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Abstract

Normal modal logics can be defined axiomatically as Hilbert systems, or semantically in terms of Kripke’s
possible worlds and accessibility relations. Unfortunately there are Hilbert axioms which do not have
corresponding first-order properties for the accessibility relation. For these logics the standard semantics-
based theorem proving techniques, in particular, the relational translation into first-order predicate logic,
do not work.

There is an alternative translation, the so-called functional translation, in which the accessibility
relations are replaced by certain terms which intuitively can be seen as functions mapping worlds to
accessible worlds. In this paper we show that from a certain point of view this functional language is more
expressive than the relational language, and that certain second-order frame properties can be mapped
to first-order formule expressed in the functional language. Moreover, we show how these formula can
be computed automatically from the Hilbert axioms. This extends the applicability of the functional
translation method.

Keywords

Modal logic, functional semantics, transformation to many-sorted logic, correspondence problem, quantifier
elimination, theorem proving for non-classical logics.
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1 Motivation

From Minsky’s early frame systems, which were defined purely operationally, and
Brachman’s KL-ONE knowledge representation system (Brachman and Schmolze 1985)
to the language ALC of Schmidt-Schaufl and Smolka’s (1991) there has been a contin-
uous trend in designing knowledge representation systems more and more according
to logical principles with clear syntax and semantics and logical inferences as basic
operations. ALC in particular is a language with the usual logical connectives A, V,
— and the additional constructs all(R C) and some(R C). For example, the following
is an ALC definition which defines a ‘concept’ proud-father as a father all of whose
children are successful persons.

proud-father = father A all (has-child successful—person),

The fragment of ALC that includes the operations A, V, =, all, some is just a
variant of the multi-modal logic K,,) (Schild 1991). all(R C) corresponds to [R]C
where the relational term R (a ‘role’ in KL-ONE jargon) is the parameter of the modal
operator, and is interpreted as a binary accessibility relation.

ALC is still limited in its expressiveness. In pure ALC it is not possible to define
concepts like, for a example, a city as a place with more than, say, 100 000 inhabitants.
There are extensions of ALC, like ALCN, with additional operators, called ‘number
restrictions’.

city = place A atleast(100 000 inhabitant people)

is a suitable ALCN definition. atleast(n R C) and atmost(n R C) restrict the
number of so-called ‘role fillers’, i.e. they restrict the number of elements in the range
of the relation R to > n and < n, respectively.

The corresponding modal logic of ALCN is the multi-modal version of the system
of ‘graded modalities’, which was introduced by Goble (1970) and Fine (1969, 1972)
and which is investigated in Fattorosi-Barnaba and de Caro (1985), and van der Hoek
(1992b, 1992a). Graded modalities are modal operators M,, for n a positive integer.
M, ¢ is true at a world z if there are more than n accessible worlds from z in which
¢ is true. This semantics is very natural and intuitive, but it has one disadvantage.
All inference systems based on this semantics, in particular, tableaux systems, deal
with these M,-operators by generating a corresponding number of terms explicitly.
For example, the formula Mjgggpopeople triggers the generation of 100001 constant
symbols as representatives for these objects. Except for counting these symbols and
comparing the length of lists, there is no way to do arithmetic with these values. In
particular there is no way of reasoning with symbolic arithmetic terms. For example,
My +1p = M,p which is true for all n can only be verified in tableaux like systems for
concrete instances, but not in general.

This is not the case for the Hilbert system axiomatizing the graded modalities.
It is formulated with arithmetical terms, and in principle, this allows for invoking
arithmetical computations. However, Hilbert systems have other disadvantages that
makes them unsuitable to form the basis for automated reasoning. The natural rela-
tional semantics for graded modalities has limited value for doing theorem proving.
We are investigating alternative semantics more suitable for building calculi, which
may not capture our intuitions as well as the relational semantics does, but which are



more suitable for automation. One idea we followed is to treat each M,-operators as
a standard multi-modal operator [n], each one associated with an extra accessibility
relation R,. The frame structure, i.e. the set of worlds together with the accessibility
relations, is axiomatized in such a way that the same theorems as in the original se-
mantics hold. These axioms would be formulated with terms of arithmetic such that
arithmetical calculations replace the counting the symbols.

Unfortunately it turns out that the axioms defining the appropriate frame struc-
ture have a second-order nature, and reasoning in second-order predicate logic is
extremely difficult. Thus, adding some very simple means for doing arithmetical cal-
culations into our knowledge representation formalism left us in second-order predi-
cate logic. A closer analysis of the frame axioms (the determining frame conditions),
however, reveals that the second-order aspect does not arise from the frame structure
itself, but from the limited expressiveness of the relational language of accessibility re-
lations. Changing the language in such a way that the underlying semantic structures
are retained solves the problem.

Every relation R can be reformulated as a set AF of ‘accessibility functions”:

R(z,y) & 3f € AF y = f(x).

In an enriched language that includes a distinguished apply function symbol, liter-
als R(z,y) can therefore be replaced by terms apply(f,z). The information about
accessible worlds is then encoded in the structure or the terms built with the apply-
function. It turns out that this functional language is in some sense more fine grained
than the relational language, which makes it easier to express complex properties of
accessibility relations.

In this paper we do not consider the graded modalities. We investigate the trans-
formation of second-order frame properties formulated in the relational language to
(possibly first-order) properties formulated in the functional language. We show how
the ‘functional’ frame properties can be computed automatically from the Hilbert
axioms of the given modal system.

2 Introduction

The modal logics we are primarily concerned with in this paper are propositional
modal logics above the system K. The logics we consider are normal modal logics
which are extensions of standard propositional logic with the two modal operators
O and <. These systems are defined by the axioms for propositional logic together
with the rule of modus ponens, the axiom K, O(p = ¢q) = (dp = Og) and the rule of
necessitation ‘from p infer Op’, and arbitrary additional (modal) axioms. The Linden-
baum construction applied to these systems yields (subclasses of the class of) Boolean
Algebras with operators for which Jénsson and Tarski (1951) proved representation
theorems. They showed that every Boolean Algebra can be embedded in a Boolean
set algebra with operators defined set-theoretically. This means the elements of an
algebra can be interpreted as sets and the extra n-ary operators can be interpreted
as (n+ 1)-ary relations. Ouly later, Kanger and then Kripke (1959, 1963) proved the
analogous completeness result for the modal logics using non-algebraic constructions.
The semantic structures they used became known as Kripke frames and Kripke mod-



els (frames correspond to atom structures of complex algebras in Jénsson and Tarski
(1951)). K is the weakest normal modal logic?.

A frame for a normal modal system is a pair (W, R) of a (non-empty) set W of
worlds and a binary relation R over W, called the accessibility relation. An interpre-
tation S (also called model) for a normal modal system consists of a frame and an
assignment of sets of worlds to the propositional variables. A propositional variable p
is said to be true at a world w in &, written w |= p, if w is in the set of worlds assigned
to p. A formula Oy is true at a world w if ¢ is true at all worlds R-accessible from w.
The dual formula <y is true at a world w if ¢ is true at some world R-accessible from
w. The semantics of the classical connectives A, V, - etc. is as usual. A modal for-
mula is valid in a frame iff for all assignments it is true at all the worlds of the frame.
According to this definition, the K-axiom is valid in all possible frames. Semantically
the necessitation rule is interpreted by the following: ‘if p is true at all worlds in a
frame then Op is also true at all worlds of the frame’. Accordingly, the necessitation
rule is valid, too, in all possible frames. In fact, the K-axiom and the necessitation
rule are the characterizing axioms and rules for the possible worlds semantics with
binary accessibility relations. For weaker non-normal modal systems other weaker
semantic structures are needed (Chellas 1980). Since we focus exclusively on normal
systems we assume the K-axiom and the necessitation rule to be always valid in the
standard Kripke semantics.

Modal systems with additional modal axioms other than the K-axiom and the ne-
cessitation rule are not necessarily characterized by all possible frames. The additional
(stronger) axioms are not valid in all possible frames, though they may be valid in all
frames of a certain subclass of frames. For example, the axiom 7', Op = p, is valid
in all frames in which the accessibility relation is reflexive. This means, reflexivity is
the characteristic frame property for the system T (that is, the system K extended
with the axiom T'). Not every axiom can be reduced to a characteristic frame prop-
erty. Some extensions of K cannot be associated with classes of characteristic frames,
but they can be associated with classes of characteristic interpretations, i.e. frames
together with assignments (these are often called extended frames). An example of
such an axiom is the axiom VB (short for ‘van Benthem’) ¢Op Vv O(O(Og = q) = q)
(Hughes and Cresswell 1984, page 57). In this paper we will not be interested in such
incomplete systems.

For devising inference methods based on the possible worlds semantics it is im-
portant to know the characteristic frame property for a given Hilbert axiom. It is
even better if this frame property is definable in first-order logic. There are differ-
ent methods for finding the characteristic frame properties for Hilbert axioms. The
Sahlqgvist-van Benthem technique is the most widely known method (Sahlqvist 1975,
van Benthem 1984). Other methods developed more recently are by Szatas (1992),
Simmons (1994), Ohlbach and Gabbay (1992). The approach of Ohlbach and Gabbay
exploits that all modal axioms can be translated to second-order predicate logic For
example, the axiom Op = p translates to

VpVw sat(w,0(p)) = sat(w,p).

! Non-normal modal systems are without the K-axiom or the necessitation rule (Chellas 1980).



Based on the semantics of O, this in turn translates to
VpVuw (Yo R(w,v) = p(v)) = p(w)). (1)

Given the Kripke semantics for the modal operators, this relational translation method
seems natural and easy, but the proof that the transformation of Hilbert axioms
into second-order predicate logic works, that is, that the theorems are preserved
(completeness of the semantics), is in general nontrivial. Only for the class of Sahlqvist
axioms, completeness is ensured in general. In the other cases completeness must be
proven individually. Therefore in this paper we make the general assumption that for
the logic under consideration completeness of the relational Kripke semantics with
respect to the Hilbert system is proved.

The correspondence problem now amounts to finding a formula which is equivalent
to the second-order formula, but does not contain the predicate variables, just the
binary predicate symbol R and possibly the equality symbol. For T the corresponding
first-order formula equivalent to (1) exists, namely Vw R(w,w). But it may also be
the case that the language of first-order logic is expressively too weak for describing
certain frame properties in terms of the R-symbol. In this paper we address the
problem:

For modal axioms, for which equivalent first-order formule do not exist in
general, can we find a first-order formulation in a different language more
expressive than the relational language?

In Gabbay and Ohlbach (1992) a quantifier elimination algorithm called SCAN is
presented which was developed for the purpose of finding the equivalent formula o’
for any given second-order formula o®. The SCAN algorithm can be used to point out
one source of the problem. There is one particular step where the algorithm fails to
compute a first-order formula, but a slight modification on the input formulae makes
it succeed.

In the following we give a brief description of the SCAN algorithm and show what
kind of manipulation of the input formula is necessary.

Quantifier elimination with SCAN

The scAN algorithm is based on an idea which appeared already in Ackermann (1935,
1954). SCAN takes as input only second-order formula of the form

a=3p1,...,3pr Y

with existentially quantified predicate variables p; and ¢ a first-order formula. If
the predicate variables of the formula under consideration are universally quantified,
we negate the formula first, which turns the universal quantifiers into existential
quantifiers, we apply SCAN, and negate SCAN’s result.

SCAN performs the following three steps:

23CAN is not complete for arbitrary second-order formulze. By a complete quantifier elimination
algorithm we mean an algorithm that is guaranteed to find the equivalent first-order formula if there
is one. In general, no complete algorithm exists, for otherwise arithmetic is enumerable. For the
particular case of second-order formula arising from the relational translation of modal axioms, it
is an open problem whether a complete algorithm exists. For the purpose of this paper this is not
relevant.



1. ® is transformed into clause form.

2. All C-resolvents and C-factors with the predicate variables py,...,p, are gen-
erated. C-resolution (‘C’ is short for constraint) is defined as follows:

p(s1,-.-,8n)VC p(...) and —p(...)
—p(t1,...,tn) VD are the resolution literals

CVDVSl#tlv...VSn;étn

and the C-factorization rule is defined analogously:

p(s1,y.-ySn) Vp(te, .. ytn) VC
p(s1,..y,$S) VOV s V. ..Vsy, #ty

When all resolvents and factors between a particular literal and the rest of the
clause set have been generated (the literal is said to be ‘resolved away’), the
clause containing this literal is deleted (this is called purity deletion). If all
clauses have been deleted this way, we know « is a tautology. If an empty
clause is generated, we know « is contradictory.

3. If step 2 terminates and the set of clauses is non-empty then reconstruct the
quantifiers for the Skolem functions.

Take, for example, the reflexivity formula (1). Since (1) contains universally quan-
tified predicate variables, we negate it first to get existentially quantified predicate
variables. The negation is

FpFw (Yo R(w,v) = p(v)) A =p(w)),

and in clause form:
—p(aw).

ay is the Skolem constant for w. The only C-resolution step possible with p-literals
yields = R(a,a,). Reversing the Skolemization process we reintroduce quantifiers
and get 3w —R(w,w). This is negated again and the final result is Vw R(w,w).

There are two critical steps in the algorithm: the resolution may not terminate,
and the reconstruction of the quantifiers for the Skolem functions may not be possible.
Resolution loops, for example, if we apply SCAN to the axiom G, Op = O(p A O-p),
which determines frames with finite R-chains, and this is not a first-order property.

In this paper we investigate the second critical step, the impossibility to recon-
struct the quantifiers for the Skolem functions. For the purpose of computing frame
properties for Hilbert axioms we show what kind of manipulations of the input for-
mula for SCAN are possible such that this problem does not occur any more. The
simplest modal axiom for which our manipulation works is the McKinsey axiom

M OOCp= <0Op. (2)

(The critical axioms in graded modal logics, where we first encountered the problem,
have a very similar structure.) The negation of the transformed McKinsey axiom

dpdw (Vu R(w,u) = (Ja R(u,a) A p(a))) A (Yo R(w,v) = (3b R(v,b) A —=p(b))) (3)



is converted into clause form

Ci1 —R(cy,u),R(u, fo(u))  fo is the Skolem function for a
Cy —R(cy,u),p(fo(u)) ¢ is the Skolem constant for w
Cs —R(cw,v),R(u,gs(v))  gp is the Skolem function for b

Cs —R(cw,v), ~p(g6(v))

Again, there is only one C-resolution step possible with p, namely between C> and
Cjy. The resulting clause set is

Cy ﬂ-R(Cwau)v R(u’ fa(u))
03 ﬂ-R(cwa’U)a-R(u:gb(v))
Cs _‘R(cw: u): _'R(cw: ’U), fa (U) # gb(v)

It is not possible to reconstruct the existential quantifiers for the Skolem functions
fo and ¢3°. The problem is that f, depends on u and g, depends on v and both
fa(u) and gp(v) occur in the same clause (C5). If we were allowed to change the
variable dependency for f, and g, in a suitable way unskolemization would be possible.
Changing the variable dependency means, moving in (3) the existential quantifiers in
front of the universal quantifiers:

IpFw (FaVu R(w,u) = (R(u,a) A p(a))) A (FVv R(w,v) = (R(v,b) A =p(b))).
If we apply C-resolution to this formula we get

Cl _‘R(Cwau)aR(uafa)
Cs —|R(Cw, 1)), R(uagb)
Cs _‘R(Cwau)a_'R(cUIav)’fa rak)

which can be unskolemized to a linearly quantified (first-order) formula which we can
negate without problems. But, of course, moving existential quantifiers outward, and
in particular, over universal quantifiers, is in general not admissible. This transforma-
tion is not equivalence preserving. We will show that in a functional language (which
we'll use to replace the relational language) moving existential quantifiers outward
over universal quantifiers is allowed in certain cases. The idea for this was first men-
tioned by Herzig and others (Farifias del Cerro, Luis and Herzig 1988a, Herzig 1989).

The functional language

Every relation can be decomposed into a set of functions. The accessibility relation
can therefore be decomposed into a set AF of accessibility functions mapping worlds
to accessible worlds. Consider the relation Ri:

3There is a way of reconstructing quantifiers for f, and g, by means of parallel Henkin Quantifiers.

EN ( VYu3dx ) (R(c,u) = R(u,z)) A (R(c,v) = R(v,y))
Yoy A ((R(c,u) A R(c,v)) =z #y).

Unfortunately Henkin quantifiers are essentially second-order in nature. Since the formula must be
negated in order to get the frame property for the McKinsey axiom, this form is useless for the
purpose of automated reasoning.
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Since the relation is not serial, this means, there are dead ends, all these v;’s and 75’s
are partial functions. With partial functions there are even more possible decompo-

sitions for a relation. The picture below shows an extreme case where the functions
~1,--.,%6 are ‘as partial as possible’.
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For total (serial) relations it is always possible to decompose the relation into a set
of total functions. For example, the relation Ry:

AN Wi
w

/ \'U/ v w2 P & w3 2
w2 g can be decomposed into 'V \ﬂj 'V \ﬂj

VaNraY R

o O O O LY VLY YL VL2

and the v; are all total. This is an important observation for our purposes.

Also note, there are many different ‘functional frames’, that is, sets of acces-
sibility functions, which represent the same relational frame. Observe, one such
functional frame is sufficient for proving the existence of a model. This means, we
have some freedom in choosing a functional frame which is suitable for our pur-
poses (which is normalized in a certain sense). We are interested in those functional
frames that justify moving existential quantifiers over universal quantifiers. Let us
illustrate the basic idea with an example. Suppose a formula OCp is true at the
world wq, i.e. suppose wy |= OCp, in our first frame ({wn,...,wr}, Ry). For every
world w accessible from w; there is a world accessible from w where p is true, i.e.
Yw Ry (wi,w) = Jv Ry(w,v) Av |= p holds for Ry. Suppose the situation as in the
left picture below. In this model the formula JvVw R;(wi,w) = Ri(w,v) Av|=pin
which we have swapped the existential quantifier Jv with the universal quantifier Vw
is false.
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But now consider the functional frame in the right picture. It combines the
four frames depicted above. The numeric labels ¢ denote the accessibility functions
v;. In the functional language we can express the fact that OOp is true at wy by
V30 6(y(w1)) = p. For this model we can swap the 3 quantifier and the Vv quan-
tifiers. 36Vyd(y(wy1)) = p is also true at wp, because the function 4 (as well as
the function v5) maps the worlds w2 and ws to a world where p holds. Moreover,
regardless in which one of the worlds w4, ws,ws or wy p is true, in this model there
is always a function 7; which maps ws and ws to the right worlds. We will show
that in functional frames which are maximal as this example is, it is always justified
to move the existential quantifiers in front of the universal quantifiers. By maximal
functional frames we mean those in which the set of accessibility functions contains
all possible accessibility functions. Every relational frame can always be associated
with a maximal functional frame, and this is what we need.

Our sample frame has the form of a tree. For tree structures the decomposition
into function sets is easier than for non-tree-like structures. Consider the frame

vowe L2 v ws

7

w1” 2 A2Twa 2

\wa/ \we

and suppose OOCp is true at wy. For all worlds w accessible from w; (w2 and ws)
and all worlds v accessible from u (w4) there is a world z accessible from v such that
p is true at z. The existentially quantified z depends on u and v. In this frame there
is only one possible instance for v (namely wy). Therefore, z depends actually only
on u. The dependencies can be as follows: for u = w- assign ws to z and for u = ws
assign wg to z (or vice versa). Different paths for reaching v = wy may continue
to different worlds. Fortunately in propositional modal logics this situation does not
arise. If one path crossing w, is extended to a world satisfying some p then all other
paths crossing w4 can be extended to the same world. To illustrate this, consider
again the formula OOOp which is true at wy. Then OOp is true at wo and ws and
Op is true at wy. It is sufficient that p is true at either ws or wg, not necessarily in
both worlds.

Oop D v wa b2 v p
00%p o wi \w<
<>p/ T >w3<; 2

The left picture is a model for the formula OOCp. In the corresponding func-
tional frame (depicted on the right) Vy+'30 §(7'y(w1)) E p is true. The assign-
ment of vy, to J allows us to move the 39 quantifier in front of Vv+'. In this model
36V 0(y'v(w1)) [ p is satisfied. We have exploited the fact that in propositional
modal logics, a statement that a formula is true at a particular world depends only
on this world and the worlds accessible from this one, not on the path we took to
reach the current world.



This is not true in quantified modal logic. An example (due to A. Herzig) shows
what can happen. The formula O(3z (p(z) A OC—p(z))) is true at the world wy of
the following model.

s pla),p(b)

“wy p(b), ~p(a)

For every world u accessible from w; (these are wy and ws) there is a world z in
which p(z) holds (for we, x is a and for ws, « is b), and for every worlds v accessible
from u (wy) there is a world y accessible from v (wy and w3 are the candidates) such
that —p(z) holds at y. Now we have to choose either ws or ws and check whether
=p(z) holds, but x was determined in a previous world, in case that v = ws, = is a
and in case that u = ws,  is b. Our choice depends on the path we choose to get
to v = w;. This example shows that we must be careful where we apply the trick of
moving existential quantifiers to front. For quantified modal logic the trick does not
work in general, it doesn’t for relational frames and it doesn’t for functional frames.
In this paper we restrict our attention to the propositional case.

In the technical part of the paper we proceed as follows: We briefly recall how
modal formulse can be translated into (first-order or second-order) predicate logic
based on their relational semantics. We show how this relational translation can
be transformed according to the functional translation (Ohlbach 1988a, Farinas del
Cerro, Luis and Herzig 1988b, Herzig 1989, Auffray and Enjalbert 1992, Zamov 1989).
Then we prove a theorem that justifies the application of the rule for moving exis-
tential quantifiers outward over universal quantifiers. Finally, we show how the SCAN
algorithm can be used to compute the frame properties in the functional language.

3 Translation from modal into predicate logic

The form of specification of modal systems we are interested in are Hilbert axiom-
atizations. Hilbert axiomatizations provide a means for specifying a logic purely
syntactically, without any reference to a model theoretic semantics.

Recall, the basic definitions. The set of (propositional) modal formulse over an
infinite set of propositional variables is defined inductively to be the least set such that
every propositional variable is a modal formula, and if p and ¢ are modal formulz,
then pAgq, pVq, p=q, p & q, 7p, dp and Op are modal formule. A Hilbert axiom
is just a modal formula. A Hilbert rule is a rule of the form ‘from A; and ... and
A, derive A’, where the A; and A are modal formulze. A Hilbert system is given by a
set of Hilbert axioms and Hilbert rules. An instance A’ of a Hilbert axiom or rule A
is an axiom or rule A[p/F] where all occurrences of the propositional variables p; are
replaced with the modal formula ¢;. A modal formula ¢ is a ®-theorem for a set ®
of Hilbert axioms and rules iff ¢ can be derived from ® by applying instances of the
Hilbert rules to instances of the Hilbert axioms.

The Kripke semantics for the modal operators forms the basis for the relational
translation of modal formulse, and in particular, of Hilbert axioms and rules, into
predicate logic. Propositional variables become unary predicate symbols, whose ar-
gument variables denote a world in which the predicate is to be evaluated. Since

10



propositional variables of Hilbert axioms and rules are actually place holders for for-
mula, they become predicate variables. The semantics of the modal operators and
the other connectives are used as translation rules.

Definition 1 (Relational translation) The relational translation function II, con-
verts Hilbert axioms and rules, and the theorem to be proved to second-order predicate
logic formulae. As an auxiliary function we use 7, that maps tuples of modal formulee
and ‘world variables’ to second-order expressions.

7 (P, W) = p(w) if p is a predicate symbol
T (O, w) Vo R(w,v) = m (¢, v)
T (O, w) v R(w,v) A (1, 0)

and for the propositional connectives 7, is a homomorphism.
A relational translation of a modal formula A with formula variables py,...,p, is
defined by
I, (A) < Vpy,...,pnVw m.(A4,w)

For a Hilbert rule of the form ‘from A; and ... and A,, infer A’
IL.(A) A ... AT (Ay) = 11.(A)

is the relational translation. II, maps a set ® of Hilbert axioms and rules to the
conjunction of the relational translation of the members:

(@) = /\ IL(4).

Aed

<

The translation with II,. of Hilbert axioms and rules yields formula in a fragment
of higher-order predicate logic for which we need a system that includes apart from the
first-order machinery also an extension that accommodates quantification over (one-
place) predicate variables. The semantics of this logic is the natural extension of the
Tarskian semantics for first-order logic where the assignment part of an interpretation
S not only assigns domain elements to domain variables, but also n-ary relations over
the domain to n-place predicate symbols.

The basis of the soundness and completeness of the functional translation is the
soundness and completeness of the relational semantics of the given modal system.
This can for example be ensured by the Sahlqvist theorem or it can be proven in-
dvidually. We can formulate the completeness property in terms of the relational
translation.

Definition 2 (Complete Modal Systems)
A Hilbert system ® is complete iff the following are equivalent statements for all
formulae .

(i) A modal formula ¢ is a ®-theorem.
(ii) IL.(®) = II,(¢) is a predicate logic theorem.

11



(iii) I,.(®) A —IL.(¢p) is inconsistent?. <

The derivation of correspondence properties for Hilbert axioms is now a two-step
process. First, we convert a Hilbert axiom A to the second-order formula IL.(A),
and second, to a formula free of second-order predicate variables determining the
characterizing frame structures.

Note that the Hilbert axioms and rules for propositional logic as well as the K-
axiom and the necessitation rule are tautologies in the relational translation. It is
sufficient, therefore, to consider only the extra modal axioms. Thus, from here on we
may assume P is the set containing just the extra axioms which define an extension

of K.

4 Translation into the functional language

The functional language can be introduced in different ways. Most authors choose to
define a direct translation from the modal language into a predicate logic language
having special terms denoting accessibility functions. The behaviour of arbitrary
modal axioms has to our knowledge never been studied in this functional context.
In this paper we use a different translation approach. This approach is in certain
ways simpler and we hope it clarifies the treatment of the Hilbert systems under
consideration. We start with the relational translation of modal formule. We want
to replace the accessibility relation symbol R by terms with accessibility functions.
To this end we add to II,(®) (recall, ® defines a normal modal logic) the following
definition of the accessibility relation in terms of the accessibility functions:

R(z,y) & Fy y=(z). (4)

We then use this equivalence for replacing all occurrences of R by an instance of the
right hand side of (4). In general, adding another formula to a set of formulse may
introduce inconsistencies. We have to make sure that this does not happen. This
means we must prove that,

IT,.(®) A —IL,.(p) is consistent iff  (4) AIL.(®) A —II.(p) is consistent.

The ‘«=’-part of this proof is trivial, since removing a formula does not introduce incon-
sistencies. The ‘=’-part of the proof, which is given below, requires the construction
of an appropriate set of accessibility functions, so that any model of IL,.(®) A —IL,.(p)
can be extended to a model that satisfies (4) as well. This is the part of the proof
where we exploit the freedom to construct not an arbitrary ‘functional model’, but a
functional model satisfying the maximality condition we described in Section 2, which
justifies us moving existential quantifiers outward over universal quantifiers.

For technical and also for presentation reasons, we find it useful to use a sorted
logic as target language for the functional translation. We employ the basic many-
sorted logic with a sort hierarchy and single sort declarations for function symbols
(Walther 1987). In this logic, a sort symbol can be viewed as a unary predicate and

41In this paper the notion of consistency is understood to be a semantic notion. By ‘A is consistent’
we mean formula A is satisfiable in some model. Since predicate logic (and also many-sorted predicate
logic) is complete, A is inconsistent (or unsatisfiable) iff F —A.

12



denotes a subset of the domain of interpretation. A subsort declaration S C T is
interpreted as a subset relation ¥(S) C ¥(7'), and a function sort declaration like,
for example, f : S x Sy — S is interpreted as Vz,y Si(x) A Sa(y) = S(f(x,y)).
Quantification can restrict variables to a sort. Vz:S 1) is interpreted as Vo S(z) = ¢
and Jx:S © is interpreted as 3z S(x) A ¢. Any unsorted logic can be embedded in
a sorted logic by introducing just one single sort denoting the entire domain. The
relational translation is embedded in the sorted context by introducing the sort W
(for worlds) and consider II,.(®) A =II,.(¢) to be a formula of sorted logic.

One further sort symbol, AF, which denotes the sort for accessibility functions
is necessary. The accessibility functions are variables over which we quantify. We
do not want such variables occuring in function symbol places and introduce a spe-
cial function symbol | that will enable us to write J(7,w) instead of y(w) for v an
accessibility function symbol.

Now we prove the basic soundness and completeness theorem for the functional
translation. We prove it first for the case of logics defined by serial frames. Recall,
these are logics extending KD. The non-serial case is technically a bit more compli-
cated, but brings no new insight.

Theorem 3 (Functional extension) Let ® be a complete Hilbert system extend-
ing KD. That is, ® includes Op = <p. A modal formula ¢ is a ®-theorem iff

UATL(®) AL (p) ()
is inconsistent, where ¥ is the set containing the following sort declaration and axiom:

LAFXW 5 W (6)
Vz,y:W R(z,y) & 37:AF y = (v, ) (M)

Proof By Definition 2 (® is assumed complete), ¢ is a ®-theorem iff I, (®) A —IL, (p)
is inconsistent. It suffices to show that every model S of IL.(®) A —II,.(¢) can be
extended to a model §' of both II, (®) A —II,(¢) and ¥.

Definition 4 Given a relational model & we define its functional extension to be the
model §' = J(AF,|) with:
(i) The interpretations of W and R in Q' are the same as in S,
(i) AFS & {~: WS 5 WS |y is total and Yw € WS RS (w,y(w)) is true}, and
(iii) ¥ is the application function, meaning |° (v, ) = ~(z). <

Obviously, this definition satisfies the sort declaration (6). That the ‘<=’-direction
of (7) holds is also obvious. The ‘=’-direction follows from the fact that AF® consists

of all possible total functions mapping worlds to R-accessible worlds and AF 3" is non-
empty. This completes the proof of Theorem 3. <

The functional extension ¥’ of & constructed in Theorem 3 (Definition 4) is con-
servative in the sense that it does not assign different meanings to the symbols for
which S is defined, in particular, to the symbols R and W, and it assigns a meaning
to the new symbols AF and |. We can define & for arbitrary relational models with
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serial accessibility relation. This has some very useful side effects. We can add to (5)
other declarations and formulae provided they are true in the functional extension <7,
or, there is another extension of &’ which makes them true. Thus, we can state the
following corollary:

Corollary 5 Let ® be a complete Hilbert system extending KD, let ¥ be defined as
in Theorem 3, and let ¥’ be a set of R-free sort declarations and formula. A modal
formula ¢ is a ®-theorem iff

U AIL(®) A =L () AP’

is inconsistent, provided the declarations and formulse in ¥’ hold in the functional
extension 3’ (defined in Definition 4) or §' has an extension that satisfies ¥’

Proof Proceed as in the previous theorem. The ‘if’ direction is evidently true.
For the ‘only if” direction it suffices to show that every model J of II,.(®) A —1I,.(¢)
can be extended to a model " of ¥ A IL,.(®) A —IL.(p) A ¥'. Construct from < the
functional extension §'. ¥ A IL.(®) A —II,.(¢), that is, (5), is true in Q. If I’ satisfies
P’ then choose §” to be §’. If it does not, choose 3" to be the extension of &’ which
is required to exist and which satisfies (5) A U'. <

In (7) we have a definition of the accessibility relation R in terms of the sort AF.
Since this is an equivalence, the process of rewriting all occurrences R(s,t) with the
appropriate instances of the right hand side of (7) preserves equivalence. Suppose we
do this, i.e. we eliminate in IL.(®) and in IL,.(p) all occurrences of R and replace them
by expressions in terms of the accessibility functions. We end up with formulee IT%(®)
and IT%(yp), together with the declaration (6) and axiom (7). But this is not the end.
Nothing would have been gained if we keep the formula (7) in our formula set because
we cannot prevent a theorem prover trying to prove IT:(®) = IT%(¢) from using (7)
in the ‘«’-direction, thus, restoring old R-formule. We want to delete axiom (7)
after having done the rewriting step. Deleting an axiom may turn an inconsistent
set of formule into a consistent set. In this case, fortunately this cannot happen.
Proving that every model for the transformed formula set without (7) can be turned
into a model with (7) is very easy. After all occurrences of R have been rewritten, (7)
is the only formula remaining in which R occurs. This is also true, if, according to
Corollary 5 more formulae ¥’ are added, because these additional formula are assumed
to be R-free. This means we can just use the equivalence (7) as a definition for R.
Every model for IT*(®) A =IL%(¢) A ¥, regardless whether the sort AF is interpreted
as a set of functions and the |-symbol is interpreted as ‘apply’-function or not, can
therefore be extended by an interpretation for the symbol R such that (7) is satisfied.

The relational translation of the modal operators yields formula with a character-
istic syntactic pattern. We can exploit these for combining the relational translation
I, with the rewriting step that eliminates R into one single transformation. For
the O-operator it is (¢, w) = Yu R(w,u) = m-(¢,u) and for the O-operator it is
7 (O, w) = Fu R(w,u) A 7,-(¢,u). Eliminating R by using (7) as rewrite rule yields

™ (O, w) Vu R(w,u) = 7 (¢, u)
Vu (FAF u = L(y,w)) = 7 (6, 0))
Vu Vy:AF (u = Ly, w) = (1, w)
Yu Vv:AF 7. (1, (v, w))
VAP 7, (4, L3, w))

T eI
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and

0 (O, w) Fu R(w,u) A mp(1h,u)
Ju (El’YAF u = \L(’Y:w)) A 7Tr(¢:“)
Ju Fy:AF (u = (v, w) A mp(¢,u))
Ju H’YAF Ty (¢7 \L(’)/: w))
dv:AF 7, ('(/}7 ~L(77 w))

R A

‘%’ denotes the rewriting step and is an equivalence transformation. The composition
of the relational translation, the addition of (7), the equivalence preserving elimination
of the R-predicate, the equivalence preserving elimination of the equations and the
deletion of (7) makes up the functional translation.

Definition 6 (Functional translation) First, define an auxiliary function 7y that
takes two arguments: a modal formula and a ‘world variable’. 7 is defined inductively

by
¢ (p, w) = pw) if p is a propositional variable
ﬂ-f(Dwvw) = VVAF 7Tf(1/1;¢(%w))
7Tf(<>1/), w) = HV:AF Tf ("1[): ~L(77 w))

and for the propositional connectives 7y is a homomorphic function.

A functional translation for a modal formula A with formula variables p1,...,pn
is defined by

M (A) = Vpr,...,ppVw:W (A4, w).

A set ® of Hilbert axioms is translated as:

For Hilbert rules IIy is defined like the relational translation function. <
Take for example the McKinsey axiom (2). II;(O0Cp = ©Op) is given by
VpVw:W (Vy:AF 36:AF p(1(6, (v, w)))) = (37:AF V6:AF p(L(6, L(7,w))))-
By combining the previous results and noting that, for any model 3*
3" | (6) ALL(®) A-IE(p) iff S (@) A -1 (),

we obtain a soundness and completeness result for the functional translation.
Theorem 7 (Soundness and completeness of the functional translation)
For a complete Hilbert system ®, a modal formula ¢ is a ®-theorem iff IT ¢ (®) = II1 ()
is a predicate logic theorem. <

The functional translation generates nested |-terms as arguments to predicates.
We can avoid these by exploiting Corollary 5. It allows us to add sort declarations

and axioms ¥’ to II¢(®) A —II¢(p) while preserving satisfiability or unsatisfiability,
provided ¥’ holds in the functional extension &’ of a relational model S, or there is
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an extension S” of ' that satisfies ¥/. Let AF" be a new sort and let o be a new
binary function symbol. Let ¥’ consist of

AFC AF* (8)
o: AF* x AF* — AF* (9)
VoW ¥y, 8:AF [(yod,z) = 1(d,1(7, 7)) (10)
o is associative (11)

If we define S” as an extension of 3’ in which AF™ is interpreted as the set of all possi-
ble compositions of functions in AF%,, and o is interpreted as ordinary composition of
functions, then, of course, 3" satisfies ¥'. In the presence of condition (10) and the as-
sociativity property of o we use a more economic notation. Instead of nested |-terms,
like (0, (7, x)), we use flat terms, like [((y0d),z). We can economize even more, by
writing L([y1 ... vn], w) instead of [ (y1 o ...0 vy, w) or L (Vn, $(Yn-1,.. -4 (y1,w)...)).
This is the ‘world-path syntax’ introduced in Ohlbach (1988a). We will use this
notation in the remainder of this paper.

In (1988a) Ohlbach exhibits a syntactic invariant for the functionally translated
terms. Each variable occurs with the same prefiz of other variables (this is known as
prefix stability or unique path property (Auffray and Enjalbert 1992)). More precisely,
if a variable v occurs in a term [([ay ...ag7y...],w) part of a functional formula
then all other occurrences of v in 1 have the same prefix [a ... ax]. This property is
exploited in the following lemma.

Lemma 8 Let ¢ be a formula in the functional language. Without loss of generality

we assume ) is in prefix normal form, i.e. v consists of a quantifier prefix followed

by a quantifier-free matrix. Let v be a free variable in v that occurs with the unique

prefix a;, which may be an arbitrary string of AF-terms, that is, the occurrences of 7y in

1 are of the form |([ay...],w). Let § be a functional model and let u % J({(a, w)).
Then, if for two accessibility functions g; and gs, g1(u) = g2(u),

Sly/al = it S[v/g2] E 9.

Proof Suppose the variables in the quantifier prefix a of 9 are f1,...,3, and ¢’ is
the matrix of ¥. The (; may be existentially or universally quantified. Define two
Q-like interpretations:

%1 « g[r}//glaﬁl/bla7ﬁn/b"] and %2 ] %[7/927ﬁ1/b177ﬁn/bn]

By structural induction on v’ we show that 3 satisfies ¢ iff 3y satisfies ¢'. Only
the base case with ¥' = p({([aya’], w)) is non-trivial. Since the prefix of 7 is unique,
~ does not occur in a and it does not occur in a’. Thus, the interpretation of
a and o/ does not depend on the assignment for 7. Let $1(a) & a & 3y(a),
Si(e) ¥ a ¥ S(d), Si(w) € wy ¥ Ja(w) and g1(u) ¥ v ¥ go(u). We
have the following situation

16



and get

Si(l(aeyoa’,w) = (aogsoa)(w)
"(91(a(wo)))
"(91(u))
"(92(u))
"(92(a(wo)))
= (aogsoa)(wo)

= %(laoyod,w)

a
= a
a
a

It follows that S ({([aya'],w)) € Si(p) iff 2 (L(Jaye!],w)) € Fa2(p), since $q(p) =
S2(p) = S(p). This proves the base case. The induction step is a straightforward
application of the induction hypothesis. We omit the details and conclude, ; satisfies
" iff & does too. There are no conditions on the assignments to the 3; variables.
Thus, if a f; is universally quantified, we take all assignments of accessibility functions
to B;, and if f; is existentially quantified, we choose an appropriate assignment. We
conclude: S[y/g1] = ¢ iff S[y/g2] = . <

Now we are ready to prove the main result of the paper. It forms the basis for the
quantifier exchange rule that allows us to move existential quantifiers to the front.

Theorem 9 (Quantifier exchange rule) Let & be a relational model of a modal
formula ¢, and let §' be a functional extension of . For the functional translation
of ¢ the following equivalence is true in 3.

Elﬁ Jw 38 V’? =0 A(\L([O-Zl’}/ld’z RPN o'Zk'yko'Zk+15 e .], ’U}))
& (12)
E'ﬁ Jw Ja 36 V’? A(i([&171d‘2 o &ka&k+15 .. .], w)),

provided all occurrences of § in A are prefixed by the same term ayv1d5 . .. &gV Agt1,
where

(i) p'is short for py1,...,pn,
(ii) 4 is short for ~q,..., vk,
(iii) & is short for [ay1 ... ] (note, & may be empty),
(iv) @ is short for [ay 1. .., @1 s e - Qrg1,1s - o s Qi d i)
(v) A is assumed to be in prefix normal form and may contain existential and
universal quantifiers.

Proof The ‘«=’-part is a valid predicate logic implication. For the ‘=’-part, suppose
the left hand side of the equivalence is true in 3'. Define a $/-like interpretation

S ¥ §[p/R, w/wo,d/d such that Iy satisfies VY36 A.
Let V be the set of pairs (u, D) such that

(1) %ll o« %1[71/g17 s 7’yk/gk75/d] |: A:
(i) S ([H(aimas ... dgyvearsi], w)) = u and ,
(iii) d € D and D is the maximal such subset of AF® .
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Let dy € AF® be such that for all (u, D) € V, do(u) = d(u) for some d € D. Such a
dy exists because according to the definition of 3’ (in Definition 4), AF® is a maximal
set of accessibility functions. The following picture

a T V2 V3 d Y
™
9 9 [ ] [9 ‘/V
Wo ™
p(([ar1727367], w)) g g 7

illustrates a typical model for the formula

IpFwIaVyi, 2,330V p(L[ayiy2y307], w)).

Here V = {(u1,{f,g}), (u2,{f,9})}. Choosing dy = f (highlighted by the thick
arrows) as assignment for 6 makes this model satisfy the right hand side of (12).
In general, by the construction of V, we find for every $&-like interpretation &
defined by
S Suln/gn, -/ 9k, 0/d) = A

some pair (u, D) € V and some d € D, where u < & ([{(ay11a% - . . dpyrapii], w)),

S [0/d] E A and d(u) = dp(u). Now, we can apply Lemma 8 and get
Sulo/d] = A i S4[6/do] = A

Because the assignments to the v; are arbitrary and because §; = V93§ A we can con-

clude that 31[d/do] |= V¥ A. Hence 1 = 304 and therefore, §' = IpFw3IFIOVY A.
<

Since A & B and —A < —B are logically equivalent, the equivalence (12) remains
true if both the left hand side and the right hand side are negated. This implies
that in the functional translation of modal formulae, as well as in their negation, the
quantifiers may be exchanged as we please, as long as the sort AF is interpreted (as
in (i) of Definition 4) as a maximal set of accessibility functions. In a first step we
exploit this for moving existential quantifiers to the front in the negated form of the
functional translation of a theorem.

Definition 10 (Quantifier exchange) Let T be the operation that converts a func-
tionally translated modal formula into prenex normal form (consisting of a quantifier
prefix followed by a quantifier free matrix) and moves all existential quantifiers of
variables of sort AF inwards. <

This means Y(II;(A)) has a quantifier prefix consisting of a sequence of universally
quantified predicate variables followed by a sequence of universally quantified AF-
variables and at the end of the prefix there is a sequence of existentially quantified
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AF-variables. The negation =Y (II;(A)) of such a formula then has two sequences of
existential quantifiers followed by a sequences of universal quantifiers.
Note, for any predicate logic formula A

A=7T(A) and -T(A)=-A.

Corollary 11 (Quantifier exchange for modal theorems) Let ® be a complete
modal system extending KD. For any modal formula ¢, ¢ is a ®-theorem iff

Iy () A=Y (s (p))
is inconsistent.

Proof By Def. 2 and Theorem 7, ¢ is a ®-theorem iff IT,.(®) A —II,.(¢) is inconsistent
iff Iy (®) A -1 (y) is inconsistent. We prove

IT;(®) A—Ilf(p) is consistent iff IIy(P) A =Y (II;(yp)) is consistent.

If II;(®) A —Ils(yp) is consistent, it has a functional model, and in this model, by
Theorem 9, —II¢(¢) and =Y (II#(y)) are equivalent. Hence, II¢(®) A =Y (IIf(p)) is
true in the model as well.

Now suppose II;(®) A =Y (Il (¢)) has a model. YT moves existential quantifiers to
the inside. Thus, IIz(¢)) = YT(I#(p)) and contrapositively =Y (I (p)) = -t (p)).
Therefore, IT;(®) A —II¢(¢) has a model. <

To illustrate the operation Y of swapping quantifiers, consider the McKinsey’s
formula ¢ = M = OCp = OOp Its functional translation ¢ () is given by

VsV (V9:AF 30:AF p(([70],0))) = (3y:AF Y8":AF p(L([7/¥'), w))).
The prefix normal form is

VW 37:AF Y8AF 39:AF VAT (p(4([10], w)) = p(k([/8'], w))).
Applying T yields

Vw: W V8:AF V8':AF 3yv:AF 3y:AF (p(L([70], w)) = p(U([7'8], w))).
The negation =Y (II; (1)) is now given by

i 35:AF 36":AF Vy:AF V9 AF (p(4([79],w)) A ~p(L([7'8'], w))).
and in clause form with Skolem constants ag, bs and c,,:

P(([vas), cw))
“p(H[Y'be]; cw))-

The Y operation makes it possible to avoid Skolem functions completely in clause
based refutational theorem proving. (In fact, for some decidable modal logics, this
makes resolution a decision procedure.) For the negated translated theorems, Y moves
any existential quantifiers preceded by universal quantifiers outward so that existential
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quantifiers generate just Skolem constants, no complex Skolem terms. (This was
already observed by A. Herzig.)

Applying Y to a theorem ¢ results in a weaker formula ¢’, since ¢ = ¢', for
JzVy Y(x,y) = Yy3z ¢(z,y) is a theorem of predicate logic. Refuting =Y (¢) instead
of = therefore means we are in fact proving a weaker version of the theorem than
we originally wanted. Corollary 11 provides the conditions under which working with
the weaker form does suffice for proving ¢.

In this paper our main emphasis is not on translating theorems but our main em-
phasis is simplifying the translations of Hilbert azioms. As we argue in Section 2, one
way of finding first-order formulae equivalent to the translation of any Hilbert axiom
like the McKinsey axiom is by exchanging existential and universal quantifiers in the
negation of the translation. Unfortunately, this weakens the axiom. This is certainly
sound, any theorem that can be proved using weaker axioms also follows from the
original axioms. However, weakening an axiom may be a source for incompleteness.
We may not be able to prove all theorems in the weaker system.

There are two possibilities. First, we may try to exploit Theorem 9 which says that
in the functional interpretations the quantifier exchange rule preserves equivalence.
In the proof we needed the maximality condition of functional models. Unfortunately,
this condition is not first-order definable. An infinite approximation is:

/J/déf(v.’lfl,.’ﬂg T ;é To =
Vw v’71772 34 *lf(ﬁ)/law) = i(é, w) A \L(’)/g,’u)) = *L((s: w)) A
(V.’I?l,l‘g,.’r:; T ;é o N\ X1 ;é.T3 N\ To 7é T3 =
Vw v’ylaf}/% 73 36 \L(’Yl: U}) = \L((S, U)) A \L(’Y?: U}) = \L((S: U})) A *l’(’y37w) = ~L(67 U)))

ad infinitum.

p is true in our maximal functional models. By Corollary 5, we can add u to
Iz (®) A —IIf(p) without changing the consistency. Under the assumption p, IL¢(®)
and Y(II;(®)) are equivalent. Under this assumption we are licensed to make use of
quantifier exchange. But this may mean that we actually need to use p in the process
of finding a refutation. Since p is infinite, this is not very practicable.

Another possibility for ensuring completeness is the following: If we prove instead
of II¢(¢) the weaker theorem Y (IIf(yp)), it may turn out that the weaker axioms are
sufficient to prove the weaker theorems, without the assumption p. The next corollary
confirms that this is in fact possible.

Corollary 12 (Quantifier exchange for the axioms) For a complete modal sys-
tem ® extending KD, but with modus ponens and the necessitation rule as the only
rules:

A modal formula ¢ is a ®-theorem iff Y(II;(®)) = T(¢(p)) is a theorem.

Proof Completeness. Suppose Y(II¢(®)) = Y (II¢(y)) is a theorem, T moves exis-
tential quantifiers inside. Thus, II§(®) = Y (II;(®)) holds, and hence, Iy (®) = YT (II;(p))
is a theorem. This implies IT¢(®) A =Y (II;(y)) is inconsistent. Therefore, by Corol-
lary 11, ¢ is a ®-theorem.

Soundness. Suppose ¢ is a ®-theorem. Then ¢ is either an instance of an axiom
in ® or it can be obtained by repeatedly applying the rules of the Hilbert system.
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The desired result follows by induction on the length of the proof sequence if we can
show, (i) for all instances ¢’ of axioms % in @,

Y (I (®)) = Y(Is(4)")) holds,
and (ii) for all applications of Hilbert rules ‘from A; and ... and A,, derive A’ in @,

AL (@) = Y(I4(A4:)) = (Y(ILs(2)) = Y(IT4(4))) holds.

i
(i) Let 9 be an axiom and let ¢’ < w[ﬁ/f_] be an instance of 1. We have

Y (I1;(®)) = V(M7 (4)) iff Y(IL; () = Y (1, () iff V5 vy = s[5/,
which is true with V5 ¢y < Y(II;(y)).

(ii) The proof for the rules modus ponens and necessitation is trivial. <

If there are other rules in the Hilbert system, one must prove case (ii) for these rules
individually. In general this should not be a problem.

This result allows us to pull in the negated functionally translated Hilbert axioms
all existential quantifiers to the front. We may then apply the SCAN algorithm for
finding an equivalent first-order formulation. Since in the clause form of the trans-
formed Hilbert axioms no Skolem functions appear, only Skolem constants, it is always
possible to reverse the Skolemization, provided the C-resolution step terminates.

Above we derived =Y (II¢(M)) for the McKinsey axiom

Jp Jw:W 35:AF 35":AF Vv:AF Vy":AF (p(L([vd],w)) A =p(d([/6'], w)))

and its clause form:

p(([vas], cw))
“p(H[7bs']; cw))-

C-resolution yields:
Hlvas], cw) # L(['bs ] cw).-
Unskolemized:
Fw 36,0" Vv, 7" L([vd], w) # L['0'], w)
and negated:

Vw ¥5,6" 3y, U[vd],w) = L([y'0'], w), (13)

and this is first-order. Note that it is not neccessary to swap all existential quantifiers.
In the case of the McKinsey axiom swapping one quantifier suffices. The resulting
formula is

Vw V63yV8' Iy L([yd], w) = U[Y'8'], w).

This is slightly stronger than (13), but it is still first-order.

In the introduction we argued that the functional language seems more expressive
than the relational language and therefore properties of the frame which are second-
order in the relational language may become first-order in the functional language.
Although, our argumentation is suggestive, from a purist’s point of view, we did not
prove that this is actually the case. We only showed that we can prove that a formula
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@ is a ®-theorem by proving a weaker theorem from weaker frame properties, which
may be first-order, whereas the original frame properties are still second-order, even
in the functional language. But from a practical and theorem proving point of view,
we achieved the desired effect. We ‘massaged’ the second-order frame properties into
first-order frame properties without changing the theorems.

5 Other modal systems

The functional translation has been defined for other modal systems: for non-serial
systems, i.e. systems without the axiom D, for multi-modal systems and even for
quantified modal systems. The results of the last section can be transferred to some
of these systems.

Non-serial modal systems

Predicate logic as a target logic for the functional translation has no built-in facilities
for dealing with partial functions. An ‘accessibility function term’ | (v, w) will always
have an interpretation. It must denote something. In non-serial frames, however, a
world w may not have an R-successor and therefore |(v,w) cannot denote a world
accessible from w. This means the equivalence

Vr,y R(z,y) & InAF y = (v, w) (14)

is not valid in non-serial frames. The standard solution is: encoding every partial
function v as a total function which maps the elements for which v is not defined to
elements of a special new sort L. L stands for ‘undefined’ or just ‘bottom’. Accord-
ingly any formula in which such an ‘undefined’ situation may occur is translated into
a conditional formula which handles the undefined cases.

In our context we introduce the sorts L and W with W C W+ and L T W.
The declaration for | is now: |: AF x W+ — W', Furthermore, a new predicate
symbol de (short for dead end) is introduced and instead of (14) we define R by

Va,y:W R(z,y) < —de(z) = Iv:AF y = |(v, ) (15)
We adapt the functional translation function 7y for modal formula as follows:

T (B¢, w) = —de(w) = Vy:AF mp (4, (7, w))
T (O, w) = —de(w) AIy:AF wp (4, Ly, w))

Given a relational interpretation < its functional extension S’ is required to satisfy

the following:
(i) The predicate de is interpreted as the set of all end points of R, i.e.

de® ¥ {u e WS | ~3v RS(u,v)}.

(i) AFS & {4 WL o WL |if 3y RS (z,y) then RY(x,v(x)) else y(z) € LY},

With these modifications to Definition 4 all considerations for the serial case can be
generalized and transferred to the non-serial case.

22



Multi-modal systems

Multi-modal logics have several different pairs of modal operators O; and <;, each
pair is associated with a separate accessibility relation R;. The Hilbert axioms may
specify individual properties of each of the R; as well as interactions between different
R;.

The functional translation of multi-modal systems is a straightforward extension
of the functional translation defined in Definition 6. For each accessibility relation R;
a sort AF; is introduced and (14) is formulated for each AF; (for R; serial)

Vz,y Ri(z,y) < Iv:AF; y = (7, 7).

It is easy to verify that the results for the mono-modal systems carry over to the
multi-modal case.

Quantified modal systems

In the introduction we showed that in quantified modal logics the interpretation of a
subformula of the formula O(3z (p(x) A OO=p(x))) in a particular world may depend
on the path we follow to reach this world. Therefore, if there are domain quantifiers
moving existential quantifiers to the front is not always possible. It remains to be
investigated whether exchanging quantifiers is possible at least for some cases, for
example, for the case that domain variables do not occur in different modal contexts.
But before we start such an investigation, we need a proper reference system that
can take over the role of the Hilbert systems in the propositional case. Recent in-
completeness results found by Gasquet (1994) suggest that our proposals cannot be
readily applied to Hilbert systems with quantifiers (Hughes and Cresswell 1984).

6 Summary

Thus far the functional translation of modal formulee has been investigated for the
theorems to be proved in some modal logics with first-order frame properties. For the
case of propositional modal logic it is possible to move in the functional translation of
the negated theorem all existential quantifiers over universally quantified ‘accessibility
functions’ to the front. The effect is that complex Skolem functions are avoided and
at most Skolem constants occur in the clause normal forms. This was known.

We have shown, the same can be said for the functional translation of Hilbert
axioms, provided the Kripke semantics is complete for the given Hilbert system. We
demonstrated how the ‘functional’ first order property can be computed for a Hilbert
axiom. This formulation is computed automatically using quantifier elimination algo-
rithms like SCAN; if in the negation of the translated axiom some existential quantifiers
are moved to the front. This is not possible in the relational language. We have shown
that swapping the existential and the universal quantifiers in the functional language
preserves the theorems of the logic, provided the quantifiers are also swapped in the
theorem which we wish to prove.

Using the methods proposed in this paper, we can now apply first-order predicate
logic theorem proving techniques to a wider class of modal systems than was possible
to this point.
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