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Abstract

Surface mesh parameterization is a fundamental tool in computer graphics, re-
quired for applications like e.g. texture mapping, remeshing and morphing. Lin-
ear parameterization methods are of particular interest. Their simplicity, efficiency
and robustness, enables the processing of detailed, large meshes. In practice, how-
ever, the current linear schemes are limited to producing (quasi-)conformal param-
eterizations and hence may suffer from considerable distortion e.g. in length and
area. We present a novel approach to effectively reduce parametric distortion. Our
algorithm is simple, efficient and robust, as it requires only the solution of a sparse
linear system. We smoothly adapt an existing quasi-conformal parameterization
with respect to different flow quantities such as areas, angles or edge lengths. Our
adaptive strategy offers a flexible means for controlling distortion based on error
equidistribution. We show how this method can be extended from the planar set-
ting to spherical parameterizations, a problem which recently attracted a lot of
interest.
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Abstract

Surface mesh parameterization is a fundamental tool in computer graphics, required for applications like e.g.
texture mapping, remeshing and morphing. Linear parameterization methods are of particular interest. Their sim-
plicity, efficiency and robustness, enables the processing of detailed, large meshes. In practice, however, the current
linear schemes are limited to producing (quasi-)conformal parameterizations and hence may suffer from consid-
erable distortion e.g. in length and area. We present a novel approach to effectively reduce parametric distortion.
Our algorithm is simple, efficient and robust, as it requires only the solution of a sparse linear system. We smoothly
adapt an existing quasi-conformal parameterization with respect to different flow quantities such as areas, angles
or edge lengths. Our adaptive strategy offers a flexible means for controlling distortion based on error equidis-
tribution. We show how this method can be extended from the planar setting to spherical parameterizations, a
problem which recently attracted a lot of interest.

1. Introduction

The parameterization of surfaces has received considerable
attention in recent years, as it is a central operation to various
applications in computer graphics such as texture mapping,
remeshing and morphing. In general, a parameterization can
be regarded as a bijective mapping between the surface and
the parametric domain. For instance, a surface (patch) home-
omorphic to a disk is mapped onto the plane, and a genus-0
surface is typically mapped onto the unit sphere. Polygonal
meshes are the most common representation for surfaces and
in particular for 3D data sampled from real-world objects.
For this discrete, piecewise linear approximation of surfaces,
the parameterization reduces to a piecewise linear mapping.
In the planar configuration, the construction of this mapping
can be illustrated as "flattening" a surface patch to the plane.

In general, the parameterization induces some form of dis-
tortion. Isometric or length-preserving mappings only exist
for special cases, which are rare in practical applications.
Most parameterization methods try to minimize distortion
based on some appropriate measure. This is done to cir-
cumvent or reduce the associated negative effects of distor-
tion like e.g. visual artifacts due to undersampling in texture
mapping. Many different approaches to this problem have
been proposed, often tailored for specific applications. And
there is inherently no perfect solution.

Figure 1: Parameterizations of the Venus model (50K∆)
over the unit circle using mean value coordinates (left) and
our area-adaptive method (right). The pictures visualize the
flattened model with the original shading.

Besides from providing a least-distorted mapping, an
ideal parameterization method should be efficient for pro-
cessing large meshes and robust, e.g. insensitive to the highly
irregular input which often emerges from the digitization of
real world objects. These requirements make linear param-
eterization methods particularly interesting. Linear methods
are efficient as they only involve the solution of a sparse lin-
ear system. They have proven to be robust, and they guaran-
tee a valid solution, given appropriate boundary conditions.
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In addition, their relative simplicity and ease of implementa-
tion makes them highly attractive. Based on linear schemes,
we develop a novel approach to generate low-distortion pa-
rameterizations. Our algorithm is simple, efficient and ro-
bust, it requires only the solution of a sparse linear system.
We build upon the theory of mesh adaptation in order to
smoothly adapt an existing (quasi-)conformal parameteriza-
tion. In this process, the distortion is reduced and controlled
in a flexible way through different geometric error measures
(see Fig. 1). The method is independent of the parametric
domain. We show how to extend it to establish spherical pa-
rameterizations of genus-0 surface meshes.

As the main contribution of this work, we provide a novel
and general framework for reducing parametric distortion.
The method is based on sound theory from mesh generation,
namely r-adaptation, which to the best of our knowledge has
not been applied to surface parameterization before.

The rest of the paper is organized as follows. We provide
a brief overview of related work in Section 2 and describe
the notion of linear mesh parameterization used throughout
the paper in Section 3. A general background on r-adaptation
methods is provided in Section 4, and we present their appli-
cation to parameterization in Section 5. In Section 6 we de-
rive the geometric error monitor functions for our approach,
which is then extended to the spherical domain in Section 7.
We present results and discuss the r-adaptive parameteriza-
tion in Section 8 and conclude in Section 9.

2. Related work

The importance of parameterization techniques for com-
puter graphics is reflected by the significant amount of
work on the topic in the last years, see [FH03] for
an extensive recent survey. Most of the research ef-
fort aims at controlling and reducing distortion through
the minimization a certain deformation energy. For sev-
eral approaches, the arising numerical problem is non-
linear as e.g.in [HG00, SSGH01, SdS00, DMK03, ZMT04].
These methods commonly require hierarchical solvers
[HGC99, SGSH02] even for moderately sized meshes and
are computationally involved in general. Desbrun et al.
[DMA02] use a simple non-linear optimization to lin-
early blend base parameterizations. An alternative approach
[SCGL02] avoids global optimization problems by simulta-
neously cutting the surface and computing the parameter-
ization. In this paper we consider surfaces homeomorphic
to either a disk or a sphere and do not allow additional
cuts. Higher genus surfaces can be partitioned into appro-
priate patches which are parameterized separately, see e.g.
[LPRM02].

Our approach is based on linear schemes, which are
commonly viewed as a physical spring analogon. Find-
ing the equilibrium state conforms to solving the dis-
crete Laplacian equation given appropriate boundary con-

ditions. Of particular interest are discrete conformal map-
pings [PP93, EDD∗95, HAT∗00] possibly with Dirichlet or
Neumann boundary conditions [LPRM02, DMA02]. Most
recently, Floater introduced a convex combination mapping
based on the mean value theorem of harmonic functions
[Flo03] as a superior alternative to his shape preserving
method [Flo97]. An interesting approach was proposed by
Lévy [Lév01] which allows the user to specify point con-
straints interactively. Yoshizawa et al. [YBS04] aim at re-
ducing the stretch metric introduced in [SSGH01] and apply
a quasi-Newton type optimization. We discuss this approach
in Section 8.

The above methods flatten a surface patch homeomorphic
to a disk onto the planar domain. Given a genus-0 surface,
the natural parameter domain is the sphere S2. The spherical
embedding is more complex than the planar one. The diffi-
culties arise from the additional dimension which augments
the problem size and the constraint on vertices to stay on
the sphere. Spherical parameterization has attracted consid-
erable interest recently. Sheffer et al. [SGD03] extended the
angle based flattening to the spherical case. Gotsman et al.
[GGS03] solve a constrained problem. The reported results
indicate that these are challenging optimization problems.
Aiming at regular resampling of genus-0 surfaces, Praun and
Hoppe [PH03] generalize the stretch metric in [SSGH01]
and apply a hierarchical optimization approach.

In order to avoid an explicit constrained optimization,
Kobbelt et al. [KVLS99] and Alexa [Ale00] apply an iter-
ative, local relaxation based on uniform Laplacian smooth-
ing and back projection onto the sphere. Gu and Yau [GY02]
generate an initial uniform weights embedding which is the
starting point for computing a minimal Möbius transform.

Figure 2: The r-adaptive parameterization of a surface (r-
APS) is a two step method.: First, a (quasi-)conformal map-
ping is constructed (left). Second, the initial solution is
adapted w.r.t. a certain deformation measure, like e.g. area
distortion (right).
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3. Notion of linear mesh parameterization

A surface is represented by a piecewise linear approximation
M. The triangular mesh M is described as a pair (K,X),
where K is a simplicial complex representing the connec-
tivity of vertices, edges and faces, and X = (x0, . . . ,xn) de-
scribes the geometric positions of the vertices. We define the
1-ring neighborhood of a vertex i ∈ K as the set of adjacent
vertices Ni = { j|(i, j) ∈ K}.

We represent a parameterization of M = (K,X) as an
isomorphic mesh U = (K,(u1, · · · ,un)), where xi ∈R

3 refer
to surface points and ui ∈R

2 denote positions in the (planar)
parameter domain.

Linear parameterization schemes can be interpreted as
solving the Laplace equation for a certain approximation of
the discrete Laplacian operator. The approximations differ
by the choice of weights wi j ∈ R if we write the Laplacian
equation as

L(ui) = ∑
j∈Ni

wi j(ui −u j) = 0 (1)

Here, we assume that the support of the Laplacian opera-
tor is restricted to the 1-ring of a vertex. Given appropriate
boundary conditions, the solution of this sparse linear sys-
tem for the internal vertices i ∈ K provides their paramet-
ric positions ui. The result is guaranteed to be a one-to-one
mapping if the boundary is fixed to a convex polygon in the
planar domain, and if all the weights wi j, j ∈ Ni are strictly
positive (see e.g. [FH03]).

4. Short background on r-adaptation

r-adaptation or r-refinement methods provide strategies to re-
locate vertex (or node) positions for adapting the mesh to
best capture the behavior of a specific adaptation function.
The connectivity of the mesh is fixed, so the adaptation only
contracts or expands triangles (or mesh cells). These tech-
niques are used widely in the discretization of the partial dif-
ferential equations associated with fluid dynamics problems
and heat transfer such as the Navier-Stokes and the Poisson
equations. The driving force behind all these methods is the
idea of error equidistribution. In other words, an error or en-
ergy function is made equal over all mesh elements rather
than being minimized directly.

A direct error minimization approach would try to solve
the associated optimization problem to find optimal posi-
tions of the vertices. Depending on the problem setting, this
can be very challenging and computationally expensive. In
contrast, an r-adaptation method does not directly minimize
the error, but instead relocates the vertices to equidistribute
the error over the domain. Naturally, this equidistribution
will minimize the average global error.

This approach was first established by Babuška and
Rheinboldt [BR78] in the context of finite elements compu-
tations. They proved that if some error measure is evenly dis-

Figure 3: Our r-adaptation approach relocates a vertex i
according to its 1-ring Ni (Section 4). The highlighted tri-
angles and angles are used to compute the errors earea

i j and

eangle
i j for their common edge (i, j) ∈ K (Section 6.4).

tributed over the mesh then the spatial distribution of nodes
is asymptotically optimal (see Section 8) with respect to this
measure. In particular, there is no need to locate the optimal
nodal positions exactly, because the optimum error exhibits
stable behavior under perturbation of the vertex positions.
Technically, the method first establishes a preliminary solu-
tion, and it then attempts to relocate grid points so that a
certain flow quantity, defined by an error monitor, is equally
distributed over the field. We refer to [TWM85] for an intro-
ductory textbook on these adaptation methods.

The field of r-adaptation techniques is rich of interesting
theoretical and applied results, see e.g. [Bak97] for a survey.
Most of the schemes proposed in the literature are closely
tied to the specific physical problems that they are designed
for, and hence they may not be applicable to more general
settings.

An efficient approach to node movement is repo-
sitioning each node according to its 1-ring neighbor-
hood [Cap95, Bai02]. Let ui be the position of the vertex i.
With each edge (i, j) ∈ K, we associate a strictly positive
weight Wi j . Assume a quantity Q = Wi j||ui − u j||

2, j ∈ Ni
is to be evenly distributed over the 1-ring. This is attained
when

L(ui) = ∑
j∈Ni

Wi j(ui −u j) = 0 .

The equidistribution over the whole mesh leads to a sparse
matrix equation similar to the Laplace equation. However
in this context, the weights are tuned to furnish an efficient
means for adapting the mesh. Suppose the weights associ-
ated with the edges (i, j), (i,k) and (i, l) are smaller than all
other weights in Fig. 3. In order to reach an even distribu-
tion of the entity Q over the ring, the central vertex posi-
tion ui should move away from u j ,uk, and ul . If we think
of the weights as functions associated with a certain error
monitor or flow quantity Q, we can perceive that the central
node moved in the direction of higher Q. This implies that
the existing mesh points are redistributed in order to resolve
regions of high gradient.

In the following, we develop a geometric r-adaptive tech-
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nique for mesh parameterization. We propose a set of er-
ror monitor functions which capture geometric distortion,
and we show how to equidistribute these error measures
smoothly and efficiently for the planar configuration.

5. r-adaptive parameterization

In order to drastically reduce the amount of parametric dis-
tortion without the need for solving non-linear systems, we
follow the central idea of r-adaptation. We proceed in two
steps. First, we compute an initial parameterization. Second,
we adapt it and relocate its vertex positions such that the dis-
tortion is equally and smoothly distributed. Both steps can be
modeled by a linear system and hence performed efficiently.
Fig. 2 illustrates our approach.

In the first step, we construct a quasi-conformal parame-
terization based on the mean value coordinates [Flo03]. We
discuss this choice of weights wi j for solving (1) in Sec-
tion 6.4). The averaging property of the Laplacian typically
yields regions of high distortion in scale noticeable as trian-
gle crowding. However, the conformality provides paramet-
ric triangles in U which are nearly mathematically similar to
the triangles of the original mesh M, i.e. they are only min-
imally sheared. So we can regard the quasi-conformal map-
ping a good initial solution to the adaptive parameterization
problem.

In the second step, we choose an appropriate error mon-
itor to equidistribute the distortion over the whole mesh U .
The error monitor can be viewed as a flow quantity over the
mesh. From this quantity, we derive strictly positive weights
Wi j for every edge (i, j)∈K to initiate the gradient flow. The
adaptation problem can be easily solved, the equilibrium is
achieved when L(ui) = 0 with respect to the new weights
Wi j and for all internal vertices i ∈K. Hence, we solve again
a sparse linear system of the same structure (1) as was re-
quired in the first step to compute the initial solution.

We described how we apply r-adaptation for surface pa-
rameterization, and that the relocation strategy for error
equidistribution leads to a linear problem. In the next sec-
tion we will derive different sets of weights corresponding to
specific error monitors for efficient reduction of distortion.

6. Error monitor functions and adaptive weights

Many methods try to simultaneously capture all deformation
aspects of the mapping in a single, highly convoluted mea-
sure of geometric distortion, which yields challenging nu-
merical problems. These measures may correlate the natural
geometric measures such as angles, area, and distance.

Instead, we construct different error monitor functions
which provide different measures of parametric distortion.
These error measures however need to satisfy certain qual-
ity criteria. We require the error measure to be strictly pos-
itive and strictly monotone, in order to resolve high gradi-
ent regions. For instance, squared difference errors which

are commonly used to set up optimization problems are not
of interest to our setting as they are not strictly monotone.
We will rely on these properties in Section 6.4. Experiments
with many possible error functions suggest that the simplest
ones yield satisfactory results in practice. Sections 6.1–6.3
describe the different error quantities ei j associated with the
edges (i, j) ∈K. Section 6.4 then discusses the derivation of
the a-posteriori r-adaptive weights Wi j .

6.1. Area-based error monitor

Generally existing conformal parameterizations tend to scale
triangles. The scaling factor typically increases from the
boundary to the interior of the mesh. Fig 2 illustrates this
effect. Regarding a single triangle, it seams natural to for-
mulate an error monitor in terms of its area measured in 3D
and in parametric space. We define the area error of a trian-
gle (i, j,k) ∈ K as

earea
i jk =

area(ui,u j,uk)

area(xi,x j,xk)
,

i.e. the ratio of areas of the planar conformal triangle and the
3D surface triangle. Note that this error is strictly monotone
and positive as required.

We define the error on each edge (i, j) ∈K as the average
error of the adjacent triangles (i, j,k) and ( j, i, l) (see Fig. 3),
i.e.

earea
i j =

ei jk + e jil

2
, (i, j,k),( j, i, l) ∈ K

Figure 5: Visualization of the parameterization of the Man-
nequin head (21K∆) using mean value coordinates (left),
and r-APS with edge-length adaptive weighs for different ex-
ponents α = 1 (center) and α = 3

2 (right).

6.2. Edge length error monitor

In a similar fashion we define an error monitor based on edge
lengths. The error associated with an edge (i, j) ∈ K is sim-
ply defined as the ratio of the planar edge lengths over the
length of the original edge in 3D, hence

elength
i j =

||ui −u j||

||xi −x j||
.
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Figure 4: Parameterization of the Foot model (20K∆) using mean value weights (left) and r-APS with the a posteriori area-
adaptive weights (right). Such kind of "sock-like" surfaces typically induce high distortion and hence pose a challenging prob-
lem. The parameterization is visualized by mapping a regular texture. The different views show how the distortion is equally
distributed over the whole mesh and how the r-APS tends to preserve the conformality of the initial solution (see also Figures 9
(right) and 10).

Although very simple, this error function offers a nice
mathematical interpretation. Given are two metrics (S,d)
and (S ′,d′) and a map f : S →S ′. It is well known from ba-
sic analysis that the contraction of f is the maximum factor
by which distances are shrunk, i.e.

max
p,q∈S

d(p,q)

d′( f (p), f (q))
.

On the other hand, the expansion is the maximum factor by
which distances are stretched, i.e.

max
p,q∈S

d′( f (p), f (q))

d(p,q)
.

The distortion of f is then defined as the product of contrac-
tion and expansion. An isometric mapping has distortion 1.
From the definition of elength

i j it is clear that after an equidis-
tribution of the edge length error the contraction and expan-
sion values will tend to get close to a common value. Con-
sequently, their product and hence the distortion of the map-
ping will get close to 1, which means the mapping itself will
be close to isometric.

6.3. Angle-based error monitor

Our third error monitor is designed to equidistribute the an-
gular error of the parameterization. At first sight, it seems
that this measure was needless as the initial parameteriza-
tion is chosen quasi-conformal. However, a closer inspection

shows that the error induced by the respective parameteri-
zation methods is generally not evenly distributed over the
surface but rather fluctuates (see Fig. 6).

We measure the angular error per triangle (i, j,k)∈K and
define it as the ratio

eangle
i jk =

̂u j,ui,uk

̂x j,xi,xk

The contribution to each edge (i, j) ∈ K is then defined as
the average angular error of the adjacent triangles (i, j,k)
and ( j, i, l), measured at the angles incident to vertex i, i.e.

eangle
i j =

ei jk + ei jl

2
.

6.4. Adaptive weights

We consider an error monitor with errors ei j associated with
edges of the mesh. Setting the weights

Wi j = ei j

for solving the Laplacian equation effectively reduces the er-
ror and generally yields a valid parameterization because of
the strictly positive weights. However, the result is not vi-
sually pleasant, as it looses smoothness, see Fig. 6 (b). The
reason for this undesirable behavior is that the new weights
do not take into consideration the smoothness of the solu-
tion. In an ideal setting, we would like the mapping to in-
herit some (or even as much as possible) of the conformality
of the initial solution.
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This issue is well-known in the context of adaptive grid
generation [Che94] as preserving conformality smoothness.
For the adaptive grid generation, this is achieved by incor-
porating smoothness terms in the governing partial differen-
tial equations. We propose a more straightforward approach
which serves our purpose and maintains the linearity of our
setting.

In order to achieve conformal smoothness, we introduce a
conformality term to the adaptive weights which provides
some inherent smoothness. This can be done in a simple
manner setting

Wi j = wi j ei j ,

where the wi j are the quasi-conformal weights which are
also used to construct the initial mapping, in our case the
mean value weights. The resulting adapted parameteriza-
tions indeed show the preservation of conformality as well
as the asymptotic convergence towards the global minimum
distortion (see Fig. 10 and Section 8).

Our experiments with different error functions indicate
that the composition of these error monitors with strictly
positive and increasing functions yields more control of their
relative effect on the weights. A simple and effective exam-
ple are power functions, i.e. Wi j = wi j ei j

α, α ≥ 1, as also
applied in [DMK03, YBS04]

The results generally improve for a small exponent α.
However, the effect is limited as the use of high powers does
not seem to reflect a natural error function anymore. Typi-
cal values for practical use range from 1 to 5, depending on
the error monitor. We note that tuning the exponent α affects
the conditioning of the system matrix. So using an iterative
solver, a higher number of iterations is required to achieve
convergence. The use of preconditioners generally leads to
better convergence properties.

7. Spherical adaptation

The error monitor functions we derived are not specific to the
planar case. They can also be applied to the spherical setting,
i.e. a surface mesh of genus zero is parameterized over the
sphere S2. The adaptive spherical parameterization proceeds
in two steps. First, we construct an initial quasi-conformal
mapping to the unit sphere. Second, we use the resulting em-
bedding as a starting point for our adaptive scheme. Again,
the adaptation strategy relocates the vertex positions in or-
der to equidistribute the error induced by the initial quasi-
conformal embedding. In contrast to the planar configura-
tion, this is not a linear process anymore due to the constraint
on the vertices to stay on the sphere. We apply an iterative
relaxation algorithm, after each relocation step the vertex is
projected back onto the sphere.

Our approach to generating the initial quasi-conformal pa-
rameterization derives from [GY02]. The main difference is
that there is no need for an initial uniform weights mapping

Figure 8: Spherical parameterizations of the Tweety model
(54K∆) . The pictures show the spherical embedding (top
row) and visualize the distortion by mapping a regular grid
texture (bottom row). Left: Result from algorithm 7.1 using
mean value coordinates. Right: r-APS with area-adaptive
weights.

to the sphere, and our approach avoids the computation of
the Möbius transform. Given an input mesh M = (K,X),
our algorithm computes a spherical mapping U as follows

algorithm 7.1 (construct spherical mapping U of M)

1. Initialize U := (K,U), where U := X , i.e. ui ∈ R
3.

2. Translate U so that 1
n ∑n

i=1 ui = (0,0,0) (set cog origin).
3. Project the ui onto the unit sphere (Gauss map).
4. For each vertex i = 1, · · · ,n

• L||(ui) = L(ui)−〈L(ui),N(ui)〉N(ui)
(tangential component of the Laplacian)

• ui := ui +λL||(ui) (update)
• ui := ui/||ui|| (back projection)

5. Repeat step (4.) until convergence.

Here, N(ui) = ui/||ui|| denotes the unit normal vector of
vertex i, and λ ∈ (0,1] is a damping coefficient.

Once the above algorithm has converged, we can adapt
the quasi-conformal solution by iterating step (4.) with the
adaptive weights (cf. Section 6.4) for computing the Lapla-
cian L(ui).

Our method is practical even for fairly complex meshes
(see Fig. 7 and 8) without auxiliary hierarchies. However,
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(a) (b) (c) (d)

Figure 6: r-APS with different adaptation strategies applied to a bust model (47K∆). (a) Initial solution from mean-value coor-
dinates. (b) Solution from angle-adaptive weights without conformality smoothness term, note the irregularity of the solution.
r-APS with angle-adaptive weights for exponent α = 1 (c) and α = 5 (d).

(a) (b) (c) (d)

Figure 7: Spherical parameterizations of an edited head model (33K∆), the edit (a) amplifies the distortion problem. (b) initial
conformal mapping generated by algorithm 7.1. r-APS embeddings using area-adaptive weights for different exponents α = 1
(c) and α = 2 (d).

the algorithm is limited by the approximation of the Lapla-
cian operator on the sphere, which assumes that the 1-ring of
each vertex i can be considered as quasi-planar. We note that
this limitation is inherent to all parameterization methods
based on the tangential Laplacian. The approximation error
induced by this assumption is of the order of θ ≈ sin(θ),
where θ denotes the angle of an incident edge (i, j)∈K with
the tangent plane to the sphere at the center ui of the 1-ring.
If θ gets large, the vertices will tend to cluster in a region on
the sphere. In practice, this effect may be controlled by tun-
ing the damping coefficient λ or locally refining the mesh
connectivity.

8. Results and discussion

We applied our r-adaptive parameterization method to a va-
riety of reasonably complex geometric models, for both, the
planar and the spherical setting. The Figures 1, 4-6 and 7-

8 and 12 show examples for different configurations. In our
implementation we use a bi-conjugate gradient algorithm to
solve the linear systems for the planar configuration. The
computation times are in the order of seconds as it is typical
for solving this class of problems on current hardware. The
times are in the order of seconds to minutes for the spheri-
cal parameterization, which is dominated by the computa-
tion of the initial quasi-conformal embedding. We do not
apply any auxiliary hierarchies. The implementation of the
r-adaptive methods is relatively simple, and in particular the
extension of an existing linear parameterization scheme to
our r-adaptive algorithm is straightforward, and hence our
results can be easily reproduced.

Asymptotic optimality of r-adaptation. As mentioned in
Section 4, the error equidistribution yields an asymptotically
optimal distribution of vertex positions with respect to the
desired flow quantity. Fig. 9 (right) illustrates the asymptotic
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Figure 9: Left: The tessellation of the Foot surface (cf. Fig. 4) is very irregular, the r-APS algorithm robustly processes this
input due to the positivity of the adaptive weights derived from mean value coordinates. Right: Normalized area distortion error
earea

i jk for the Foot model. The triangles (i, j,k) ∈ K are enumerated over the horizontal axis. And the vertical axis measures the
error for each triangle. Note that the scales are logarithmic for better visualization.
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Figure 10: Angular error of the initial mean value coordinates solution (left) and the area adaptive r-APS (right) for the Foot
model. The logarithmic horizontal axis enumerates the triangles. The graphs indicate that the r-APS tends to preserve the
conformality of the initial solution as the area adaptive solution mimics the asymptotic behavior of the initial quasi-conformal
solution.

convergence of our r-adaptive parameterization for the area-
based error monitor. The graph compares the area distortion
error earea

i jk over all triangles (i, j,k) ∈ K for the mean value
coordinates and for the adaptive parameterization, which is
asymptotic to the optimum 1.

Conformality smoothness. Fig. 10 opposes the angular er-
rors eangular

i jk of the initial solution to the result of area adapta-
tion (as before). This indicates that the adaptive parameteri-
zation tends to preserve the conformality of the initial mean
value coordinates solution. We observed that the smoothness
of the solution is altered, if highly convoluted measures (see

also Section 6.4) like [SSGH01] are used for deriving error
monitor functions.

Choice of quasi-conformal weights. We opt for the mean
value coordinates as quasi-conformal weights due to their
positivity which guarantees a valid mapping (see also
[FHK04] for a detailed analysis), and because they provide
good results in practice. In contrast, the positivity of the dis-
crete conformal weights [PP93, DMA02] is generally guar-
anteed only for Delaunay triangulations. However, for ar-
bitrary triangulations, the sum of these weights over the 1-
ring is positive [Win66]. While this method can converge
with some weights being negative, we note that coupling
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them with our adaptive scheme might render them unsta-
ble. This is due to the fact that the sum over the 1-ring may
become negative, which propagates the negativity over the
ring. Fig. 9 (left) shows an irregular mesh which causes this
effect. The problem could be fixed by locally refining the
mesh connectivity. We observed that if the adapted discrete
conformal system converges, the solution tends to be bet-
ter than the (harmonic) mean value coordinates embedding.
Fig. 11 shows an example of our adaptation coupled with
the discrete conformal weights. Note the preservation of the
symmetry despite the irregularity of the sampling.

Alternative linear methods. Desbrun et al. [DMA02] de-
rive the discrete authalic parameterization which is locally
area preserving. This property seems not to be sufficient to
achieve a global reduction of area distortion. Consequently,
also the effect of blending between a discrete conformal
and an authalic base parameterization is limited. The same
work enables an interesting approach to optimizing the mesh
boundary in a postprocess in order to improve on distor-
tion. An alternative method [Lév01] fixes internal points
and extrapolates the solution to reduce parametric distortion.
Both of the above issues could possibly be addressed by r-
adaptation in the future.

Non-linear methods. Many of the non-linear approaches
[SSGH01, HG00] use an initial embedding as starting point
and then try to optimize it with respect to some deformation
energy by performing a local random line search until a cer-
tain threshold is achieved. Most recently, Yoshizawa et al.
[YBS04] minimize the stretch metric from [SSGH01] start-
ing from an initial shape preserving [Flo97] mapping. The
optimization procedure performs a multi-step search along
the line of decreasing stretch. The solution in every step is
obtained by solving a linear system where the weights are
tuned according to the stretch metric. As there is no guaran-
tee of convergence, the method stops when the global stretch
increases instead of decreasing, and the last step is consid-
ered as the optimal solution. While the linear system solved
in every step bears similarity to Winslow’s variable diffu-
sion technique [Bra93] tailored to the stretch metric, there
is no guarantee to find an optimal solution due to the non-
convexity of the optimization problem. [YBS04] note that a
lower stretch parameterization does not necessarily account
for a visually better mapping. This is partly due to the na-
ture of the stretch metric functional, as it convolutes two
terms that reflect change in both length and area. In contrast
to heuristic direct minimization approaches, we provide a
general framework which features provable guaranties like
smoothness of the solution and asymptotic convergence to
the optimal solution thanks to sound theory. Hence, our ap-
proach is fundamentally different from Newton-type opti-
mization methods. We strictly apply an error equidistribution
to indirectly reduce the distortion according to several non-
convoluted error monitor functions applying only one single
linear system on top of the initial solution. Furthermore our
approach easily extends to higher dimensions.

9. Conclusion

We presented a novel approach to surface mesh parame-
terization. Our method is inspired by and builds upon r-
adaptation, which is a general technique to relocate the ver-
tex positions according to a certain error measure. We apply
a linear relocation strategy for the equidistribution of para-
metric distortion, which makes our r-adaptive parameteriza-
tion of surfaces simple, efficient and robust. The coefficients
of the sparse linear system are carefully derived, which guar-
antees convergence and maintains the smoothness of the so-
lution. The proposed error monitor functions provide flexi-
ble means to control distortion, they can be directly applied
to existing parameterization methods, and they are not re-
stricted to the planar domain. So far, we considered fixed,
convex boundaries in oder to guarantee a valid mapping. Yet,
there is no reason indicating why our approach could not be
coupled with suitable Dirichlet or Neumann boundary condi-
tions or a posteriori optimization of the boundary. This issue
will be subject of future work.

Figure 11: Parameterization of the well-known irregularly
sampled head [DMA02]. We adapt the discrete conformal
parameterization with natural boundaries (center) using
edge-length adaptive weights with exponent α = 2 (right).

Figure 12: Edge-length adaptive spherical embedding of a
Fist model (14K∆), four triangles on the fingers are consis-
tently highlighted.
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