
A Simple Parallel Algorithm for the

Single-Source Shortest Path Problem

on Planar Digraphs

Jesper L. Tr�a� Christos D. Zaroliagis

MPI{I{96{1-012 June 1996

0

A Simple Parallel Algorithm for the

Single-Source Shortest Path Problem

on Planar Digraphs�

Jesper L. Tr�a� Christos D. Zaroliagis

Max-Planck-Institut f�ur Informatik

Im Stadtwald, D-66123 Saarbr�ucken, Germany

E-mail: ftraff,zarog@mpi-sb.mpg.de

June 3, 1996

Abstract

We present a simple parallel algorithm for the single-source shortest path problem

in planar digraphs with nonnegative real edge weights. The algorithm runs on the

EREW PRAM model of parallel computation in O((n2�+n1��) log n) time, performing

O(n1+� logn) work for any 0 < � < 1=2. The strength of the algorithm is its simplicity,

making it easy to implement, and presumably quite e�cient in practice. The algorithm

improves upon the work of all previous algorithms. The work can be further reduced to

O(n1+�), by plugging in a less practical, sequential planar shortest path algorithm. Our

algorithm is based on a region decomposition of the input graph, and uses a well-known

parallel implementation of Dijkstra's algorithm.

1 Introduction

The shortest path problem is a fundamental and well-studied combinatorial optimization

problem with a wealth of practical and theoretical applications [1]. Given an n-vertex, m-

edge directed graph G = (V;E) with real edge weights, the shortest path problem is to �nd

a path of minimum weight between two vertices u and v, for each pair u; v of a given set

of vertex pairs; the weight of a u-v path is the sum of the weights of its edges. The weight

of a shortest u-v path is called the distance from u to v. The shortest path problem comes

in di�erent variants depending on the given set of u; v vertex pairs, and the type of edge

weights [1].

�This work was partially supported by the EU ESPRIT LTR Project No. 20244 (ALCOM-IT), and by

the DFG project SFB 124-D6 (VLSI Entwurfsmethoden und Parallelit�at).

1

Although e�cient sequential algorithms exist for many of these variants, there is a certain

lack of e�cient parallel algorithms; that is, of algorithms that perform work (total number of

operations performed by the available processors) which is close to the number of operations

performed by the best known sequential algorithm. Designing e�cient parallel algorithms

for shortest path problems constitutes a major open problem in parallel computing. One

possible reason for the lack of such algorithms could be that most of the emphasis so far

has been put on obtaining very fast (i.e. NC) algorithms. However, in almost all practical

situations, where the number of available processors p is �xed and much smaller than the

sizes of the problems at hand, the primary goal is to have a work-e�cient (rather than very

fast) parallel algorithm, since (in any case) the running time will be dominated by the work

divided by p. Moreover, this seems to be of particular importance if such algorithms can be

shown to have other practical merits (e.g. simplicity, ease of implementation).

An important variant of the shortest path problem is the single-source or shortest path

tree problem: given G as above and a distinguished vertex s 2 V , called the source, the

problem is to �nd shortest paths from s to every other vertex in G. (It is well-known that

these shortest paths form a tree rooted at s [1].) The single-source shortest path problem has

e�cient sequential solutions, especially when G has nonnegative edge weights. In this case,

the problem can be solved by Dijkstra's algorithm in O(m+n logn) time using the Fibonacci

heap or another priority queue data structure with the same resource bounds [2, 4, 6]. If in

addition G is planar, then the problem can be solved optimally in O(n) time [11].

In this paper we consider the single-source shortest path problem in planar digraphs with

nonnegative real edge weights. Despite much e�ort, no sublinear time, work-optimal parallel

algorithm has been devised even for this case. The best previous algorithm is due to Cohen

[3] and runs in O(log4 n) time using O(n3=2) work on an EREW PRAM. There are two

cases where the work is better. Both cases, however, require edge weights to be nonnegative

integers and in one case the algorithm is not deterministic. More speci�cally, in [13] an

O(polylog(n) logL)-time, O(n)-processor randomized EREW PRAM algorithm was given,

where L is the largest (integral) edge weight of G. In [11], a deterministic parallel algorithm

was given that runs in O(n2=3 log7=3 n(logn+ logD)) time using O(n4=3 logn(logn+ logD))

work, where D is the sum of the integral edge weights. All of the above algorithms use (in

one way or another) sophisticated data structures which make them di�cult to implement.

In this paper we present a simple, easily implementable, parallel algorithm for the single-

source shortest path problem on a planar digraph G with nonnegative real edge weights.

By compromising on parallel running time, we achieve a (deterministic) algorithm which

in terms of work-e�ciency improves upon the previous algorithms. More precisely, our

algorithm runs in O((n2� + n1��) logn) time and performs O(n1+� logn) work on an EREW

PRAM, for any 0 < � < 1=2. For instance, a choice of � = 1=3 improves the bounds in [11]

by a logarithmic factor at least, while a choice of � = 1=4 improves the work in [3] by a factor

of n1=4. The work of our algorithm can be further improved to O(n1+�), if the sequential

algorithm of [11] is used as a subroutine. However, we cannot claim that this version of the

algorithm is easily implementable.

Like previous planar single-source shortest path algorithms, our algorithm is based on

a so-called region decomposition of G [5], coupled with a reduction of the problem to a

collection of shortest path problems on the regions of G. Given a region decomposition,

2

our algorithm mainly consists in the concurrent application of Dijkstra's sequential single-

source shortest path algorithm to the regions of the graph, followed by a �nal application of a

simple parallel version of Dijkstra's algorithm to an auxiliary (non-planar) graph constructed

using the shortest path information computed in the regions. By suitable copying of the

edges of the graph, concurrent reading and writing can be avoided. For computing the

region decomposition presupposed by our shortest path algorithm, we also give an explicit

EREW PRAM implementation of the algorithm in [5]. This implementation (slightly more

complicated than that of the shortest path algorithm) computes a speci�c representation of

the region decomposition as required for the EREW PRAM implementation of the shortest

path algorithm.

It is worth noting that the only routines needed by our algorithms are: (i) Dijkstra's algo-

rithm (sequential and parallel version) implemented via any elementary heap data structure

(e.g. binary heap); (ii) standard implementations of parallel pre�x computations and sorting;

and (iii) the parallel planar separator algorithm of Gazit and Miller [7] whose explicit EREW

PRAM implementation is given in Section 4.

Since the main advantage of our algorithm is its simplicity which makes it easy to imple-

ment and presumably also e�cient in practice (i.e. capable of giving good speedups in parallel

machines with a modest number of processors), we intend to incorporate the algorithm into

a library of basic PRAM algorithms and data structures, called PAD [10], currently under

development.1

The rest of the paper is organized as follows. In the next section we give de�nitions and

state some preliminary results about separators and decompositions of planar graphs. Our

planar single-source shortest path algorithm is given in Section 3, while Section 4 presents

the implementation details for obtaining in parallel the region decomposition needed for the

shortest path algorithm. Concluding remarks are o�ered in Section 5.

2 Preliminaries

Let for the remainder of this paper G = (V;E) be a directed planar graph with nonnegative,

real edge weights, n = jV j vertices and m � 3n � 6 = O(n) edges. In the following, when

we speak about separator properties of G, we are referring to the undirected version of G

obtained by ignoring the direction of the edges. When we speak of shortest paths, however,

we take the direction of edges into account.

De�nition 2.1 A separator of a graph H = (VH ; EH) is a subset C of VH whose removal

partitions VH into two (disjoint) subsets A and B such that any path from a vertex in A to

a vertex in B contains at least one vertex from C.

Lipton and Tarjan [14] showed that planar graphs have small separators.

1The goal of PAD is to provide an organized collection of basic parallel algorithms and data structures,

and to investigate the use of the PRAM as a high-level parallel programming model. The experiments so

far are encouraging and many basic PRAM algorithms have been implemented (e.g. pre�x computations,

merge-sort, list ranking, Euler tour, tree contraction, parallel 2-3 trees).

3

Theorem 2.1 (Planar separator theorem) Let G = (V;E) be an n-vertex planar graph

with nonnegative costs on its vertices summing up to one. Then, there exists a separator S

of G which partitions V into two sets V1; V2, such that jSj = O(
p
n) and each of V1; V2 has

total cost at most 2=3.

We shall call such a separator S, a 1

3
-2
3
separator of G. The cost of a subset V 0 of V ,

denoted by wt(V 0), is de�ned as the sum of the costs of the vertices of V 0.

De�nition 2.2 ([5]) A region decomposition of a graph G is a division of the vertices of

G into regions, such that each vertex is either interior, belonging to exactly one region, or

boundary, and shared among at least two regions. For any integer 1 � r � n, an r-division

is a region decomposition of G into �(n=r) regions such that each region has at most c1r

vertices and at most c2
p
r boundary vertices, for some constants c1 and c2.

By recursively applying the planar separator theorem, Frederickson [5] gave a sequential

O(n logn) time algorithm for computing an r-division. Our single-source shortest path

algorithm { like many others, see e.g. [11] { is based on Frederickson's r-division of a planar

graph. An explicit parallel implementation of Frederickson's approach for computing an

r-division, in a speci�c representation necessary for our shortest path algorithm, is given

in Section 4. This implementation is based on recursive applications of the optimal parallel

algorithm of Gazit and Miller [7] for �nding a 1

3
-2
3
separator in a planar graph, whose explicit

implementation is also given.

The other two main subroutines used by our algorithm are: (a) Dijkstra's sequential

algorithm (see for instance [1]). We shall denote a call of the algorithm on a digraph H

with source vertex s as Seq-Dijkstra(s;H). (b) A parallel version of Dijkstra's algorithm [4],

applied to a digraph G0 = (V 0; E 0), and running in time O(m0=p+ n0 logn0) using p � m0=n0

EREW PRAM processors, where n0 = jV 0j and m0 = jE 0j.
The parallelization of Dijkstra's algorithm, called parallel Dijkstra, is straightforward, and

obtained by doing distance label updates in parallel. The idea is as follows. Let each of the

p processors have a private heap supporting insert and decrease-key operations in constant

time, and �nd and delete-min in O(logn) time, all in worst-case [2, 4]. Assume that a vertex

of minimum tentative distance has been selected and broadcast to the p processors before

the start of the next iteration. The adjacency list of the selected vertex is divided into p

equal sized segments, such that the distance labels of the adjacent vertices can be updated

in parallel in O(d=p) time, d being the degree of the selected vertex. Each processor inserts

(or decreases the key of) the vertices it has updated in its private heap, and selects, again

from its private heap, a vertex of minimum distance label. By a pre�x-minimum operation

the processors collectively determine the vertex of globally minimum distance label for the

next iteration. The selected vertex is removed from all the heaps in which it is present,

and the next iteration can start. It is easily veri�ed that the algorithm runs on the EREW

PRAM in the stated time bound, and is work-optimal for p � m0=(n0 logn0). The algorithm

is easy to implement: the heaps are local to each processor, so a sequential implementation

can be reused, the only parallel operation needed being the pre�x-minimum computation.

We shall denote a call of the parallel Dijkstra algorithm on G0 with source vertex s as

Par-Dijkstra(s;G0).

4

It should be noted that any heap (e.g. a binary heap), with O(logn) worst-case time

for any heap operation, su�ces for our purposes. As we shall see in Section 3, the work

performed, O(m0 logn0), by such an implementation of parallel Dijkstra is asymptotically

smaller than the work performed by the other steps of our algorithm (because m0 = O(n)).

3 The planar shortest path algorithm

In this section we present our parallel algorithm for solving the single-source shortest path

problem on a planar digraphG with nonnegative edge weights. We assume thatG is provided

with an r-division (see De�nition 2.2). In Section 4 we will show how such an r-division can

be found.

Let s 2 V be the source vertex. Our algorithm works as follows. Inside every region

compute, for every boundary vertex v, a shortest path tree rooted at v. These single-

source computations are done concurrently using Dijkstra's sequential algorithm. For the

region containing s an additional single-source computation starting at s is performed, if

s is not a boundary vertex. Then, G is contracted to a graph G0 having as vertices the

source vertex s and all boundary vertices of the decomposition of G, and having edges

between any two boundary vertices belonging to the same region (of G) with weight equal

to their distance inside the region (if a path does not exist, the corresponding edge weight

is set to 1). Furthermore, there are edges from s to the boundary vertices of the region

containing s, say R1, with weight equal to their distance from s in R1. In G0 a single-

source shortest computation is performed, using the parallel Dijkstra algorithm, producing

shortest paths from s to all other vertices of G0, that is, to all boundary vertices of G.

Finally, the shortest paths and distances from s to the rest of the vertices in G (i.e. to all

the interior vertices of the regions) are computed in parallel, using for each (interior) vertex

the shortest path information obtained for the boundary vertices of the region it belongs to.

The implementation details of our algorithm follow.

Algorithm Planar single-source shortest path.

Input: A weighted planar digraph G = (V;E), a distinguished source vertex s 2 V , and

an r-division of G into regions Ri, 1 � i � t, t = O(n=r). Let V (Ri) (resp. B(Ri)) be the

vertex set (resp. boundary vertex set) of Ri. Let B =
S
1�i�tB(Ri) be the set of all boundary

vertices and let B(v), for v 2 B, denote the set of regions to which the boundary vertex v

belongs. W.l.o.g. assume that s 2 V (R1). (If s is a boundary vertex, then pick R1 arbitrarily

from the regions to which s belongs.) The r-division is computed by the algorithm given

in Section 4, and is provided with the following information. Each set B(Ri) is represented

as an array, and every interior vertex (i.e. a vertex in V (Ri) � B(Ri)) has a label denoting

the region it belongs to. There is also an array containing all boundary vertices v 2 B, and

for each such v there is an array of length jB(v)j containing the regions for which v is a

boundary vertex. Each boundary vertex u 2 B(Ri) has a pointer to its position in the array

B(u). All adjacent vertices of a boundary vertex v 2 B that belong to the same region are

assumed to form a consecutive segment of vertices in the adjacency list of v. Finally, every

vertex u 2 B(Ri) has two pointers to u's adjacency list, pointing to the �rst and the last

vertex in the (consecutive) segment of vertices that belong to Ri.

5

Remark: The segmentation of the adjacency lists of the boundary vertices allows a processor

to be associated with each boundary vertex of Ri and thus avoiding concurrent read or write

operations in cases where a boundary vertex belongs to many regions.

Output: A shortest path tree in G rooted at s. The shortest path tree is returned in arrays

D[1 : n] and P [1 : n]. The distance from s to v is stored in D[v] and the parent of v in the

shortest path tree is stored in P [v].

Method:

1. Initialization

Comment: We make jB(Ri)j copies of every region Ri. This is needed to avoid concurrent

memory accesses in Step 2. Let Rk
i denote the k-th copy of region Ri which will be associated

with the k-th boundary vertex vki 2 B(Ri). With every v 2 V (Ri), a distance (resp. parent)

array Dv[1 : jB(Ri)j] (resp. Pv[1 : jB(Ri)j]) is associated. For boundary vertex vki 2 B(Ri)

the k-th entry Dv[k] (resp. Pv[k]) will be used when a shortest path from vki to v is computed.

1.01 for all 1 � i � t do in parallel

1.02 for all 1 � k � jB(Ri)j do in parallel

1.03 for all v 2 V (Ri)�B(Ri) do in parallel

1.04 Make a copy of the adjacency list of v and add it to Rk
i ;

1.05 Dv[k] =1; Pv [k] = null;

1.06 od

1.07 for all v 2 B(Ri) do in parallel

1.08 Make a copy of the segment of the adjacent vertices of v belonging to Ri,

and add it to Rk
i ;

1.09 Dv[k] =1; Pv [k] = null;

1.10 od

1.11 od

1.12 od

2. Shortest paths inside regions

Comment: For each boundary vertex vki of Ri, a single-source shortest path problem is

solved in Ri using Dijkstra's sequential algorithm. Each time, during the execution of the

algorithm, if a boundary vertex v
j
i of Ri is selected, then only the segment of its adjacent

vertices belonging to Ri is scanned.

2.01 for all 1 � i � t do in parallel

2.02 for all vki 2 B(Ri) do in parallel

2.03 Run Seq-Dijkstra(vki ; R
k
i);

2.04 od

2.05 od

Comment: After this step, in every region Ri, the distance from each boundary vertex

vki 2 B(Ri) to each u 2 V (Ri) is stored in Du[k], and a pointer to the parent of u in the

shortest path tree rooted at vki is stored in Pu[k].

6

3. Shortest path tree inside R1

Comment: If s is not a boundary vertex, solve the single-source shortest path problem inside

R1 with source vertex s, resulting in a distance (resp. parent) array D1[v] (resp. P 1[v]), for

all v 2 V (R1).

3.01 if s 62 B(R1) then run Seq-Dijkstra(s;R1), resulting in arrays D1[�] and P 1[�];

4. Contract G

Comment: Contract G to a graph G0 having the source vertex s and all boundary vertices

of G as its vertices. For any two boundary vertices vki and v
j
i belonging to the same region

Ri there is an edge in G0 from vki to v
j
i with weight equal to their distance in Ri. If s is not

a boundary vertex, then add edges from s to all boundary vertices of R1 with weights equal

to the distances found in Step 3. The single-source shortest path problem is then solved on

G0 with source s, using the parallel Dijkstra algorithm, resulting in a distance (resp. parent)

array D0[1 : jV 0j] (resp. P 0[1 : jV 0j]), where D0[v] stores the distance from s to v in G0 and

P 0[v] stores a pointer to the parent of v in the shortest path tree in G0 rooted at s. After

this step the distance from s to each boundary vertex of G has been computed.

4.01 V 0 = (
S
1�i�tB(Ri))

Sfsg; E0 = ;;
4.02 for all 1 � i � t do in parallel

4.03 for all pairs vki ; v
j
i 2 B(Ri) do in parallel

4.04 Add edge (vki ; v
j
i) to E

0 with weight equal to D
v
j
i

[k];

4.05 od

4.06 od

4.07 if s 62 B(R1) then

4.08 for all vk
1
2 B(R1) do in parallel

4.09 Add edge (s; vk
1
) to E0 with weight equal to D1[k];

4.10 od

4.11 G0 = (V 0; E0);

4.12 Run Par-Dijkstra(s;G0), resulting in arrays D0[�] and P 0[�];

Comment: The adjacency list representation of E 0 (Steps 4.04 and 4.09) is constructed as

follows. An array of size jB(Ri)j is associated with each boundary vertex vki 2 B(Ri);

the edge (vki ; v
j
i) is stored in the j-th position of this array. Now recall that vertex v = vki

belongs to di�erent regions. Using the array B(v) of the regions to which v belongs, an array

containing the edges of E 0, in which all edges adjacent to v form a consecutive segment, can

be constructed by a pre�x computation. Note that this representation of E 0 may contain

multiple edges, namely in the case where boundary vertices vki and v
j
i both belong to the

same regions, but this does not a�ect neither the correctness nor the complexity of running

the parallel Dijkstra algorithm in Step 4.12. (The latter is true, because every edge in G0

belongs only to one region.) Moreover, each time a pointer P 0[v] is updated, v 2 V 0, we store

together with the parent vertex of v the region to which the edge (P 0[v]; v) belongs. This

allows us in Step 5 to recover the parent pointers for the required shortest path tree in G.

5. Final Step

Comment: A shortest path tree Ts in G rooted at s is now computed as follows.

7

For each interior vertex u 2 V (Ri) � B(Ri), of a region Ri, scan through its distance

array and �nd the boundary vertex vki which minimizes the sum of the distance from s to

vki (as computed in Step 4) and the distance from vki to u (as computed in Step 2). The

parent of u, P [u], in Ts is the parent of u in the shortest path tree in Ri rooted at vki . These

computations, concerning the interior vertices of the regions, are done in Steps 5.10-5.13.

For each boundary vertex vki 2 B(Ri) we look up its parent vlj = P 0[vki] in the shortest

path tree T 0
s in G

0 rooted at s. If the edge (vlj; v
k
i) belongs to Ri (this information was saved

by the parallel Dijkstra algorithm in Step 4), and vlj is not the source vertex, then the s-vki
distance is simply the s-vki distance in G0, and the parent of vki in Ts is the parent of v

k
i in

the shortest path tree in Ri rooted at vlj which is stored in Pvk
i
[l]. Note that if the parent

of vki in T 0
s happens to be the source vertex s, and s is not a boundary vertex, then the

required distance and parent of vki in Ts are those stored in D1[vki] and P 1[vki], respectively,

as computed in Step 3. These computations, concerning the boundary vertices, are done in

Steps 5.14-5.22.

Finally, in the case where s is not a boundary vertex, the distance and parent information

computed so far for the interior vertices in R1 may not be correct, because D[u], for u 2
V (R1) � B(R1), stores the weight of a (shortest) s-u path passing through at least one

boundary vertex and the actual shortest s-u path may stay entirely in R1. This is recti�ed

by updating D[u] (resp. P [u]) to D1[u] (resp. P 1[u]) in the case where D1[u] < D[u]. These

computations, regarding the interior vertices of R1, are done in Steps 5.23-5.27.

A preprocessing step is necessary in order to avoid concurrent memory accesses. To avoid

concurrent reading of the array D0 in Step 5.11, jV (Ri)�B(Ri)j copies of each value D0[vki]

has to be made for each boundary vertex vki (Steps 5.01-5.05). To avoid concurrent reading

of the parent pointers in array P 0 in Step 5.15, a copy of P 0[v] is made for each of the jB(v)j
regions to which the boundary vertex v 2 B belongs (Steps 5.06-5.08).

When Step 5 is completed, distances and parent pointers for all vertices v 2 V are stored

in arrays D[1 : n] and P [1 : n] as required.

5.01 for all 1 � i � t do in parallel

5.02 for all vki 2 B(Ri) do in parallel

5.03 Make jV (Ri)�B(Ri)j copies of D0[vki], and

let D0
u[v

k
i] denote the u-th copy of D0[vki] for u 2 V (Ri)�B(Ri);

5.04 od

5.05 od

5.06 for all v 2 B do in parallel

5.07 Make jB(v)j copies of P 0[v], and let P 0
i [v] denote the copy of P 0[v] for region Ri;

5.08 od

5.09 for all 1 � i � t do in parallel

5.10 for all u 2 V (Ri)�B(Ri) do in parallel

5.11 D[u] = minvk
i
2B(Ri)

fD0
u[v

k
i] +Du[k]g;

5.12 P [u] = Pu[k];

5.13 od

5.14 for all vki 2 B(Ri) do in parallel

5.15 Let vlj = P 0
i [v

k
i];

5.16 if edge (vlj ; v
k
i) belongs to Ri then

8

5.17 if vlj = s and s 62 B(R1) then

5.18 D[vki] = D1[vki]; P [v
k
i] = P 1[vki];

5.19 else

5.20 D[vki] = D0[vki]; P [v
k
i] = Pvk

i
[l];

5.21 od

5.22 od

5.23 if s 62 B(R1) then

5.24 for all u 2 V (R1)�B(R1) do in parallel

5.25 if D1[u] < D[u] then

5.26 D[u] = D1[u]; P [u] = P 1[u];

5.27 od

End of algorithm.

Theorem 3.1 The single-source shortest path problem in an n-vertex planar digraph, with

nonnegative edge weights, can be solved in O((r+n=
p
r) logn) time using O(n

p
r logn) work

on the EREW PRAM.

Proof. We �rst argue about the correctness of the algorithm. We claim that the shortest

paths from s to all boundary vertices in G have been correctly computed after Step 4. A

shortest s-v path in G, where v is a boundary vertex, consists of a sequence of shortest

subpaths each one belonging to a region of G. A path can enter and leave a region R

only through the boundary vertices of R. Hence, computing shortest paths between any

two boundary vertices v1; v2 in R and then substituting the shortest v1-v2 path in R by

an edge (v1; v2) with weight equal to their distance in R, resulting in graph G0, preserves

shortest paths from s to every boundary vertex in G. But these are exactly the shortest

paths computed in Step 4, and hence the claim is true.

We now claim that Step 5 computes correct shortest paths from s to every vertex in G.

This is true for the boundary vertices, as shown above, except for the updating of the parent

pointers whose correctness can be easily veri�ed by the description of Step 5. Now, let u be

an interior vertex of a region R. Clearly, to �nd the shortest s-u path in G, it su�ces to �nd

the boundary vertex v of R which minimizes the sum of the s-v distance in G (computed

correctly in Step 4) and the v-u distance in R (computed in Step 2). (If s is a boundary

vertex, then for some regions the former distance is zero.) This is exactly the computation

performed in Steps 5.09-5.22. A special handling must be done in the case where s, belonging

to region R1, is not a boundary vertex of R1. Then, it can be easily veri�ed that the shortest

s-u path, where u is an interior vertex of R1, either stays entirely in R1, or passes through

at least one boundary vertex of R1. The former path is computed in Step 3, while the latter

one in Steps 5.09-5.22, as described above. Clearly, the path of minimum weight between

these two paths is the required shortest s-u path in G. This computation is performed by

Steps 5.23-5.27. Hence, the (second) claim is also true.

From the description of the algorithm, it is clear that all steps can be done without con-

current read or write. The complexity of the algorithm is as follows. In Step 1, O(
p
r) copies

of O(r) edges are made within each region, using a pre�x computation. Hence, Step 1 takes

O(logn) time and O(n
p
r) work. The shortest path computations in Step 2 take O(r log r)

9

time and require O(n
p
r log r) work. One additional single-source shortest path computation

may be be needed in Step 3 taking O(r log r) time. The contraction of the graph in Step 4

results in a graph of O((n=r)
p
r) = O(n=

p
r) vertices and O((

p
r)2(n=r)) = O(n) edges, on

which the single-source shortest path problem is solved in parallel in O((n=
p
r) logn) time

and O(n logn) work, using the parallel Dijkstra algorithm. Finally, in Step 5, copying the

D0 values takes O(n
p
r) work, and copying the P 0 values takes O(n=

p
r) work, since the

total size of the lists B(v) is O(n=
p
r); both copying operations take O(logn) time. The re-

mainder of Step 5 can be done in constant time and O(n) work. Hence, the total time taken

by the algorithm isO(r log r+(n=
p
r) logn), and the total work performed isO(n

p
r logn). 2

By letting r = n2�, for any 0 < � < 1=2, we have:

Theorem 3.2 On an n-vertex planar graph the single-source shortest path problem can be

solved in O(n2� logn+ n1�� logn) time and O(n1+� logn) work.

Choosing either � = 1=4 or � = 1=3 we get:

Corollary 3.1 On an n-vertex planar graph the single-source shortest path problem can be

solved in O(n3=4 logn) time and O(n5=4 logn) work, or in O(n2=3 logn) time and O(n4=3 logn)

work.

The work bound of the above results can be improved by a logarithmic factor, if we sub-

stitute the calls of the sequential Dijkstra algorithm in Step 2 with the linear-time algorithm

for planar digraphs [11].

Corollary 3.2 On an n-vertex planar graph the single-source shortest path problem can be

solved on an EREW PRAM (i) in O(n2� logn + n1�� logn) time and O(n1+�) work; (ii)

O(n3=4 logn) time and O(n5=4) work; (iii) in O(n2=3 logn) time and O(n4=3) work.

4 Obtaining the region decomposition in parallel

In this section we present an explicit EREW PRAM implementation of the algorithm in

[5] for �nding an r-division of a planar graph G. The main procedure is an algorithm for

�nding a separator in G. A simple and optimal parallel algorithm for the latter problem was

given by Gazit and Miller [7]. Their algorithm is a clever parallelization of the sequential

approach by Lipton and Tarjan [14], and runs in O(
p
n logn) time using O(n) work on a

CRCW PRAM.

We start by giving the implementation on an EREW PRAM of the algorithm in [7],

running in O(
p
n logn) time and performing O(n logn) work. We also include a proof of

correctness by reproving and simplifying some lemmata used in [7]. Then, in Section 4.2, we

give the implementation of the algorithm for �nding the r-division. (For simplicity, we relax

in the following the constant in the size of the separator.)

10

4.1 The Gazit-Miller separator algorithm

In order to better understand how the Gazit-Miller algorithm works, we have to recall the

Lipton-Tarjan approach.

Let G = (V;E) be an embedded planar graph. The Lipton-Tarjan algorithm starts

by choosing an arbitrary vertex s 2 V and then performing from s a BFS (breadth �rst

search) in G. The vertices of V are assigned a level numbering (with s having level 0)

w.r.t. the level they belong to in the BFS tree constructed. Let V (`) be the set of vertices

at level `. The crucial property of BFS is that every V (`) is a separator of G. Let `1
be the middle level, i.e. wt(

S
`<`1 V (`)) < 1=2, but wt(

S
`�`1 V (`)) � 1=2. Consequently,

wt(
S
`>`1 V (`)) < 1=2. If jV (`1)j = O(

p
n), then the algorithm stops since V (`1) is clearly

the required separator. Otherwise, there are levels `0 � `1 (�rst cut) and `2 > `1 (last

cut) such that jV (`0)j �
p
n, jV (`2)j �

p
n, `2 � `0 �

p
n, and `0 (resp. `2) is the largest

(resp. smallest) such level. Removal of the �rst and last cuts partitions V into three sets:

A =
S
`<`0 V (`), B =

S
`0<`<`2 V (`), and C =

S
`>`2 V (`). If wt(B) � 2=3, then the required

separator is S = V (`0) [V (`2), V1 is the largest of A;B;C, and V2 is the union of the

remaining two (smaller) sets. However, if wt(B) > 2=3, then B has to be further split. Since

wt(A) + wt(C) < 1=3, it su�ces to �nd a separator S 0 of B with O(
p
n) vertices such that

each part into which B is separated has cost at most 2=3. For if we have it, then the required

separator S is V (`0) [V (`2) [S 0 and jSj = O(
p
n), V1 is the larger part of B, and V2 is the

union of A;C and the smaller part of B. Clearly, both V1 and V2 will have cost at most 2=3.

To construct S 0, remove from G all vertices in A and C (along with their incident edges)

and add to the resulting graph the vertex s with edges from s to all vertices in V (`0 + 1).

Call the new graph GB. The crucial property that gives the required size for S 0 is that GB

has a spanning tree T of diameter � 2
p
n. Let ET be the edges of T and let E�

T be their

corresponding dual edges in the dual graph G�
B = (V �

B; E
�
B) of GB. Then, the set of edges

E�
B�E�

T (i.e. the duals of the non-tree edges of T) form a spanning tree of G�
B. By observing

that every non-tree edge e = (u; v) of T forms a cycle, say C(e), with the unique u-v path in

T and by working on T �, we can compute for each C(e) its size as well as the total cost of

the vertices which are strictly inside C(e). This information can be computed in O(n) time

by performing a bottom-up traversal of T �. It is not hard to see that there exists a cycle

C(e) which is the required separator S 0.

The di�culty in parallelizing the above approach is the computation of the BFS tree

rooted at (an arbitrary vertex) s: either one has to pay in time (O(n)) resulting in a parallel

algorithm with actually no speedup, or one has to pay in work (close to O(n3)) which

makes the parallel algorithm highly work-ine�cient. In order to avoid the expensive BFS

computation, Gazit and Miller proposed a di�erent partitioning of V into levels. Their

approach is summarized as follows: perform a normal BFS, but if at some level there are

only a few vertices then \augment" its size by adding more vertices into it. This so-called

augmented BFS must be done in a way such that all augmented levels are connected between

them, otherwise GB may not have a small diameter. Connectedness is achieved by taking

augmentation vertices in preorder from a spanning tree of G.

By the description of Lipton-Tarjan algorithm, it su�ces to �nd the levels `0 (�rst cut),

`1 (middle level) and `2 (last cut). The problem of �nding a separator S 0 in GB can be

11

solved by choosing one of the following approaches: (a) a straightforward parallelization of

the Lipton-Tarjan approach which takes O(
p
n) time and O(n) work, since T and T � have

depth O(
p
n); (b) a fast parallelization of approach (a) in O(logn) time and O(n) work using

parallel tree contraction [9]; (c) the approach described in [15] and which also takes O(logn)

time and O(n) work. For our purposes, the approach (a) is the most appropriate.

Hence, the bulk of the work in the Gazit-Miller algorithm is the computation of the

three levels `0; `1 and `2. (Note that these levels may not be the same as those computed

by the Lipton-Tarjan algorithm; however, they will have the same crucial properties.) The

implementation details of the algorithm follow.

Algorithm Gazit-Miller.

Input: Embedded planar graph G = (V;E) with nonnegative costs on its vertices

summing up to one.

Output: A partition of V into three sets V1; V2; S, such that S is a separator of G,

jSj = O(
p
n) and each of V1; V2 has total cost at most 2=3.

Method:

1. Run the Initialization Phase;

2. Run Phase A;

3. if jV (`1)j � 4
p
n then stop

else run Phase B;

4. if wt(VB) � (2=3) then stop

else �nd a 1

3
-2
3
separator in GB;

End of algorithm.

In view of the preceding discussion, it su�ces to describe the implementation of the three

phases in the �rst three steps of the algorithm. The Initialization Phase is as follows:

Initialization Phase:

1. Initialize arrays A[1 : n] and A0[1 :
p
n];

2. Find a spanning tree T of G rooted at an arbitrary vertex s;

3. Compute the preorder numbering, pre(�), of the vertices in T ;

4. for all v 2 T do in parallel A[pre(v)] = v;

End of Initialization Phase.

In Step 4 of the Initialization Phase, the vertices of G are stored into an array A

w.r.t. their preorder number. In the following, A will be used as a stack data structure.

Lemma 4.1 The Initialization Phase of Gazit-Miller algorithm runs in O(log2 n) time

using O(n logn) work on an EREW PRAM.

Proof. It is clear that Step 1 can be done in O(logn) time and O(n) work, while Step 4

in O(1) time and O(n) work. Step 3 takes O(logn) time and O(n) work, using parallel tree

contraction [9]. Step 2 takes O(log2 n) time and O(n logn) work using the (very simple)

algorithm of [16]. (Note that for the latter step, there exists an O(logn log� n)-time, O(n)-

work EREW PRAM algorithm [8]; however, this algorithm does not seem to be as simple as

the algorithm of [16].) 2

Phase A �nds levels `0 and `1 and is implemented as follows.

12

Phase A:

01. ` = 0; V (0) = fsg;
02. while wt(

S
`0<` V (`

0)) < 1=2 do (* main loop *)

03. next-level(`; V (`));

04. ` = `+ 1; j = 2`+ 1; (* Now ` represents the next level *)

05. while jV (`)j < j do (* augment level ` *)

06. Pop the top
p
n elements from A and store them temporarily

into an array A0;

07. Mark in A0 those vertices that belong to any level i < `;

08. Using a parallel pre�x computation, remove the marked vertices from A0

and count the number, R, of the remaining vertices;

09. � = minfj � jV (`)j; Rg;
10. Add the �rst � elements of A0 to V (`) and push the

remaining R� � to the top of A;

11. od (* augment level ` *)

12. if jV (`)j = j then `0 = `;

13. od (* main loop *)

14. `1 = `;

End of Phase A.

The procedure next-level is a straightforward parallelization of one BFS step.

Procedure next-level(`; V (`))

1. V (`+ 1) = V (`);

2. Replace every u 2 V (`+ 1) by the list of its adjacent vertices;

3. Remove from V (`+ 1) all vertices belonging to any level i < `+ 1,

using a parallel pre�x computation;

4. Remove all duplicate vertices, using sorting;

End of procedure.

Lemma 4.2 Phase A of Gazit-Miller algorithm runs in O(
p
n logn) time using O(n logn)

work on an EREW PRAM.

Proof. We �rst argue about the correctness of Phase A. We claim that for any 0 � ` � `1,

the subgraph induced on
S
0�i�` V (i) is connected: a vertex v is added in V (i), 0 < i � `,

either after the execution of the next-level procedure and hence it is adjacent to a vertex

in V (i � 1) (in which case the claim is true), or v has been picked from the array A. The

fact that the vertices in A are stored w.r.t. their preorder number in T and that v 2 V (i)

imply that all vertices with smaller preorder number than v are already in
S
0�j�i V (j), and

hence v is adjacent to at least one vertex in
S
0�j�i V (j) (i.e. its parent in T). Note also that

due to Step 07 there is no edge that crosses two or more levels implying that every V (`) is

a separator.

The total number of vertices at the end of Phase A are jS0�`�`1 V (`)j � 1 +
P`1

`=1(2`+

1) = (`1 + 1)2. On the other hand, jS0�`�`1 V (`)j = k � n. Consequently, the total number

of levels, `1, computed in Phase A is at most
p
k � 1 <

p
n. This also implies that

jV (`0)j = 2`0 + 1 � 2
p
k � 1 < 2

p
n, and from the description of the algorithm it is clear

that this is the largest such level `0.

13

Let us now discuss the resource bounds of Phase A. We claim that the total number

of iterations of the main-loop is bounded by 2
p
n. To see this, it su�ces to show that the

inner while-loop (augment level) is executed at most 2
p
n times overall executions of the

main-loop. Consider an iteration of the inner while-loop and call it proper if R < j� jV (`)j.
Clearly, there are at most

p
n proper iterations in total. On the other hand, observe that a

non-proper iteration is always the last iteration of the inner while-loop and as a consequence

V (`) has the required size. Since the total number of levels is <
p
n, the total number of

non-proper iterations is also <
p
n. Hence, the claim is true.

It is easy to verify that the dominating step (w.r.t. the resource bounds) in every iteration

is the execution of procedure next-level which takes O(logn) time and O(jN(V (`))j logn)
work on an EREW PRAM, where N(V (`)) = fu : (u; v) 2 E and v 2 V (`)g. Consequently,
Phase A runs in O(

p
n logn) time using O(n logn) work on an EREW PRAM. 2

Phase B of Gazit-Miller algorithm computes level `2 and is implemented as follows.

Phase B:

1. ` = `1; k = jS
0�i�`1

V (i)j; j =
p
n� k;

2. while jV (`)j > j do

3. next-level(`; V (`));

4. ` = `+ 1; j = j � 2;

5. od

6. `2 = `;

End of phase B.

Lemma 4.3 Phase B of Gazit-Miller algorithm runs in O(
p
n logn) time using O(n logn)

work on an EREW PRAM.

Proof. First observe that every V (`), ` > `1, is a separator, because it is a level created

by normal BFS (Step 3). It is clear that the total number of iterations, `2, in Phase

B is bounded by
p
n� k. Moreover, note that such a level `2 exists (i.e. the while-loop

terminates), since otherwise jV (`)j > j, for all ` > `1, and consequently jS`>`1 V (`)j > n�k,
a contradiction. Therefore, `2 � `0 �

p
k +

p
n� k �

p
2n. Hence, GB has (a spanning

tree of) diameter at most 2
p
2n. Moreover, jV (`2)j = `2 � 2 <

p
n and from the description

of the algorithm it is clear that this is the smallest such level `2. Hence, the correctness is

established.

The resource bounds follow from the fact that `2 <
p
n and the resource bounds of exe-

cuting procedure next-level (see Lemma 4.2). 2

The following theorem is an immediate consequence of the preceding discussion and

Lemmata 4.1, 4.2 and 4.3.

Theorem 4.1 Let G = (V;E) be an n-vertex planar graph with nonnegative costs on its

vertices summing up to one. Then, a partition of V into three sets V1; V2; S, such that S is a

separator of G, jSj = O(
p
n), and each of V1; V2 has total cost at most 2=3, can be computed

in O(
p
n logn) time using O(n logn) work on an EREW PRAM.

14

4.2 The parallel algorithm for �nding an r-division

The algorithm for �nding an r-division of a planar graph G = (V;E), in the form required by

the planar single-source shortest path algorithm (Section 3), is given below. The algorithm

is based on recursive applications of Theorem 4.1.

Algorithm Parallel r-division.

Input: Planar graph G = (V;E), parameter r and constants c1; c2.

Output: An r-division of G.

Method:

(* Initialization *)

1. R = G; B(R) = ;; B = ;;

(* Main Part *)

2. if jV (R)j > c1r then

run the Gazit-Miller algorithm on R with vertex cost 1

jV (R)j
,

yielding partition V1(R); V2(R) and S(R)

else

if jB(R)j > c2
p
r then

run the Gazit-Miller algorithm on R with vertex cost 0

for each v 2 V (R)�B(R) and vertex cost 1

jB(R)j

for each v 2 B(R), yielding partition V1(R); V2(R) and S(R)

else stop;

3. Infer regions Ri, i = 1; 2, induced on vertex set V (Ri) = Vi(R) [S(R)

and having boundary vertex set B(Ri) = (B(R) \ Vi(R)) [S(R);

4. B = B [B(R1) [B(R2);

5. Using a parallel pre�x computation, split the adjacency list of each v 2 B(R)

into two parts, one containing the neighbors of v belonging to R1,

and the other the neighbors of v belonging to R2;

6. For v 2 B(Ri), i = 1; 2, create pointers to the beginning and the end of

the segment of the neighbors of v that belong to V (Ri);

7. Run the Main Part recursively on each Ri, i = 1; 2;

8. Create for each v 2 B the array B(v) of regions to which v belongs,

using a parallel pre�x computation in the segmented adjacency list of v;

9. For all regions R0, and for each v 2 B(R0), create a pointer to the position of R0 in B(v);

End of algorithm.

Theorem 4.2 An r-division of an n-vertex planar graph G can be computed in O(
p
n log2 n)

time using O(n log2 n) work on an EREW PRAM.

Proof. The correctness can be easily veri�ed from the description of the algorithm (see also

[5]). Concerning the resource bounds, it can be easily checked that Steps 3, 4, 5, and 8 need

O(logn) time and O(n) work, while Steps 6 and 9 can be done in O(1) time and O(n) work.

The dominating step for the resource bounds is Step 2, whose bounds follow from those of

Theorem 4.1 and the fact that the depth of the recursion is O(logn). 2

Note that both time and work required to �nd the r-division is within that of the shortest

path algorithm (Theorem 3.2).

15

5 Final remarks

We presented a sublinear-time, work-e�cient parallel algorithm for the single-source shortest

path problem on planar digraphs. We believe that the main advantage of our algorithm is

its simplicity and ease of implementation. The improvement in the work is based on a

suitable choice of the parameters in the region decomposition which reduced the problem to

computing a small collection of local shortest path information (inside every region) and then

using this in computing global shortest path information from the source to every boundary

vertex in the original graph. Coming down to linear work seems to be di�cult, however.

It has tacitly been assumed that the input to the separator algorithm is a planar graph

with an embedding. This of course begs the question of the existence of a parallel planarity

testing and embedding algorithm, or of a parallel separator algorithm not requiring an em-

bedding as part of the input. We are not aware of any parallel algorithm for the latter

case. Work-e�cient, NC algorithms for the former case have been given in [12, 17], but

neither of these algorithms seems to be easily implementable. Designing a simple, easily

implementable, parallel algorithm for planarity testing and embedding is an interesting open

problem.

Acknowledgement. We are grateful to Hillel Gazit for providing us with [7].

References

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows. Prentice-

Hall, 1993.

[2] Gerth St�lting Brodal. Worst-case e�cient priority queues. In Proc. 7th ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 52{58, 1996.

[3] Edith Cohen. E�cient parallel shortest-paths in digraphs with a separator decomposi-

tion. In Proc. 5th Symposium on Parallel Algorithms and Architectures (SPAA), pages

57{67, 1993.

[4] James R. Driscoll, Harold N. Gabow, Ruth Shrairman, and Robert E. Tarjan. Relaxed

heaps: An alternative to Fibonacci heaps with applications to parallel computation.

Communications of the ACM, 31(11):1343{1354, 1988.

[5] Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs with appli-

cations. SIAM Journal of Computing, 16(6):1004{1022, 1987.

[6] Michael L. Fredman and Robert E. Tarjan. Fibonacci heaps and their uses in improved

network optimization algorithms. Journal of the ACM, 34(3):596{615, 1987.

[7] Hillel Gazit and Gary L. Miller. An O(
p
n log(n)) optimal parallel algorithm for a

separator for planar graphs. Unpublished manuscript, 1987.

16

[8] Torben Hagerup. Optimal Parallel Algorithms for Planar Graphs. Information and

Computation, 84:71-96, 1990.

[9] Joseph J�aJ�a. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

[10] Christoph W. Kessler and Jesper L. Tr�a�. A library of basic PRAM algorithms and

its implementation in FORK. In Proc. 8th Symposium on Parallel Algorithms and

Architectures (SPAA), to appear, 1996.

[11] Philip Klein, Satish Rao, Monika Rauch, and Sairam Subramanian. Faster shortest-

path algorithms for planar graphs. In Proc. 26th Symposium on Theory of Computation

(STOC), pages 27{37, 1994.

[12] Philip N. Klein and John H. Reif. An e�cient parallel algorithm for planarity. Journal

of Computer and System Sciences, 37:190{246, 1988.

[13] Philip N. Klein and Sairam Subramanian. A linear-processor, polylog-time algorithm for

shortest paths in planar graphs. In Proc. 34th Symposium on Foundations of Computer

Science (FOCS), pages 259{270, 1993.

[14] Richard J. Lipton and Robert Endre Tarjan. A separator theorem for planar graphs.

SIAM Journal on Applied Mathematics, 36(2):177{189, 1979.

[15] Gary L. Miller. Finding small simple cycle separators for 2-connected planar graphs.

Journal of Computer and System Sciences, 32:265{279, 1986.

[16] Cynthia Phillips. Parallel graph contraction. In Proc. 1st Symposium on Parallel Algo-

rithms and Architectures (SPAA), pages 148{157, 1989.

[17] Vijaya Ramachandran and John H. Reif. Planarity testing in parallel. Journal of

Computer and System Sciences, 49(3):517{561, 1994.

17

