraction
of crease surfaces which takes these insights into account and demonstrate
that it produces more accurate results than previous approaches. Finally,
we show that DT-MRI streamsurfaces, which were previously used for the
analysis of planar regions in diffusion tensor MRI data, are mathematically
ill-defined. As an example application of our method, creases in a measure
of planarity are presented as a viable substitute.
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1 Introduction

Local extrema are characteristic structures of scalar fields, and are relevant
in a wide variety of applications. However, typical datasets assume uncon-
strained local extrema only in isolated points. For cases in which higher-
dimensional extremal features are more appropriate, there exist crease de-
finitions, which generalize local extrema: Ridges generalize local maxima,
while valleys generalize local minima.

The crease definition considered in our work has been introduced to visual
computing by Haralick [13], who suggested to use creases to capture highlight
and shadow lines in natural images. Haralick defines creases as lines in a 2D
image along which the first directional derivative, taken in a direction which
extremizes the second directional derivative, changes sign. This is known as
the “height crease definition”, since it is motivated by treating the intensity
profile of an image as a height field and it is closely related to the notion of
ridges and valleys in surface topography.

Different crease definitions have been proposed and there has been some
dispute over which is the “correct” one [18]. After a theoretical analysis and
visual comparison of results, Eberly et al. [9] conclude that height creases
are most suitable for digital image analysis. Their reformulation of Hara-
lick’s definition, which generalizes it to arbitrary d-dimensional creases in
n-dimensional images, will be presented in Section 2.1.

In the present work, we concentrate on 2D creases in 3D space. This
was motivated by the fact that crease surfaces have recently received in-
creasing attention as tools for visualization [15, 33, 31, 26], but have so
far not been treated thoroughly from the methodological side. In particu-
lar, Hessian degeneracies, which have been neglected in previous algorithms
for crease surface extraction, have important consequences for the topology
of creases. Based on this insight, we propose an efficient algorithm which
produces more accurate representations of crease surfaces. Note that these
crease surfaces should not be confused with surface creases, which are lines
of extremal curvature on general surfaces [3].



The remainder of this report is organized as follows: After providing a
formal definition of height creases and discussing related work (Chapter 2),
we describe our theoretical results on crease surface topology (Chapter 3).
We present our novel algorithm for crease surface extraction (Chapter 4)
and demonstrate a clear improvement over the state of the art (Chapter 5).
Finally, we show that DT-MRI streamsurfaces [42] are ill-defined and propose
crease surfaces as a replacement to analyze planar regions in diffusion tensor
MRI visualization (Chapter 6), before we conclude the report (Chapter 7).



2 Related Work

2.1 Definition of Height Creases

The formal definition of height creases given in this section follows the idea
of Eberly et al. [9], but adopts the simplified notation used in [16]. Assume a
C? scalar field f : R® — R. Let g = Vf be its gradient and H be its Hessian
with eigenvectors e; and eigenvalues \;, i € {1,2,...,n}, sorted such that
A1 > ... > \,. Then, a d-dimensional height ridge is given by the conditions

vd<i§n g-e = 0 A XN<O0 (21)

Intuitively, this means that f attains a local maximum in the n —d directions
of strongest convexity. For ridge surfaces in R3, this definition simplifies to

g-es=0 A A3 <0 (22)

The valleys of f are exactly the ridges of — f, so they need not be discussed
separately.

2.2 Crease Extraction

Crease lines have been studied extensively by Pizer et al. in the context of
medial core extraction [28], which generalizes the Blum medial axis analysis
of binary objects [4] to finding the core of objects in grayscale images. Pizer
et al. employ a medial function, which yields high values at the center of an
object, and they extract its core as ridges in medial function values. Linde-
berg [19], whose formalism differs slightly from the presentation above, and
Damon [6] carefully investigated the behavior of height creases in Gaussian
scale space.

Crease lines have also been used for finding vortex cores in vector field
visualization, for example by Miura and Kida [22] and by Sahner et al. [32],
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and for the extraction of characteristic lines in symmetric tensor fields by
Tricoche et al. [38]. In this context, the parallel vector approach by Peikert
and Roth [25] and the feature flow fields by Theisel and Seidel [37] provide
popular algorithms for crease line extraction.

For crease surfaces, Furst et al. have proposed the “marching cores” al-
gorithm [12], which addresses the problem of finding 2D creases in a 4D
(3D+scale) space. In their “marching ridges” method [11], Furst and Pizer
even extend this to the extraction of one- and two-dimensional creases from
spaces of arbitrary dimension. To deal with such high complexity, they make
simplifying assumptions, such as that the boundary of each face is only in-
tersected twice by a ridge. Intersections are found as changes of sign in g - e;,
after imposing a local orientation on e; via a principal component analysis.

So far, the application of ridge surfaces in visualization has been restricted
to single-scale analysis, so it has been sufficient to find crease surfaces in
3D space. To find skeletal structures in data from diffusion tensor MRI,
Kindlmann et al. [15] have extracted ridge surfaces as isosurfaces of g-e; = 0,
using the marching cubes algorithm [20] after imposing a per-cell orientation
on e; by tracking eigenvectors along subsampled cell edges.

Sadlo and Peikert [31] have used marching cubes on an adaptive grid
to extract ridge surfaces which separate regions of different flow behavior in
unsteady vector fields, using the original rule from [11] to orient eigenvectors.
Another recent work on vector field visualization by Sahner et al. [33] has
used crease surfaces, but employed a different, watershed-based definition.

In the following chapter, we will discuss differences between the topology
of isosurfaces and crease surfaces, which show that the marching cubes case
table is inappropriate for crease extraction. This will lead us to a novel
algorithm which is specialized for the extraction of 2D creases from 3D fields.



3 On the Topology of Crease
Surfaces

3.1 Terminology

This report discusses “generic” (or “structurally stable”) properties of crease
surfaces. A formal definition of genericity is given in [6]. In practice, generic
properties are the ones which we can expect to meet under general conditions
and which remain stable under small perturbations.

3.2 Degenerate Lines as Boundaries

Unit eigenvectors are only defined up to their sign. However, previous algo-
rithms for the extraction of crease surfaces rely on a locally consistent sign
of the involved eigenvector, so prior work has suggested different ways to
impose a local orientation on it [24, 11, 15].

Unfortunately, orienting the eigenvector along the boundary of a cell face
is, in fact, impossible when the Hessian has a degeneracy in the interior
of the face, i.e., a point at which two eigenvalues are equal: Delmarcelle
and Hesselink [7] have shown that the Poincaré indices of the three generic
types of degenerate points in tensor fields are half-integers. This means that
the eigenvector turns j:% times when traveling along a closed line around a
degenerate point in counter-clockwise direction. This is illustrated by Fig-
ure 3.1 (a), which has a degenerate point (blue) at the center and indicates
eigenvector directions in the plane around it by dashed blue lines. As indi-
cated by the arrows, trying to impose a consistent sign along the cell bound-
ary around the degeneracy (black) leads to a contradiction. This case is not
rare in practice: Degenerate loci in symmetric 3D tensor fields generally form
stable lines [6, 44].

In the context of crease surfaces, degenerate (also called semiumbilic)
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Figure 3.1: Non-orientability of eigenvectors (a) leads to the fact that creases
end at degenerate points (b).

locations have traditionally been discussed as a source of numerical difficulty
when imposing a local orientation on eigenvectors (e.g., [24]). Only recently,
it has been pointed out that their presence implies that eigenvectors are not
orientable in principle [26]. To the best of our knowledge, it has so far not
been discussed that degenerate lines actually constitute one type of crease
surface boundaries: Beside the obvious type of boundaries, which are caused
by the side constraint on the eigenvalue (A3 < 0 or A; > 0, respectively),
ridge surfaces are bounded by type L degenerate lines (A2 = A3), and valley
surfaces are bounded by type P lines (A} = \y).

For crease lines in 2D, this insight follows directly from the Poincaré index
of the degenerate point: Along the boundary of an e-environment around
it, the eigenvector turns j:% times, while changes in the gradient can be
neglected for sufficiently small e. Thus, both vectors are orthogonal (i.e., the
crease intersects the boundary) exactly once — the crease ends inside of it.
Figure 3.1 (b) illustrates this: Along the crease (orange), gradient vectors
(gray) are orthogonal to the eigenvectors (blue). Behind the degenerate
point, both vectors are parallel, so the crease ends.

This argument carries over to crease surfaces in 3D by projecting the gra-
dient vector to the eigenplane of the repeated eigenvalue (the part outside the
eigenplane is orthogonal to the relevant eigenvector anyway) and observing
that generic 3D degenerate points behave just like 2D degeneracies within
that plane (as shown in [45]). This also clarifies that in general, crease sur-
faces do not branch, since this would require degeneracies with index j:% +n,
n € Ny, which are not structurally stable in 3D.

Extracting the skeleton of a bifurcating structure as a crease surface typi-
cally does not result in a non-manifold sheet. Rather, one part of the surface
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ends shortly before meeting the other one. In our experience, it is exactly
this case in which degenerate lines occur as crease surface boundaries most
frequently in practice.

Note that corresponding results for crease lines in Gaussian scale space
have been obtained in the context of medial cores by Damon [6], in a work
which has not found adequate attention in the visualization community:
Among other things, Damon proved that degenerate loci of symmetric 3 x 3
matrices form stable lines in 3D (cf. Propositions 8.1 and 9.1 in his work),
which was later rediscovered by Zheng and Pang [44].

3.3 Non-orientability of Creases

The fact that g - e; = 0 defines a surface with boundary even before consid-
ering any further constraints introduces the possibility that crease surfaces
may not be orientable, i.e., it may not in general be possible to assign a
normal vector field with consistent sign to a crease surface. This problem
has been encountered by previous authors [16, 31], but so far, it has not
been discussed whether it is a true property of creases or merely a numerical
artifact of existing extraction techniques. Also, examples of non-orientable
creases have not been published so far.

Peikert and Sadlo [26] propose to extract crease surfaces as subsets of the
zero isosurface of a scalar measure

d = det(g|Hg/HHg) (3.1)

The fact that creases can be expressed as a filtered isosurface suggests that
they are orientable. However, the scalar field d changes sign in an e-band
around the crease not only in normal direction, but also along the surface.
More precisely, d = 0 not only when g is orthogonal to the selected eigen-
vector (es for ridges, e; for valleys), but to an arbitrary eigenvector. Along
parallel vector lines g || e;, g is orthogonal to both remaining eigenvectors e;
(7 # 1), so in these places, the zero isosurface of d self-intersects — the sign
of d changes along the crease.

Figure 3.2 presents a ridge surface from a real-world MRI dataset. In two
places, marked by arrows, it shows surface pieces which are homeomorphic
to the Mobius strip. This establishes the fact that non-orientability is, in
fact, a true property of creases. To give a better visual impression of the
non-orientability, Subfigures (b) and (c) show closed paths (light blue) along
which the normal (red) cannot be oriented — at the points marked by a red
ball, a contradiction occurs. In (a), the parallel vector lines g || e; are shown
in red, g || e2 in blue, type P degeneracies are shown as yellow spheres. This
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(a) Cutting along the red and
blue lines yields orientable pieces.  (c) Example path 2

Figure 3.2: A non-orientable ridge surface, extracted from an MRI volume
dataset (a). Non-orientable paths are shown in detail in (b) and (c).

illustrates that cutting the crease along these lines would result in pieces that
could be oriented using Peikert and Sadlo’s d.



4 Extraction of Crease
Surfaces

4.1 Basic Idea

From the observations made in the previous chapter, it follows that marching
cubes is not suitable for the extraction of crease surfaces. Since isosurfaces
are closed, marching cubes only considers cases in which the boundary of
each cell face is intersected an even number of times. If there really is an odd
number of intersections (because the crease ends inside the cell), applying
the marching cubes case table will either add spurious triangles or create a
hole. In existing algorithms as used in [15] and [31], either of these options
happens at random.

Peikert and Sadlo [26] have proposed to solve this problem by using
marching cubes to extract a superset of creases and filtering out irrelevant
parts afterwards. This is theoretically appealing, but unfortunately, it is in-
feasible in practice, since the marching cubes algorithm cannot handle the
self-intersections which occur in the zero isosurface of their scalar field d. In
fact, it follows from the non-orientability of crease surfaces that it is generally
not possible to close them in R? without introducing self-intersections.

The algorithm we propose instead is also based on cell marching, but does
not rely on the marching cubes case table to determine topology. Instead,
we extract individual intersections of cell edges with the crease surface and
of cell faces with the degenerate lines which bound the crease. We then
estimate surface normals at these points and use them to select the most likely
topology. Taken together, this leads to closed polygons over the boundary of
each cell, which can be triangulated to form the final mesh.

Without showing results, Eberly [8] has proposed a similar strategy to
extract 2D creases from 3D fields. However, he assumes that the intersections
of crease surfaces with cell faces can be described as the zero contour of
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a bilinear function. Like marching cubes, this does not allow creases to
terminate within a cell.

To keep the notation simple, we will restrict our discussion to ridge sur-
faces. Valleys are obtained by straightforward analogies or by extracting
ridges of —f.

4.2 Finding Edge Intersections

Our algorithm makes extensive use of a differentiable symmetric tensor field
T(x) which is derived from the Hessian field H(x) and has g(x) as an eigen-
vector to eigenvalue 1 if and only if x is a point on the ridge. Its eigenvectors
e, and eigenvalues A, are defined from those of the Hessian matrix (e; and
Ai) as:

e =e; (4.1)
0 if )\2 — )\3 >0

4.2
(1——&;’\3)2 else (42)

N=1 N, =1 )\g::{

This definition of A; makes sure that T is a differentiable function of

H and that it remains well-defined as (A2 — A3) — 0 and e3 becomes ill-

conditioned. We assume that this starts to play a role when (A — A3) drops

below a threshold 6, which we empirically fixed at 0.5% of the dynamic

range in our data. It is reasonable to count such loci as being on the ridge

regardless of g — as we have shown in Section 3.2, they form one type of
surface boundary.

To detect intersections of the ridge with cell edges, we consider the vector

h(x) := T(x)g(x) — g(x) (4.3)

which is zero if and only if x is a point on the ridge. Otherwise, h indicates
the direction in which the gradient g moves when being projected onto the
eigenplane of T. Let h; and hy be the respective vectors at the endpoints of
an edge. We assume that the ridge intersects the edge if h; - hy < 0, i.e., if
the gradient has changed from one side of the eigenplane to the other. An
estimate of the point of intersection is given by the relative magnitudes of
h; and hy. This way of finding edge intersections does not require to orient
eigenvectors.

It may appear even easier to locate edge intersections by bracketing zero
crossings in the scalar d from Equation (3.1). Unfortunately, d often has very
close pairs of zero crossings, of which only one indicates a ridge and which
are difficult to find in practice. This happens near parallel vector lines g || e;,
for the reasons mentioned in Section 3.3.
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4.3 Extracting the Boundary

To find the endpoints of the ridge on the cell faces, we localize type L Hes-
sian degeneracies via the gradient descent proposed by Zheng and Pang [44].
We have augmented it with an Armijo stepsize selection [1] to improve its
convergence properties and repeat it from different starting positions on the
face in cases where it runs into local minima. To save computations, this is
only done on faces whose boundary is intersected an odd number of times.

Each ridge that enters a face should either leave it again or end in a type L
degeneracy. It is important to ensure this numerically to achieve a consistent
final triangulation. If no degeneracy is found, this typically means that we
have missed an edge intersection. In fact, edges along which T varies strongly
may be intersected multiple times. To handle this, we bisect an edge if the
values T and T5 at its endpoints differ too much. The exact condition used
in our current implementation is tr(T?Ty)/(1/tr(TTT,) - /tr(T3Ty)) < O,
where T7T denotes transpose of T, tr is matrix trace, and © is increased
iteratively while the total number of intersections is odd and no degeneracy
has been found.

4.4 Estimating Normals

The fact that h(x) = 0 for all points x on the surface allows us to compute
the surface normal at x. Directional derivatives of h tangential to the surface
are 0, so the Jacobian Vh has rank one, with the only non-zero eigenvector in
normal direction. The fact that the normal computed this way is only defined
up to sign is not a limitation, since the ridge surface is non-orientable anyway.

Since Vh = VTg + TVg — Vg involves the gradient of T, which is in
turn defined in terms of the Hessian, normal estimation assumes that f is
at least C? continuous. Despite dealing with third derivatives and applying
some computational simplifications (detailed in Section 4.6), we found that
the normals obtained this way are of reasonable quality and can be used both
for estimating local topology and for rendering (cf. Figure 4.1).

4.5 Selecting Topology

Topology is first determined per-face, by pairwise connection of the extracted
intersection points. Since the total number of points per face is low, we simply
enumerate all possible pairings and exclude the ones that would lead to a self-
intersection (2D line-line intersection test). Among the permissible options,
we chose the one which agrees best with the computed normals, i.e., the one
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(a) Normals estimated from (b) Normals computed from
discrete mesh, cf. [36] scalar field f

Figure 4.1: Despite the use of third derivatives, our analytic surface normals
appear smooth (b). For comparison, Subfigure (a) shows normals estimated
from the mesh.

which minimizes the sum of absolute dot products of connection lines and
normals at their endpoints.

On each face, we extracted a degeneracy if and only if its boundary was
intersected an odd number of times. Since edges are shared between adja-
cent faces, this leads to an even number of degenerate points per cell, which
are connected in a similar manner. In rare cases, a cell has more than two
degenerate points. In that case, we use the quads defined by any pair of
degenerate points and their respective neighbors on the face to check for
self-intersections (3D triangle-triangle intersection tests after arbitrary sub-
division). After this step, each cell contains a set of closed polygons. Trian-
gles are used as-is, quads are subdivided arbitrarily. We triangulate larger
polygons via a triangle fan with an additional vertex at the barycenter.

Estimating topology per-face and sharing the results between adjacent
cells guarantees that the final mesh is consistent. As an example, Figure 4.2
illustrates the case discussed in Section 3.2, in which one part of a crease (red)
terminates just before it would meet another one (gray) in a non-manifold
configuration. Since marching cubes does not allow the surface to terminate
within a cell, it produces a zig-zag edge (a), even when using a finer resolution
(b). On the other hand, our method extracts a smooth degenerate line which
bounds the surface.
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(a) MC with PCA (b) as (a), 2x res. (¢) Proposed method

Figure 4.2: Unlike marching cubes (a) and (b), our method creates a smooth
representation of crease surfaces that terminate at degenerate lines (c).

4.6 Implementation

Trilinear interpolation is widely used for its computational efficiency. Since
creases require C? continuity, more advanced interpolation becomes obliga-
tory. Like Kindlmann et al. [16], we convolve the given sample points with a
C? cubic B-spline kernel. However, we store the resulting values, gradients,
and Hessians at each grid point and interpolate them trilinearly in between.
A very similar approximation is made when using the Phong shading model
[27], which interpolates surface position and normal independently.

We found that this approximation greatly speeds up the bisection of edges
and iterative search for degenerate points on faces, while the resulting changes
to the crease are on the order of a small additive Gaussian perturbation of
f. Even approximating third derivatives by taking finite differences in the
trilinearly interpolated Hessian field did not introduce any notable artifacts
in the resulting normals. Note that this choice is an implementation detail
which could be changed without having to alter any part of the algorithm.

Our extraction algorithm only produces exact boundaries where the ridge
ends at a degenerate line. The side constraint (A3 < 0) is taken into account
by excluding cells for which no vertex meets the constraint. This causes zig-
zag boundaries, which are straightened by triangle trimming in a postpro-
cess. This choice was motivated by the fact that crease surfaces are typically
filtered using application-specific rules anyway, so both tasks are easily com-
bined. Moreover, it avoids complex special cases that would otherwise occur
in the extraction when the two types of boundaries meet.

14



4.7 Rendering

On modern graphics hardware, it is straightforward to render non-oriented
surfaces, simply by discarding the sign of the normal in the lighting compu-
tation. As an example, let n denote the surface normal, 1 the vector towards
the light source. The diffuse term in the Phong shading model [27] usually
involves max{n - 1,0}. To render non-oriented surfaces, we simply replace
this expression with |n - 1| in a vertex shader program [30].
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5 Results

5.1 Setup and Qualitative Results

To validate our method, we extracted boundary ridges in a volume dataset
from a CT scan of a teddy bear. We chose this dataset because the bear is
composed from different materials, which makes it difficult to extract using
simple isosurfacing. We resampled the dataset to 118 x 118 x 105 cells with
isotropic edge length [ = 3mm. To detect the boundaries, we computed the
gradient magnitude by convolution with directional-derivative-of-Gaussian
kernels at 0 = 3.3 mm. From the resulting dataset, we then extracted height
ridges at the data grid resolution using the proposed method, and compared
them to results of marching cubes, using both eigenvector tracking (as in
[16]) and principal component analysis (PCA, as in [31]) as a preprocess.

All previous authors have found it necessary to filter out noise-related
parts of creases. Like Haralick [13], we used a threshold on the ratio of
gradient magnitude over A3 to restrict the ridge to its most salient part.
Moreover, we put a threshold on absolute value and performed connected
component analysis to remove a background object present in the dataset.
As shown in Figure 5.1, the visual impression of our result (¢) is clearly better
than the ones from marching cubes at the same resolution.

Eigenvector tracking cannot process cells in which any edge is near a
type L Hessian degeneracy. These skipped cells lead to the large number of
small holes in (a). PCA processes all cells, but fails to find a consistent orien-
tation in the presence of Hessian degeneracies or large eigenvector variations.
This leads to the spikes and holes in (b). The degeneracies which cause these
problems run through the same cells as the affected parts of the bear, but
belong to surfaces that end in the vicinity of the bear and are filtered out
during post-processing. Since the effect of Hessian degeneracies is not con-
trolled in previous methods, they can affect any surface that intersects the
cell. This problem can be mitigated by refining the extraction grid, which
makes it less likely that a degeneracy of a “noise” ridge runs through the
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(a) Marching cubes with eigenvector
tracking

(c) Proposed method (d) Eigenvector tracking at double
resolution

Figure 5.1: At the original data resolution, the proposed algorithm for crease
extraction (c¢) provides much better results than marching cubes, (a) and (b).

same cell as a legitimate ridge we would like to keep.

Previous authors have exploited this: Sadlo and Peikert [31] propose an
adaptive refinement around the crease, and Kindlmann et al. [16] globally
use a grid which is by factor 5 finer than the data grid. Indeed, at twice
the original resolution, marching cubes with eigenvector tracking produces
a result which looks comparable to ours (d). However, adaptive refinement
cannot avoid ragged crease boundaries (cf. Figure 4.2 and Table 5.3), leads
to overtesselation and comes at considerable computational expense (cf. Ta-
ble 5.1).

5.2 Quantitative Results

Table 5.1 presents algorithm performance, in terms of consumed wall time
(on a 2 GHz laptop) and generated geometry. It shows that the improved
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Table 5.1: Timings and triangle counts, including filtering.

Method Time (s) | # triangles
evec tracking 2441 66,662
evec tracking (2x res.) | 180+4 578,489
PCA 18+2 201,068
proposed method 3843 246,040

Table 5.2: Mean absolute and RMS (in italics) error in face position, as
measured by a gradient descent.

Method area | error (mm)
evec tracking | 0.21m? | 0.02 (0.14)
PCA 0.49m? | 0.07 (0.31)
proposed method | 0.47m? | 0.02 (0.13)

accuracy of our algorithm comes at moderate additional computational ex-
pense. In particular, it is more than four times faster than marching cubes
on the refined grid, the only alternative that provides acceptable quality.

Moreover, we conducted two quantitative experiments which support the
observations from the previous section. First, we evaluated the accuracy of
the extracted surfaces by taking a large number of samples from the mesh
(1.5mm~2, uniformly at random), and measuring the distance to the nearest
point on the crease, as found by a gradient descent in the direction which
minimizes the squared norm ||h||? of h from Equation (4.3). This gradient
descent is only used for evaluation, not during crease extraction. Table 5.2
lists the resulting average absolute and root mean square (RMS, in italics)
distances. It clearly shows the increased error of the PCA result, which is
due to erroneous triangles. The table also lists the total area of the bear,
illustrating the fact that eigenvector tracking only reconstructs part of the
surface.

In a second experiment, we considered the boundary components of the
meshes and created a histogram of their length in terms of individual edges.
The results in Table 5.3 show that marching cubes produces small holes in
the surface. In particular, eigenvector tracking at both resolutions misses
a large number of single triangles, due to skipped cells. Vertices in which
more than two boundary edges meet are an indicator of spurious holes. In
eigenvector tracking at the original resolution, more than 7% of all boundary
vertices are affected. In marching cubes with PCA | it is slightly less than 1%;
in our proposed method, such configurations do not occur by design. Note
that many of the longer boundary components are a consequence of the fact

18



Table 5.3: Marching cubes produces a large number of spurious short bound-
ary components on crease surfaces.

Bdy components of length
Method 3 4| 5 | 6 > 6
evec tracking 2158 | 59 | 408 | 69 353
evec tracking (2x res.) | 2277 | 97 | 469 | 80 533
PCA 44 | 31| 20 | 67 923
proposed method 0 10| 0O 0 136

that the crease also represents the stuffing of the bear.

For further validation, it would have been ideal to implicitly represent
a known surface as a crease and to compare the mesh extracted from the
resulting scalar field to the initial ground truth. Unfortunately, it is not
obvious how to transform a surface to a well-defined height crease, and to
the best of our our knowledge, this topic has not been addressed in the
literature.
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6 Application to Diffusion
Tensor MRI

We applied our method for crease surface extraction to the visualization of
data from diffusion tensor magnetic resonance imaging (DT-MRI), a med-
ical imaging modality for non-invasive investigation of nerve fiber tracts in
the human brain ([2], cf. [29] for a recent overview). In each voxel, DT-
MRI estimates a diffusion tensor, a symmetric 3 X 3 matrix which models
the Brownian motion of water molecules. Since this motion is restricted by
nerve fibers, the main diffusion direction can be taken as an estimate of fiber
direction in voxels where a single orientation prevails.

A standard way to visualize DT-MRI data is to integrate streamlines
which are everywhere tangential to the principal eigenvector of the tensor
field and are interpreted as estimated fiber pathways [23]. However, this
method is inappropriate for regions where fiber tracts cross or fan out, since
the diffusion tensor becomes planar, i.e., its larger two eigenvalues are similar
in magnitude, and there is no single preferred direction.

To transfer the idea of streamlines to such areas, Zhang et al. [42] pro-
posed to integrate streamsurfaces, which are everywhere tangential to the
plane spanned by the major and medium eigenvectors. They included the
important caveat that this definition relies on the assumption that the Lie
bracket of the involved eigenvector fields lies within their common plane.
They considered it overly complex to verify that assumption, but stated that
it would likely be fulfilled, since they did not experience problems in prac-
tice. Followup work [35, 39] has extended the original algorithm, but did not
try to verify the condition on which it is founded. Currently, streamsurfaces
are frequently mentioned as a standard tool for DT-MRI visualization (cf.
[43, 40, 29]).

In this chapter, we show that streamsurfaces are, in fact, ill-defined: In
typical DT-MRI data, there do not exist surfaces which are everywhere tan-
gential to the plane spanned by the major and medium eigenvectors. Conse-
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(a) Vertices are added radially (b) Integration along n-rings
from the seed, breadth first. leaves the surface.

Figure 6.1: Streamsurface extraction depends on the order in which vertices
are added (a). If the surface were well-defined, the red and blue lines in (b)
would coincide.

quently, streamsurfaces do not have a clear interpretation, since their shape
is strongly influenced by arbitrary choices in their extraction. Thus, we pro-
pose an alternative, well-defined set of surfaces to visualize planar regions of
DT-MRI data, based on height creases.

6.1 DT-MRI Streamsurfaces are Ill-Defined

The algorithm in [42] extracts streamsurfaces by growing a mesh of equilat-
eral triangles from a given seed point. Zhang et al. perform the integration
along the edges which are marked by arrows in Figure 6.1 (a), but this choice
is arbitrary. Their integrability condition in terms of the Lie bracket has an
alternative formulation which is much easier to check in practice: If the sur-
face resulting from their algorithm is well-defined, finding the position of
a vertex by integrating along any other path in the mesh should produce
the same result. In particular, integration along cycles should return to the
initial position.

To test this, we integrated cycles along the n-rings n € {1,...,10} around
the seed point. Integration started at a vertex of the previously extracted
streamsurface and the first step was made in direction of its neighbor on the
n-ring in counter-clockwise direction. Further integration was carried out in
the plane spanned by the minor eigenvector and the “incoming” vector of
the previous step, using the exact rule from [42]. After each n-th step, we
turned the incoming vector 60° to the left within the current tangent plane.

If the rule for surface integration were well-defined, the resulting tra-
jectory should coincide with the corresponding n-ring on the surface. Fig-
ure 6.1 (b) shows that this condition is violated: On the presented stream-
surface (gray), the n-rings are shown in blue. Our trajectories, which clearly

21



depart from the surface, are red. Since we made conservative choices for
stepsize (one fifth of a cell edge length) and numerical integration scheme
(fifth-order Runge-Kutta at 64-bit floating point precision), such strong dif-
ferences in such a small neighborhood cannot be explained by numerical er-
rors. Also, integration was limited to a domain where the second eigenvalue
was much larger than the third, so degeneracies have not played a role.

The algorithm in [42] expands the surface breadth-first, so adjacent ver-
tices are integrated along similar paths. In our experience, the algorithm
becomes unstable when this order is changed to depth-first, which should
not be the case if the surface were well-defined. Moreover, when allowing
for holes in the surface (as in [39]), highly deformed triangles occur when
a boundary component is closed and vertices whose integration paths had
departed for some time become adjacent again.

Effectively, streamsurface integration tries to find a surface which is ev-
erywhere perpendicular to the minor eigenvector field. In computer vision, it
is a well-studied problem that such surfaces only exist for vector fields whose
derivatives obey a specific symmetry [10]: In shape from shading, an esti-
mated normal field is used to infer surface geometry. In this context, there
exist various strategies to deal with “nonintegrable” vector fields (cf. [5] and
references therein). While it appears possible to avoid the above-mentioned
algorithmic problems by adopting such methods, we feel that interpretation
of the resulting surfaces would be unclear.

We would like to emphasize that our result does not affect streamsurfaces
in the sense in which they are traditionally defined in vector field visualization
(i.e., as a surface which is traced out by a given seed line when advected
along the field). Sondershaus and Gumhold [35] even decide to call the
“streamsurfaces” in the context of DT-MRI “diffusion surfaces” to avoid
confusion of these different definitions.

6.2 Planarity Ridges for DT-MRI Visualiza-
tion

Our proposed substitute for streamsurfaces in DT-MRI is closely related to
the anisotropy creases which were used by Kindlmann et al. [15] to delineate
the skeleton of white matter structures and have been shown to produce
repeatable results over a range of subjects [16].

Kindlmann et al. extract ridges of fractional anisotropy (FA), a scalar
measure which quantifies the overall directional dependance of diffusion. To
investigate only planar regions, we replace FA with c,, a specific measure of
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planarity introduced by Westin et al. [41]:

2(Ag — A3)

= = "7 6.1
A+ A2+ A3 (6.1)

Cp
Extracting creases of ¢, requires formulas for the first and second partial
derivatives of ¢,, which are derived in the appendix of this report. To avoid
problems at degeneracies, at which sorted eigenvalues may not be differen-
tiable, we employ the regularized eigenvalue derivatives from [34].

Figure 6.2 compares ridges in FA and ¢, in a frontal view of an exam-
ple dataset (DT-MRI data with 93 x 116 x 93 voxels, isotropic edge length
1.72mm). Gaussian pre-filtering with o = 1.72 mm was used and the ridges
were filtered to areas with FA > 0.2 / ¢, > 0.2. Note that different color
schemes are used: (a) employs standard RGB-XYZ coloring of the major
eigenvector, while (b) color codes the minor eigenvector (e.g., red denotes
fanning perpendicular to the x axis), since no principal direction may be
defined in planar regions.

As expected, ridges in ¢, show the cores of planar regions: They capture
the fanning in the corona radiata (CR) and the cerebellar peduncles (CP), the
crossing at the decussation of the superior cerebellar peduncle (DSCP) and,
due to partial voluming, interfaces between corpus callosum and cingulum
(CC/Cing), as well as between corticospinal tract and pontine crossing tract
(CST/PCT). In comparison, the FA ridge (a) also includes structures with
linear diffusion, like the CC, Cing, CST and PCT. Unlike streamsurfaces,
planarity ridges cannot be integrated from arbitrary positions, which allevi-
ates issues of seeding and culling. Their parameters are scale (i.e., amount
of pre-smoothing) and a threshold for post-filtering.

Our novel algorithm for crease extraction facilitates the processing of full-
brain DT-MRI scans at the original resolution: Figure 6.2 (a) was extracted
on the original data grid within 26, while Kindlmann et al. [16] report six
minutes even after subsampling their data by a factor of two (i.e., to 48 X
48 x 28 voxels), mainly due to the fact that they had to use an extremely fine
extraction grid. Despite the fact that as a non-linear function, FA has higher
spatial frequency than the underlying tensor field itself [16], direct visual
comparison between creases extracted from the approximation in Section 4.6
and ones from exact derivatives did not reveal any notable differences.

6.3 Evaluation of Planarity Ridges

For evaluation, we presented our planarity ridges to a neuroscientist. In this
process, we found it helpful to add further anatomical context. We added
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streamlines from fiber tracking [23], which we rendered semi-transparently to
mitigate problems with occlusion. Moreover, we seeded superquadric glyphs
[14] on the surface.

Figure 6.3 shows an overview of the left hemisphere, seen from a medial
cutting plane. The fused rendering with the streamlines allowed our col-
laborator to confirm our annotations from Figure 6.2 (b) and, in addition,
to identify planar regions corresponding to the interfaces between anterior
thalamic projections and corticospinal tract (ATP/CST), as well as between
internal capsule and putamen (IC/Put). Within the precuneus, the planarity
ridge exhibits some characteristic dents (red arrows). In this region, the pla-
narity is due to the fanning of the corona radiata (CR) and to its intersection
with the SLF III, a component of the superior longitudinal fasciculus. It is
weaker in places where fiber bundles run, in a more coherent manner, into
one of the cortical gyri.

To get a more detailed view on a part of the planarity ridge, Figure 6.4
presents a closeup of the right hemisphere, near the lateral sulcus. The anno-
tated tracts in Figure 6.4 (a) are the superior longitudinal fasciculus (SLF)
which intersects with the transcallosal fibers (TF) and the short association
fibers (SF), the subinsular white matter (SI), the inferior fronto-occipital fas-
ciculus (IFO) which intermingles with the uncinate fasciculus (Unc), as well
as the inferior longitudinal fasciculus (ILF).

The superquadric glyphs in Figure 6.4 (b) confirm that the planarity
ridges in this region capture the intersection of SLF with TF and SF, and
the bifurcation of IFO and Unc. Moreover, a planar region exists in the ex-
ternal/extreme capsule (EC), where the tracts of the subinsular white matter
(SI) originate. For our evaluation needs, we found it sufficient to place the
glyphs via a simple stratified surface sampling. If desired, a more even dis-
tribution could be achieved by implementing glyph packing [17] on surfaces.
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(b) Ridge surface in ¢,, colored by minor eigenvector.

Figure 6.2: Unlike ridges in FA (a), ridges in ¢, (b) specifically illustrate the
cores of planar regions. Therefore, they are a suitable replacement for the
ill-defined streamsurfaces.

25



Figure 6.3: Merging the planarity ridge with semi-transparent streamlines
made it easier to recognize the anatomical relevance of its components in
this medial view.

(a) Planarity ridges with annotated fiber (b) Annotated planarity ridges with
tracts. superquadric glyphs.

Figure 6.4: Beside using streamlines, seeding superquadric glyphs on the
surface helped to identify planarity ridges in this lateral closeup.
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7 Conclusion

Crease lines have a long tradition in image processing and computer vision.
We are convinced that once crease surfaces, their two-dimensional general-
ization, are fully understood and reliable numerical methods are available
for their extraction, they will also offer a versatile visualization tool, both
to capture boundaries which cannot be characterized as isosurfaces and to
extract object cores or skeletal structures.

Our work has promoted this research goal by clarifying the topological
properties of crease surfaces and proposing a novel algorithm for their extrac-
tion, which we have shown to be more reliable than existing methods. The
transformed Hessian approach in Section 4.2 provides a unified framework
for detection of crease surface intersections, estimation of surface normals,
and for a gradient descent to the crease surface, without the need to orient
eigenvectors.

A second contribution of our work is to demonstrate that so-called stream-
surfaces, which have been considered a standard tool for DT-MRI visual-
ization, are mathematically ill-defined and should not be used. However,
planarity ridge surfaces provide a viable alternative for the visual analysis
of planar regions and our new algorithm is crucial for their extraction on
full-brain datasets at original resolution.

Prior work has shown that visualizing creases at a single scale can already
provide valuable insights [15, 31]. However, to fully harness the potential of
creases, we would like to take their scale space behavior into account. This
requires the extraction of surfaces from a four-dimensional space, which is
an aspect beyond the scope of this work. However, understanding crease
surfaces in 3D is a necessary first step towards that more complex goal.
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Appendix: Partial Derivatives
of ¢

To extract creases of ¢, (Eq.(6.1)), we need to find its first and second partial
derivatives with respect to the tensor field. W.l.o.g., we only consider ¢, , :=

% and ¢, 4y == g T According to the quotient rule, they are given as
A A,B — AB,
Pae=Tp %w T T g2

with
=2M (Aop — A32) + 200 (A1 o — 2X3,) +

203 A1z + 2X22)

Ay =2X (Aozy — Asay) + 200 (= A1 zy — 2X34y) +
203 (Mzy + 2X22y) + 201 (A2p — Asz) +
204 (m Mz —2X032) + 2055 (A1 +2X0,)

B= (A + X+ X3)°

By — 2 ()\1 + )\2 —'I_ )\3) ()\17y _|_ )\27y + )\3721)

First partial eigenvalue derivatives ), , are found by rotating the corre-
sponding tensor derivative D, to the eigenframe of the original tensor D
(cf. [34] for treatment of repeated eigenvalues). Second partial eigenvalue
derivatives A, ,, are given by rotating the second partial tensor derivative
D,, to the same frame, but additionally require a correction based on first
eigenvector derivatives e;,. Let I denote the identity matrix and T the
Moore-Penrose inverse of T. Then [21]:

>\7L,z = ezrDccei
= (M1 - D) D,e;
Nigy = eiTDl,yei + eiTDxeiyy + eiTDyem
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