Contextual Rewriting

Christoph Weidenbach
Patrick Wischnewski

MPI-1-2009-RG1-002 March 2009

Authors’ Addresses

Christoph Weidenbach
Max-Planck-Institut fiir Informatik
Campus E1 4

66123 Saarbricken

Germany

Patrick Wischnewski
Max-Planck-Institut fiir Informatik
Campus E1 4

66123 Saarbriicken

Germany

Publication Notes

This report is a preliminary version of an article intended for publication
elsewhere.

Abstract

Sophisticated reductions are of particular importance for progress in auto-
mated theorem proving. We consider the powerful reduction rule Conteztual
Rewriting in connection with the superposition calculus. If considered in
its most general form the applicability of contextual rewriting is not decid-
able. We develop an instance of contextual rewriting where applicability
becomes decidable while preserving a great deal of its simplification power.
A sophisticated implementation of the rule in SPASS reveals its application
potential. Our contextual rewriting instance is feasible in the sense that it
can be executed on the overall TPTP resulting in a gain of solved problems
and new solutions to a number of problems that could not be solved by
theorem provers so far.

Keywords

Rewriting, Contextual Rewriting

Contents

1

2

Introduction
Contextual Rewriting

Implementation
3.1 Integration of Unit and Non-Unit Rewriting . . .
3.2 Fault Caching

Results

4.1 Results on the TPTP
4.1.1 Integrated Unit and Non-Unit Rewriting .
4.1.2 Fault Caching

4.2 Application to the Example from the Introduction

Summary

12
16
18

20
20
21
21
23

25

1 Introduction

In the superposition context, first-order theorem proving with equality deals
with the problem of showing unsatisfiability of a finite set N of clauses. This
problem is well-known to be undecidable, in general. It is semi-decidable in
the sense that superposition is refutationally complete. The superposition
calculus is composed of inference and reduction rules. Inference rules gen-
erate new clauses from N whereas reduction rules delete clauses from N or
transform them into simpler ones while deleting the ancestors. If, in partic-
ular, powerful reduction rules are available, decidability of certain subclasses
of first-order logic can be shown and explored in practice [4, 16, 17, 12, 11].
Hence, sophisticated reductions are of particular importance for progress in
automated theorem proving. In this paper the reduction rule Contextual
Rewriting is considered in combination with the superposition calculus [2].
Contextual rewriting extends rewriting with unit equations to rewriting with
full clauses containing a positive orientable equation. In order to apply such
a clause for rewriting, all other literals of that clause have to be entailed by
the context of the clause to be rewritten and potentially further clauses from
a given clause set N. Hence, the name contextual rewriting.
For a first, simple example consider the two clauses

P() = f(r)~z S(g(a)),an b P(b) = R(f(a))

where we write clauses in implication form [29]. Now in order to rewrite
R(f(a)) in the second clause to R(a) using the equation f(x) =~ x of the
first clause with matcher 0 = {z — a}, we have to show that P(x)o holds
in the context of the second clause S(g(a)),a =~ b, P(b), i.e., = S(g(a)),a =~
b, P(b) — P(xz)o. This obviously holds, so we can replace S(g(a)),a =~
b, P(b) = R(f(a)) by S(g(a)),a ~ b, P(b) — R(a) via a contextual rewriting
application of P(z) — f(z) =~ =.
More general, contextual rewriting is the following rule:

D=T) > A,s~t C = (Ty — Ay)[u[so] = v]
ry — AI; st
(Ty — Ay)[ulto] =~ v]

R

where (I'y — Ay)[u[so] & v] expresses that u[so| &~ v is an atom occurring in
[’y or Ay and u contains the subterm so. Contextual rewriting reduces the
subterm so of u to to if, among ordering restrictions, the following conditions
are satisfied

Ne =Ty — Afor all Ain o
Ne = A — Ay forall Ain Ajo

where N is the current clause set, C, D € N, and N¢ denotes the set of
clauses from N smaller than C with respect to a reduction ordering <, total
on ground terms. Reduction rules are labeled with an R and are meant to
replace the clauses above the bar by the clauses below the bar. Both side
conditions are undecidable, in general. Therefore, in order to make the rule
applicable in practice, it must be instantiated such that eventually these two
conditions become effective. This is the topic of this paper.

For a more sophisticated, further motivating example, consider the follow-
ing clause set. It can be finitely saturated using contextual rewriting but not
solely with less sophisticated reduction mechanisms such as unit rewriting or
subsumption.

Let 7, g, r, f be functions, a, b be constants and xq, x5, x3, x4, y; be
variables and let r > f > ¢ > ¢ > b > a > nil using the KBO with weight 1
for all function symbols and variables.

I: — q(nil) ~
2: i(r1) = b,q(yn) = b — q(r(z,p)) = b
3: i(x1) = b,q(yn) = b — q(f(z1,11)) =a
4: i(x1) = b,q(y)) = byi(xs) b —

r(zs, flz,m) = flar(zs, g)
5: i(xy) = byi(xs) = bi(za) = b,q(y1) = bb~a —

yi =~ nil, q(f(z1, f(2o,7(23,91)))) = b
If we apply superposition right between clause 4 and clause 5 on the term

q(f(x1, f(ze,r(x3,91)))) we obtain the clause
6: i(w1) ~ b,i(w3) ~ b,i(x2) = b,i(xg) = b,q(y1) =~ b, q(f(xs,y1)) = b,b~a —
fra,y1) =~ nil, q(f (21, f(zo, f(2a,7(23,91))))) = b
which is larger (both in the ordering and the number of symbols) than
clause 5. Applying superposition between clause 4 and clause 6 yields an even
larger clause. Repeating the superposition inference between clause 4 and

these clauses creates larger and larger clauses. All those clauses cannot be
simplified by unit rewriting and are not redundant with respect to subsump-
tion [29]. Hence, the exhaustive application of the superposition calculus
does not terminate on this clause set. Furthermore, none of the reductions
which have been implemented so far in SPASS and in any other system we
are aware of, can reduce clause 5. However, with contextual rewriting we can
reduce clause 5 using clause 3 to

Toi(z) & byi(xs) = bi(z2) = b,q(yh) = bbx~a— y = nil,a = b.

Clause 7 is a tautology and can be reduced to true. Then the set is
saturated since no further superposition inference is possible. In order to
apply contextual rewriting to clause 5 using clause 3 we have to verify the
side conditions

Neo Ei(xy) = byi(xs) = bi(xs) = b,q(yy) ®b,b~a—i(r)) ~b
and

Ne¢ = i(xy) = b,i(z3) ~ b,i(xs) = b,q(yr) ~ b, b~ a—
Q(f(l‘g,’r(l'g, yl))) ~ b

The first condition holds trivially and the latter follows from clause 3
and clause 2 which are both smaller than clause 5. For more details see
Section 4.2. This example already shows that the class of clause sets that
can be finitely saturated with contextual rewriting is strictly larger than the
class of clause sets that can be finitely saturated by unit rewriting, non-unit
rewriting or local contextual rewriting [29, 30].

Contextual rewriting was first implemented in the SATURATE system [20,
13] but never matured. It turned out to be very useful for a bunch of exam-
ples, but the rule has to be turned off in general, because often the provers
does not return in reasonable time from even a single contextual rewriting
application test. This is partly due to a straight forward naive implementa-
tion, compared to the techniques presented in our paper, and a more general
setting where the ordering constraints of the rule are not a priori calculated
but inherited through ordering constraints.

In this work we present an instance of contextual rewriting that is useful,
e.g., it reduces the above clause set, its application is decidable and it is also
feasible in practice. We tested our implementation on all problems of the
TPTP library version 3.2.0 [27]. Compared to our first implementation of
the rule [32] the results of this paper lead to a performance where we win
significantly more problems on the overall TPTP than we lose while keeping

the positive results on hard problems. In particular, we solve 6 problems
from the TPTP that no other reported system could solve before. The gained
performance is due to a tight incorporation of contextual rewriting with unit
and non-unit rewriting and a new caching technique (Chapter 3).

The paper is now organized as follows. In Section 2 we develop our
instance of contextual rewriting and present its implementation in SPASS in
Section 3. The final section, Section 4, discusses experimental results, both
on the TPTP and on the above example.

2 Contextual Rewriting

We consider first-order logic with equality using notation from [29]. We write
clauses in the form I' — A where I and A are multi-sets of atoms. The atoms
of I denote negative literals while the atoms of A denote the positive literals.
A substitution ¢ is a mapping from the set of variables to the set of terms
such that xo # x for only finitely many variables x. The reduction rules, in
particular the contextual rewriting rule, are defined with respect to a well-
founded reduction ordering < on terms that is total on ground terms. This
ordering is then lifted to literals and clauses in the usual way [29]. A term
s is called strictly mazimal in I' — A if there is no different occurrence of a
term in I' — A that is greater or equal than s with respect to <.

Contextual rewriting is a sophisticated reduction rule originally intro-
duced in [2] that generalizes unit rewriting and non-unit rewriting [29]. It is
an instance of the standard redundancy notion of superposition. A clause C
is called redundant in a clause set N if there exist clauses C,....C, € N
with C; < C for i € {1,...,n}, written C; € N¢, such that Cy,...,C, E C.
The clause C' is implied by smaller clauses from /N. This condition can actu-
ally be refined to grounding substitutions: C' is redundant if for all grounding
substitutions o for C' there are ground instances C;o; of clauses C; € N such
that C;o; < Co, written C;o; € N¢,, and Cyo4,...,Cho, = Co. Reduction
rules are marked with an R and their application replaces the clauses above
the bar with the clauses below the bar.

Definition 1 (Contextual Rewriting [2]) Let N be a clause set, C, D €
N, o be a substitution then the reductions

D=T,—A,s~t C =Ty, u[so] = v — Ay
Fl—)Al,S%t
C'=Tyulto] = v — Ay

R

D=T; > A;,s~t C =Ty — Ay, ulso] = v
F1—>A1,S’R‘Jt
C'=Ty — Ay, ufto] = v

R

where the following conditions are satisfied
1. so = to
2. C > Do
3. Ne ETy — A forall A inTio
4. Noc EA— Ay forall Ain Ao
are called contextual rewriting.

Due to condition 1-1 and condition 1-2 we have C' < C' and Do < C.
Then from condition 1-3 and condition 1-4 we obtain that there exist clauses
Ci,...,C, € N¢ and C,...,C,,C' Do = C. Therefore, the clause C is
redundant in N U {C"} and can be eliminated. The rule is an instance of the
abstract superposition redundancy notion.

The side conditions 1-3 and 1-4 having both the form No =T — A are
undecidable, in general. There are two obstacles deciding the side conditions
Ne E T — A. First, there are infinitely possible grounding substitutions
o' for the clauses I' = A and C. Second, even for a given o' there may be
infinitely many ground substitutions § with C;0 < Co’, C; € N, e.g., if <
is the lexicographic path ordering (LPO). Therefore, in order to effectively
decide the side conditions, in the following we will fix one ¢’ and restrict the
number of considered substitutions 0 to a finite number yielding a decidable
instance of contextual rewriting.

First, N¢ = — A is equivalent to Nc U{3zy,...,2,~([- A)} = L
where the x; are the variables of I' — A. The existential quantifier can be
eliminated by Skolemization yielding a Skolem substitution 7 that maps any
x; to a new Skolem constant. Consequently, setting ¢’ to 7 yields the instance
N¢ = (I' = A)7, where (I' = A)7 is ground. Still there may exist infinitely
many 0 with C;0 < Ct, C; € N. Furthermore, Ct may still contain variables
as the literal u[so] &~ v of C may contain variables that do not occur in I'y,
As.

Therefore, we restrict ¢ to those grounding substitutions that map vari-
ables to terms only occurring in C'7 or Dot where we additionally assume
that 7 is also grounding for C' and Do, i.e., it maps any variable occurring
in C' or Do to an arbitrary fresh Skolem constant. Let N277 be the set of all

7

ground instances of clauses from N smaller than C't obtained by instantiation
with ground terms from Do7,C7. Then N2°T is finite and NJ°™ C N, .
Consequently, N2°7 |= (I' — A)7 is a sufficient ground approximation of
Ne¢ E T — A. Even though this is a decidable approximation of the orig-
inal problem the set N2 is exponentially larger than N, in general. In
particular, the set typically already gets so large that an instantiation based
theorem proving approach does not work out deciding N2°™ = (I' — A)r.
For example, the rewriting step from the example in the introduction con-
tains already more than 20 different ground terms out of the clause
i(c1) & b,i(c3) & b,i(ce) = b,i(cs) = b,q(cs) =~ b,q(f(cs,c5)) =b,bx~a —
f((34, (35) ~ nil, q(f(cla f(CQa f((34,’l“((33, 65))))) ~b

where the ¢; are the freshly introduced Skolem constants. Recall that N is
not the input clause set but the set of all clauses generated in the course
of a saturation and can thus consists of several (hundred) thousand clauses.
The side condition NJ°7 is typically tested several 10 thousand times for
a problem with potential contextual rewriting applications, even with re-
spect to the refinements that we will introduce in the sequel. Therefore, we
represent N2 implicitly by approximating N2 = (I — A)7 by the appli-
cation of a recursively defined redundancy redundancy called ground subterm
redundant. A clause is ground subterm redundant, if it can be reduced to
true by the reduction rules tautology reduction, forward subsumption, obvious
reduction and a particular instance of contextual rewriting called recursive
contextual ground rewriting defined below. Tautology reduction reduces syn-
tactic and semantic tautologies to true whereas forward subsumption reduces
subsumed clauses to true. Obvious reduction eliminates trivial literals [29].
Ground subterm redundancy is shown in Algorithm 1 and explained in detail
in the next Chapter 3.

Ground subterm redundancy only applies to ground clauses. Therefore,
the following definition introduces an instance of contextual rewriting only
working on ground clauses. Further, it adapts contextual rewriting such
that it implicitly only considers clauses from NZ°7. This is in particular
guaranteed by condition 2-3 below that limits the clauses used for reductions
to so called universally reductive clauses.

Definition 2 (Recursive Contextual Ground Rewriting) If N is a clause
set, D € N, C'" ground, o a substitution then the reductions

D=T,—=A,s~t C' =Ty, ulso] v — Ay
Fl —)Al,S%t
Dy, ufto] ~ v — A,

R

8

D=T,—>A;,s~t C'=T5 — Ay, ulso] = v
Iy —>A1,S’R‘Jt
[y = Ay, ufto] = v

R

where the following conditions are satisfied
1. so is a strictly mazximal term in Do

2. ulso] = v = so xto

ce

vars(s) = vars(D)

4. (Ty — A) is ground subterm redundant for all A in T'yo

S

. (A — Ay) is ground subterm redundant for all A in Ao

are called recursive contextual ground rewriting.

Condition 2-1 and condition 2-2 ensure the ordering restrictions required
by contextual rewriting. Condition 2-3 implies that Do is ground. A clause
D meeting condition 2-1 and condition 2-3 is called strongly universally reduc-
tive. Condition 2-4 and condition 2-5 recursively apply the ground subterm
redundancy criterion.

The ground subterm redundancy criterion is terminating since C"' is re-
duced to a smaller ground clause. As a consequence, also the ground sub-
term redundancy procedure (Algorithm 1) is terminating. Eventually, our
top level instance of contextual rewriting, the subterm contextual rewriting
rule, becomes the below rule.

Definition 3 (Subterm Contextual Rewriting) Let N be a clause set,
C,D e N, o be a substitution then the reductions

D=T,—A,s~t C =Ty, u[so] v — A,y

R
F1—>A1,S’R‘Jt
Dy, ufto] ~ v — Ay
R D=T,—A,s~t C =Ty — Ay, ulso] = v

ry — AI; st
[y — Ay, ufto] = v

where the following conditions are satisfied

1. so = to

2. C'> Do

3. T maps all variables from C, Do to fresh Skolem constants
4. (Ty = A)7 is ground subterm redundant for all A in T'io
5. (A — Ay)7 is ground subterm redundant for all A in Ao

are called subterm contextual rewriting.

Note that unit rewriting and non-unit rewriting [29] are also instances of
the subterm contextual rewriting rule. Note further that the conditions for
the subterm contextual rewriting rule are weaker compared to the recursive
contextual ground rewriting rule: the right premise needs not to be ground
and the equation s &~ t needs not to be maximal in the first premise. Subterm
contextual rewriting uses recursive contextual ground rewriting to effectively
decide the side conditions.

In addition to the rewriting style, where subterms are replaced by simpler
ones, the general idea of contextual rewriting can also be used to actually
eliminate literals, resulting in a generalization of matching replacement res-
olution [29]. This variant then also uses negative literals for reductions.

Definition 4 (Subterm Contextual Literal Elimination) Let N be a
clause set, C, D € N, o be a substitution then the reductions

D=1, —>A,s~t C=Tyyu~v—A,

R
F1—>A1,S’R‘Jt
F2—>A2
R D:F1,S%t—>A1 C:FQ%AQ,UZU

F1—>A1,S’R‘Jt
F2—>A2

where the following conditions are satisfied

1. so =u andtoc =v
2. C > Do

3. T maps all variables from C, Do to fresh Skolem constants

10

4. (Ty = A)7 is ground subterm redundant for all A in Tio
5. (A — Ay)7 is ground subterm redundant for all A in Ao

are called subterm contextual rewriting.

11

3 Implementation

The implementation of SPAsS [29] focuses on a sophisticated reduction ma-
chinery. The SpPAsSS main loop operates on two clause sets: WorkedOff and
Usable. The WorkedOff set contains the clauses which have been processed
and the Usable set contains the clauses which have to be considered for
further inferences. When SPASs is started WorkedOff is empty and Usable
contains all input clauses. Then in each iteration of the main loop SPASS
chooses one clause C from Usable and moves it to WorkedOff. Then it com-
putes all inferences of C' with clauses of WorkedOff. Each inferenced clause
(" is then fully interreduced using clauses of WorkedOff U Usable. This pro-
cess is called forward reduction. After that it reduces all clauses of Worked Off
and Usable by using C’ which is called backward reduction. After having per-
formed forward reduction and backward reduction, the clause sets Worked Off
and Usable are fully interreduced with respect to C'. This is the well-known
Otter loop that considers all clauses for reduction in contrast to a more lazy
approach only considering WorkedOff clauses, called Discount loop.

The integration of contextual rewriting into the SPASS main loop consists
of two steps. First, the search for appropriate contextual rewrite application
candidates. This is analogous to the case of unit rewriting and non-unit
rewriting. Finding appropriate rewrite candidates is realized in SPASS via
substitution trees [29, 15]. The following shows the non-unit rewriting rule.

NON-UNIT REWRITING

D=T,—A,s~t C =Ty, u[so]~v— Ay

R Fl—)Al,S%t
C" =Ty ulto] v — Ay
R D=T,—A,s~t C =Ty = Ay, u[so] = v

ry — Al,S ~t
C" =Ty = Ay, ufto] = v

12

where (i) s > t and (ii) ['yo C T'y, Ajo C Ay

In order to rewrite a clause C' the implementation of unit and non-unit
rewriting tries to reduce each subterm so of C. Therefore, for each subterm
so the procedure queries the substitution tree whether there exist a candidate
term s. If there exists such a term then the substitution tree returns s
together with the matcher 0. After retrieving the clause D of which term s
is a subterm, the requirements (i) and (ii) are verified. If they are fulfilled
then C' is rewritten else the implementation queries the substitution tree for
the next candidate term. The retrieval is realized in an iterative way because
the first hit is actually already used for reduction.

The second step for integrating contextual rewriting into SPASS is to check
the side conditions that require an effective implementation of the ground
subterm redundancy check. First of all, it is too costly to explicitly compute
the Skolem substitution 7 for each clause (I' = A)7 subject to the ground
subterm redundancy criterion. Applying 7 explicitly requires to allocate
memory for the new constants, the resulting terms and the new clause and it
requires additional computations to build the clause. Because of the recursive
structure of the redundancy criterion this is not feasible. Therefore, our
solution is to simply treat variables as constants in the implementation of
the redundancy criterion.

In SpPAss constants are function objects of arity zero. If the implemen-
tation of subterm contextual rewriting replaced the variables of the clause
[' — A explicitly by fresh constants, then it would create for each variable
a function object and insert it into the precedence with lowest precedence.
Therefore, the term symbols of the new constants are ordered to each other
as well as to the other term symbols. On the other hand variables are repre-
sented as integers in SPASS which implicitly orders them. Whenever we con-
sider variables to be constants we assume them to have a lower precedence
than any other non-variable symbol of the signature. As a consequence, if
we adapt the ordering modules (KBO, RPOS) such that they treat variables
in the above way, then our approach has the same properties with respect to
ordering computation as creating constants explicitly.

If variables are interpreted as constants the standard procedure of SPASS
for finding appropriate rewrite candidates remains unchanged. Let ¢ be a
term, u a constant, x a variable and I the term index containing all terms
occurring in the clause set N. A generalization for the term t¢[u] is a tuple
(t',0'), such that t[t'c’] = t[u] where t' is a term and ¢’ is a substitution.
The lookup function for the retrieval of generalizations in the index [will
return the same terms for ¢[x] as for ¢[u]. In more detail, this means that
for all generalizations (t1,07) of t[u] in I there is a generalization (ty,09) of

13

GROUNDSUBTERMREDUNDANT(CLAUSE C, CLAUSE SET N);
Rewnritten="True;

while Rewritten do

Rewritten=Fualse;

if ISEMPTY(C) then return False;

if IsTAUTOLOGY(C) then return True ;

if FORWARDSUBSUMPTION(C, N) then return True;

if OBVIOUSREDUCTION(C) then Rewritten=True;

if RECURSIVECONTEXTUALGROUNDREWRITING(C, N) then

Rewritten="True ;

© 00 N O oA W N =

10 end
11 return False

Algorithm 1: GROUNDSUBTERMREDUNDANT

tlz] in I with ¢; =ty and o, is equal to oy where all occurrences of u in the
co-domain of o; are replaced by x. Consequently, the lookup for appropriate
rewrite candidates is independent of the interpretation of the variables.

In the following we present the implementation of the ground subterm
redundancy check and verify that it works exactly like an implementation
that creates Skolem constants explicitly.

The implementation is depicted in Algorithm 1 and uses tautology check,
forward subsumption and obvious reductions from the reduction procedure
of SpAss. These are the procedures implemented in SPASS except that they
work with respect to the modified ordering procedures that interpret variables
as constants. As explained above the retrieval of candidate terms of forward
subsumption remains unchanged.

Algorithm 1 expects as input a clause C' and a clause set N and reduces
C with respect to NV in the main loop. The reductions performed on clause
C' in Algorithm 2 change C destructively. ISEMPTY(C) checks whether the
given clause is the empty clause. ISTAUTOLOGY(C) checks if = C. This is
realized via a congruence closure algorithm testing whether a positive literal
is implied by the negative literals.

FORWARDSUBSUMPTION(C, N) checks whether C is already subsumed by
clauses from N.

F1—>A1 FQ—)AQ
F1—>A1

R

where I'y C I's and A} C As.

14

[y

RECURSIVECONTEXTUALGROUNDREWRITING(CLAUSE Clulu'] = v],
CLAUSE SET N);

2 G = generalspyp(N,u');

3 foreach (s,0) € G do

4 Lits = LITERALSCONTAININGTERM($);

5 foreach (s = t) € Lits s.t. so > to do

6 D = LITERALOWNINGCLAUSE(S & t);

7 if (vars(s) D wvars(D) A

8 ulso| v > soxto A

9 so strictly mazimal term in Do A

10 VA € Ante(Do) GROUNDSUBTERMREDUNDANT(I — A) A

11 VA € Succ(Do) GROUNDSUBTERMREDUNDANT(A — A))
then

12 | return Clufto] ~ v];

13 end

14 end

15 end

Algorithm 2: RECURSIVECONTEXTUALGROUNDREWRITING

OBVIOUSREDUCTION(C) implements the following rules

[A s~t, st
R

' = As~t
and
Ns~t,s~t— A
s~t— A
and
' > Attt
R r—A
and A
Ntx~t—
A —
r - A
and
Faxxt A
DEREIT 2 i 4 ¢ (TUA)

= A
Further details can be found in the SpAss Handbook [31].

15

RECURSIVECONTEXTUALGROUNDREWRITING(C, N), depicted in Al-
gorithm 2, implements recursive contextual ground rewriting. The variables
occurring in C' are interpreted as constants in the sense explained above.
The call to generalspr(N,u') (line 2) returns the set of generalizations G
from N of ' and the respective matcher o. Then the procedure computes
for each of the generalizations the literals and the clauses where they occur.
The candidate clauses are then checked for the non-recursive side condi-
tions of contextual rewriting. Because of the conditions vars(s) = vars(D)
(line 7) and so is strictly maximal term in Do (line 8) the rewrite clause D is
strongly universally reductive. This means that ¢ has all variables of D in its
domain. The substitution o replaces all variables of D by terms occurring in
C. Therefore, Do contains only variables occurring in C' which we assume to
be constants. As a consequence, this procedure neither introduces any new
Skolem constants nor does it change the precedence of them. Therefore, the
ordering check (line 8) is implemented using the above-explained, modified
ordering modules treating variables as constants. Additionally, building the
subproblems (line 10 line 11) does also not change the Skolem constants nor
introduce new ones. For each of these subproblems RECURSIVECONTEXTU-
ALGROUNDREWRITING recursively calls GROUNDSUBTERMREDUNDANT.

Interpreting variables as Skolem constants during the recursive applica-
tion of GROUNDSUBTERMREDUNDANT results exactly in the same behavior
where explicitly new constant objects are introduced, but saves time and
memory.

The implementation of subterm contextual rewriting and subterm con-
textual literal elimination is analogous to the implementation of recursive
contextual ground rewriting. The difference is that the input clause C' is not
interpreted to be ground and the local side conditions (line 7 - line 9) are
changed with respect to the definition of subterm contextual rewriting and
subterm contextual literal elimination, respectively.

Algorithm 3 depicts the forward reduction procedure of SPASS where
subterm contextual rewriting is integrated. Note that the input clause C' is
destructively changed during the reductions.

3.1 Integration of Unit and Non-Unit Rewrit-
ing
Our first major improvement over [32] is the integration of unit and non-

unit rewriting into subterm contextual rewriting. Considering the old Al-
gorithm 3 standard rewriting (line 8), namely unit and non-unit rewriting,

16

FORWARDREDUCTION(CLAUSE C, CLAUSE SET N);
Rewritten=True;

while Rewritten do

Rewritten=Fualse;

if [sSTAuTOLOGY(C) then return True;

if OBVIOUSREDUCTION(C) then Rewritten=True;
if FORWARDSUBSUMPTION(C, N) then return True;
if REWRITING(C, N) then Rewritten = True;

if SUBTERMCONTEXTUALREWRTING(C, N) then
Rewritten=True;

10 end

11 return (C)
Algorithm 3: FORWARDREDUCTION

© 00 N O oA W N =

was implemented independently from contextual rewriting (line 9) in the first
implementation [32]. As a result our previous implementation searches the
index structure for finding appropriate standard rewriting candidates and
then searches the index again for finding candidates for contextual rewriting.
In order to save queries to the index and side condition checks we nested stan-
dard rewriting into contextual rewriting resulting in the procedure depicted
in Algorithm 4.

The procedure ISUNIT (line 7) checks if the clause given as argument
is a unit. If both C' and Do are unit clauses then C' can be rewritten.
SUBSUMESBASIC checkes if the literals of C' except literal u[u'] &~ v subsume
all literals of Do except literal so & to. Analogously, we extended recursive
contextual ground rewriting by unit and non-unit rewriting.

The integration of unit and non-unit rewriting into contextual rewriting
potentially changes the proof search strategy because clauses are reduced in
different order. Concerning Algorithm 3 rewriting (line 8) is performed on
an input clause C' before subterm contextual rewriting. The procedure im-
plementing rewriting reduces the clause C' using all clauses of N. When no
further reduction with rewriting is possible then subterm contextual rewrit-
ing reduces C' using N. After integrating standard rewriting into subterm
contextual rewriting this is done in parallel. The clause set /N is processed
only once. Each time a candidate clause is retrieved the procedure checks if
standard rewriting is possible. If it is not possible then it immediately checks
whether contextual rewriting is possible. This potentially changes the proof
search strategy, because the clauses are reduced in a different order.

17

SUBTERMCONTEXTUALREWRITING(CLAUSE Clulu'] & v],
CLAUSE SET N);

[y

G = generalspr(N,u');
foreach (s,0) € G do
Lits = LITERALSCONTAININGTERM($);
foreach (s = t) € Lits s.t. so > to do
D = LITERALOWNINGCLAUSE(S & t);
if (IsUNIT(C) A IsUNIT(D0o)) then return Clulto] = v];
else if SuBsuMEsBAsIC(C, Do) then return Clulto] = v];
else if (u[so| = v = so = to A

so strictly mazimal term in Do A

VA € Ante(Do)

GROUNDSUBTERMREDUNDANT(I" — A) A

12 VA € Suce(Do)
GROUNDSUBTERMREDUNDANT(A — A))

© 0 N O gk N

=
- O

then
13 | return Cfluto] = v];
14 end
15 end

16 end

Algorithm 4: SUBTERMCONTEXTUALREWRITING

3.2 Fault Caching

Testing a term whether it can be rewritten using contextual rewriting might
cause to perform many procedure calls because of the mutual recursive struc-
ture of the side conditions. Memorizing terms that have been identified not
to be reducible saves a lot of computation.

The cache itself is realized via a term indexing structure because this
provides all the functionality for storing and querying terms that we need.
Furthermore, SPASs already provides this data structure via substitution
trees as explained above. Substitution trees return for a query term a gen-
eralization together with the respective substitution. Let ¢ be a term we
want to check whether it is already in the fault cache. If the substitution
tree returns a term t' and a substitution o then t'o = t. If ¢ only substi-
tutes variables of ¢ by variables then t is not subterm ground redundant if
we consider the same context.

We modified the implementation of recursive contextual ground rewriting
such that each time a term is considered for rewriting the algorithm first

18

queries the cache. If the term is in the cache then this term is not considered
for rewriting. If it is not in the cache and neither standard rewriting nor
subterm contextual rewriting was possible then the algorithm inserts it into
the cache. Once a term was included in the cache it remains there. We use a
global cache for the implementation in order to avoid as much computation
as possible.

This is an approximation because a term that is not reducible in the con-
text of one clause might be reducible in the context of another clause. Fur-
ther, for checking whether a term is in the fault cache, the implementation
considers terms that are generalizations with respect to variable mappings.
Because variables are interpreted as constants the cache might reject terms
that are reducible with another ordering of the variables. Remember that
variables are interpreted as Skolem constants. The fault cache is also com-
patible with splitting. If a term is inserted into the cache in a split branch
that is not valid anymore, it does not produce wrong results because we have
a purely negative cache which only excludes terms that could be possibly
rewritten. As a consequence, we lose possible applications of a contextual
rewriting step. If we also stored terms that can be reduced, this approach
would not work because if a term could be identified to be reducible in a split
branch then this term does not have to be reducible in another branch. In
this case we need to cache clauses and have to consider backtracking updates
by the splitting. Similarly, if a term is reducible in the context of one clause
with contextual rewriting, this does not have to be the case in the context of
another clause. However, the below results show that this heuristic performs
well on practical instances.

19

4 Results

4.1 Results on the TPTP

In this chapter we evaluate the implementations of contextual rewriting in
SPASS, presented in the last chapter, by comparing it to the current standard
configuration of SPASS.

As test samples we used the TPTP 3.2.0 [27] which is a library consisting
of 8984 problems for testing automated theorem proving systems. As refer-
ence we run SPASS version 3.1 that is version 3.0 extended by some bug fixes
with default configuration. For the sample runs we integrated contextual
rewriting and the respective improvements in this version of SpAss. All sam-
ple runs were performed with SPASS options set to -RFRew=/ -RBRew=3
-RTaut=2. This means that both subterm contextual rewriting and subterm
contextual literal elimination are activated for forward rewriting, subterm
contextual rewriting is activated for backward reductions and semantic tau-
tology checks are activated. The hardware setup consisted of Opteron nodes
running at speed of 2.4 GHz equipped with 4 GB RAM for each node. For
the sample run as well as for the reference run we set a time limit of 300
seconds for each problem.

The problems of the TPTP are ranked from 0.00 to 1.00 indicating their
difficulty. Basically, the value expresses how many of the current existing
provers were able to solve a particular problem. This means that problems
with rating 1.00 have not been solved by any prover so far. For further details
we refer to [28]. We compare SPASS containing our new improvements to the
original SPASS with respect to the different rankings of problems. All proofs
that SpAss with contextual rewriting could find additionally were checked
by the SPASS proof checker.

The results of running SPASS containing our first implementation of con-
textual rewriting are depicted in Table 4.1. This version found 85 additional
proofs and lost 143 proofs compared to the run without contextual rewriting
if we consider all problems. If we consider problems with rank greater then

20

0.65 then Table 4.1 shows that contextual rewriting solves more problems
than it loses. The higher the rank the better are the results of contextual
rewriting compared to the reference version. If we consider problems with
threshold greater than 0.9, SPASS with contextual rewriting found 21 addi-
tional proofs and lost none. It even could solve five additional problems.

‘ threshold ‘ lost ‘ won ‘
0.00 143 85
0.50 80 69
0.65 48 61
0.80 3 42
0.90 0 21
1.00 0 5)

Table 4.1: Contextual rewriting, 300 seconds time limit

First we did not understand why contextual rewriting lost so many easy
problems. Then by inspecting some of the lost problems we could identify two
reasons. First, the actual proof found by the standard version of SPASS got
lost through a contextual rewriting application. Second, a call to a contextual
rewriting procedure took so long that SpAss did not finish within the time
limit although the reference run terminated within milliseconds. Therefore,
we improved our implementation of contextual rewriting according to the
lines of Chapter 3.

4.1.1 Integrated Unit and Non-Unit Rewriting

The integration of unit and non-unit rewriting into the implementation of
contextual rewriting improved the results significantly. Although more prob-
lems were lost than before more could be additionally solved. This improve-
ment narrowed the gap between solved and lost problems. Table 4.2 depicts
the results.

Considering all problems the version with integrated unit and non-unit
rewriting found 152 additional proofs and lost 119. It still solves hard prob-
lems whereas it is able to solve more easy once.

4.1.2 Fault Caching

After additionally integrating the fault cache in the contextual rewriting
procedure the results further improved as Table 4.3 depicts. SPASS found 132

21

‘ threshold ‘ lost ‘ won ‘

0.0 152 119
0.5 88 71
0.65 51 62
0.8 4 36
0.9 0 20
1.0 0 Y

Table 4.2: Integrated Unit and Non-Unit Rewriting, 300 seconds time limit

additional problems whereas it only lost 67. This implementation improved
much on the easy problems but could solve new difficult problems, too. Even
one additional problem that has not been solved before.

‘ threshold ‘ lost ‘ won ‘
0.0 67 132
0.5 43 81
0.65 23 71
0.8 3 40
0.9 0 22
1.0 0 6

Table 4.3: Contextual Rewriting with Caching, 300 seconds time limit

The following table compares SPASS with contextual rewriting and all
improvements with a time limit of 900 seconds to the reference run. We see
that almost half of the 67 lost problems could be regained by increasing the
time limit.

The six new problems that we could solve are all from the software model
checking category of the TPTP. The problems are: SWC308+1, SWC329+1,
SWC345+1, SWC342+1, SWC261+1, SWC335+1. This is not a surprise
as contextual rewriting can for example employ conditional access function
definitions for reduction. For example, a list element access function that
first checks for emptiness is perfectly matched by our subterm contextual
rewriting rule.

It was a surprise to us that the implementation of contextual rewriting
did not improve on satisfiable problems. In the first implementation we even
lost seven problems and did not terminate on problems where the reference
version did. After the integration of unit and non-unit rewriting we even

22

‘ threshold ‘ lost ‘ won ‘

0.0 38 190
0.5 23 99
0.65 7 83
0.8 3 40
0.9 0 22
1.0 0 6

Table 4.4: Contextual Rewriting with Caching, 900 sec run time

lost, eight problems. But also for satisfiability problems it turned out that
the fault cache is useful because the version containing the fault cache only
lost one problem. Running the version with caching and a time limit of 900
seconds still lost this particular problem but additionally terminated on three
problems. We are wondering about that phenomenon because contextual
rewriting is capable to increase the number of problems where SPASS can
terminate on. An example for such a problem is the introductory example
which is shown in more detail in the next section. The TPTP version 3.2.0
does not contain such problems.

4.2 Application to the Example from the In-
troduction

In this part we depict the application of approximated recursive contextual
rewriting on the introductory example in detail. Therewith, we show that
superposition together with our instance of contextual rewriting terminates
on this example. SPASS with contextual rewriting is able to saturate the
clause set from section 1 whereas SPASS without contextual rewriting is not.
Recall that we can reduce clause 5 with clause 3 using contextual rewriting
if the side conditions are fulfilled. The ground clauses

8 :i(xy) = byi(r3) = b,i(xe) = b,q(y1) =b,b~a—i(r))~b

9:i(zy) = b,i(x3) = bi(xe) = b,q(y1) = b,bra— q(f(xe,r(xs3,11))) &b
must be entailed by clauses from Ng. Clause 8 is a tautology whereas clause 9
can be rewritten with clause 3 to

10: i(z1) &~ b,i(x3) = b,i(x2) = b,q(yy) ®bax~b—a=x~b
using contextual rewriting if in addition the clauses

11: i(xy) = b,i(x3) =~ b,i(x2) = b,q(y;) =~ b,a~b— i(xy) = b

12:i(xq) = b,i(x3) &~ b,i(xe) =~ b,q(y1) ~ b,a =~ b — q(r(zs,y1)))) = b
are also entailed by clauses from No. Clause 11 is a syntactic tautology and

23

clause 12 is subsumed by clause 2.

24

5 Summary

In summary, contextual rewriting is costly but it helps solving difficult prob-
lems. Our current implementation improves significantly over our first sug-
gestion [32]. It actually gains more problems than it loses and is able to
solve many difficult problems. The SPASS version described in this paper
and used for the experiments can be obtained from the SPASS homepage
(http://spass-prover.org/) following the prototype link.

25

Bibliography

1]

L. Bachmair and H. Ganzinger. On restrictions of ordered paramodula-
tion with simplification. In 10th International Conference on Automated
Deduction, CADE-10, volume 449 of LNCS, pages 427—441. Springer,
1990.

L. Bachmair and H. Ganzinger. Rewrite-based equational theorem prov-
ing with selection and simplification. Journal of Logic and Computation,
4(3):217 247, 1994.

L. Bachmair and H. Ganzinger. Resolution theorem proving. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Rea-
soning, volume 1, chapter 2, pages 19 100. North Holland, 2001.

L. Bachmair, H. Ganzinger, and U. Waldmann. Superposition with
simplification as a decision procedure for the monadic class with equality.
In Computational Logic and Proof Theory, volume 713 of LNCS, pages
83-96, 1993.

P. Balbiani. Equation solving in geometrical theories. In Dershowitz
and Lindenstrauss [9], pages 31 50.

P. Bernays and M. Schonfinkel. Zum entscheidungsproblem der mathe-
matischen logik. Mathematische Annalen, 99:342 372, 1928.

C. Brinker. Geometrisches schliessen mit spass. Diplomarbeit,
Universitat des Saarlandes and Max-Planck-Institut fiir Informatik,
Saarbriicken, Germany, 2000. Supervisors: H. Ganzinger, C. Weiden-
bach.

C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theorem
Proving. Computer Science and Applied Mathematics. Academic Press,
1973.

26

9]

[10]

[11]

[14]

[15]
[16]

[17]

18]

N. Dershowitz and N. Lindenstrauss, editors. Conditional and Typed
Rewriting Systems, 4th International Workshop, CTRS-94, Jerusalem,
Israel, July 13-15, 1994, Proceedings, volume 968 of Lecture Notes in
Computer Science. Springer, 1995.

P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the common
subexpression problem. J. ACM, 27(4):758-771, 1980.

C. G. Fermiiller, A. Leitsch, U. Hustadt, and T. Tamet. Resolution deci-
sion procedures. In A. Robinson and A. Voronkov, editors, Handbook of

Automated Reasoning, volume II, chapter 25, pages 1791-1849. Elsevier,
2001.

H. Ganzinger and H. de Nivelle. A superposition decision procedure for
the guarded fragment with equality. In LICS, pages 295-304, 1999.

H. Ganzinger and R. Nieuwenhuis. @ The saturate system 1994.
http://www.mpi-sb.mpg.de/SATURATE/Saturate.html, 1994.

H. Ganzinger, R. Nieuwenhuis, and P. Nivela. Fast term indexing with
coded context trees. J. Autom. Reasoning, 32(2):103-120, 2004.

P. Graf. Term Indezing, volume 1053 of LNAI Springer-Verlag, 1995.

U. Hustadt, R. A. Schmidt, and L. Georgieva. A survey of decidable first-
order fragments and description logics. Journal of Relational Methods
in Computer Science, 1:251 276, 2004.

F. Jacquemard, C. Meyer, and C. Weidenbach. Unification in extensions
of shallow equational theories. In Proceedings of RTA-98, volume 1379
of LNCS, pages 76 90. Springer, 1998.

B. Konev, R. A. Schmidt, and S. Schulz, editors. Proceedings of the First
International Workshop on Practical Aspects of Automated Reasoning,
Sydney, Australia, August 10-11, 2008, volume 373 of CEUR Workshop
Proceedings. CEUR-WS.org, 2008.

R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem prov-
ing. In A. Robinson and A. Voronkov, editors, Handbook of Automated
Reasoning, volume I, chapter 7, pages 371-443. Elsevier, 2001.

P. Nivela and R. Nieuwenhuis. Saturation of first-order (constrained)
clauses with the Saturate system. In C. Kirchner, editor, Rewriting Tech-
niques and Applications, 5th International Conference, RTA-93, volume

27

[21]

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

690 of Lecture Notes in Computer Science, LNCS, pages 436 440, Mon-
treal, Canada, June 16 18, 1993. Springer.

G. E. Peterson. A technique for establishing completeness results in
theorem proving with equality. SIAM Journal of Computation, 12(1):82—
100, February 1983.

[. V. Ramakrishnan, R. C. Sekar, and A. Voronkov. Term indexing. In
Robinson and Voronkov [26], pages 1853 1964.

A. Riazanov and A. Voronkov. Efficient instance retrieval with standard
and relational path indexing. Inf. Comput., 199(1-2):228-252, 2005.

G. Robinson and L. Wos. Paramodulation and theorem-proving in first-
order theories with equality. In B. Meltzer and D. Michie, editors, Ma-
chine Intelligence 4, pages 135-150, 1969.

J. A. Robinson. A machine-oriented logic based on the resolution prin-
ciple. Journal of the ACM, 12(1):23 41, January 1965.

J. A. Robinson and A. Voronkov, editors. Handbook of Automated Rea-
soning (in 2 volumes). Elsevier and MIT Press, 2001.

G. Sutcliffe and C. Suttner. The TPTP Problem Library: CNF Release
v1.2.1. Journal of Automated Reasoning, 21(2):177 203, 1998.

G. Sutcliffe and C. Suttner. Evaluating General Purpose Automated
Theorem Proving Systems. Artificial Intelligence, 131(1-2):39 54, 2001.

C. Weidenbach. Combining superposition, sorts and splitting. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Rea-
soning, volume 2, chapter 27, pages 1965 2012. Elsevier, 2001.

C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C. Theobald, and
D. Topic. SPASS version 2.0. In A. Voronkov, editor, Proceedings of
the 18th International Conference on Automated Deduction (CADE-18),
volume 2392 of Lecture Notes in Artificial Intelligence, pages 275-279,
Kopenhagen, Denmark, 2002. Springer.

C. Weidenbach, R. Schmidt, and E. Keen. Spass handbook version 3.0.
Contained in the documentation of SPASS Version 3.0, 2007.

C. Weidenbach and P. Wischnewski. Contextual rewriting in spass. In
Konev et al. [18].

28

Below you find a list of the most recent technical reports of the Max-Planck-Institut fiir Informatik. They
are available via WWW using the URL http://www.mpi-inf.mpg.de. If you have any questions concern-
ing WWW access, please contact reports@mpi-inf.mpg.de. Paper copies (which are not necessarily free
of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut fiir Informatik

Library

attn. Anja Becker
Stuhlsatzenhausweg 85
66123 Saarbriicken

GERMANY
e-mail: library@mpi-inf.mpg.de

MPI-1-2008-5-003

MPI-1-2008-5-002

MPI-1-2008-5-001

MPI-1-2008-1-001

MPI-1-2007-RG1-002

MPI-1-2007-5-003

MPI-1-2007-5-002

MPI-1-2007-5-001

MPI-1-2007-4-008

MPI-1-2007-4-007

MPI-1-2007-4-006

MPI-1-2007-4-005
MPI-1-2007-4-004
MPI-1-2007-4-003

MPI-1-2007-4-002

MPI-1-2007-4-001

MPI-1-2007-2-001

MPI-1-2007-1-002

MPI-1-2007-1-001

MPI-1-2006-5-006

MPI-1-2006-5-005

MPI-1-2006-5-004

MPI-1-2006-5-003

F.M. Suchanek, G. de Melo, A. Pease

T.

k.
M

D.

T.

Neumann, G. Moerkotte

Suchanek, G. Kasneci,

. Ramanath, M. Sozio, G. Weikum

Ajwani

Hillenbrand, C. Weidenbach

F.M. Suchanek, G. Kasneci,

G.
. Berberich, S. Bedathur,

=

Pa3F@aE® Es Q=R

Weikum

Neumann, G. Weikum

Kasneci, F.M. Suchanek, G. Ifrim,

. Ramanath, G. Weikum

Gall, T. Brox, B. Rosenhahn,
Seidel

Herzog, V. Havran, K. Myszkowski,
Seidel

Dyken, G. Ziegler, C. Theobalt,
Seidel

Schultz, J. Weickert, H. Seidel
Stoll
Bargmann, V. Blanz, H. Seidel

Langer, H. Seidel

. Gall, B. Rosenhahn, H. Seidel

. Podelski, S. Wagner

. Althaus, S. Canzar

. Berberich, L. Kettner

. Kasnec, F.M. Suchanek,

Weikum

. Angelova, S. Siersdorfer

. Suchanek, G. Ifrim, G. Weikum

. Scholz, M. Magnor

Integrating Yago into the Suggested Upper Merged
Ontology

Single Phase Construction of Optimal DAG-structured
QEPs

STAR: Steiner Tree Approximation in
Relationship-Graphs

Characterizing the performance of Flash memory
storage devices and its impact on algorithm design

Superposition for Finite Domains

Yago : A Large Ontology from Wikipedia and WordNet

A Time Machine for Text Search

NAGA: Searching and Ranking Knowledge

Global Stochastic Optimization for Robust and
Accurate Human Motion Capture

Global Illumination using Photon Ray Splatting

GPU Marching Cubes on Shader Model 3.0 and 4.0

A Higher-Order Structure Tensor
A Volumetric Approach to Interactive Shape Editing

A Nonlinear Viseme Model for Triphone-Based Speech
Synthesis

Construction of Smooth Maps with Mean Value
Coordinates

Clustered Stochastic Optimization for Object
Recognition and Pose Estimation

A Method and a Tool for Automatic Veriication of
Region Stability for Hybrid Systems

A Lagrangian relaxation approach for the multiple
sequence alignment problem

Linear-Time Reordering in a Sweep-line Algorithm for
Algebraic Curves Intersecting in a Common Point

Yago - A Core of Semantic Knowledge

A Neighborhood-Based Approach for Clustering of
Linked Document Collections

Combining Linguistic and Statistical Analysis to
Extract Relations from Web Documents

Garment Texture Editing in Monocular Video
Sequences based on Color-Coded Printing Patterns

MPI-1-2006-5-002

MPI-1-2006-5-001

MPI-1-2006-4-010

MPI-1-2006-4-009

MPI-1-2006-4-008

MPI-1-2006-4-007

MPI-1-2006-4-006

MPI-1-2006-4-005
MPI-1-2006-4-004

MPI-1-2006-4-003

MPI-1-2006-4-002

MPI-1-2006-4-001

MPI-1-2006-2-001

MPI-1-2006-1-007
MPI-1-2006-1-006

MPI-1-2006-1-005
MPI-1-2006-1-004

MPI-1-2005-5-002

MPI-1-2005-4-006

MPI-1-2005-4-005

MPI-1-2005-4-004

MPI-1-2005-4-003

MPI-1-2005-4-002

MPI-1-2005-4-001

MPI-1-2005-2-004

MPI-1-2005-2-003
MPI-1-2005-2-002
MPI-1-2005-2-001
MPI-1-2005-1-008

MPI-1-2005-1-007

MPI-1-2005-1-003

H. Bast, D. Majumdar, R. Schenkel,
M. Theobald, G. Weikum

M. Bender, S. Michel, G. Weikum,
P. Triantafilou

A. Belyaev, T. Langer, H. Seidel

J. Gall, J. Potthoff, B. Rosenhahn,
C. Schnoerr, H. Seidel

1. Albrecht, M. Kipp, M. Neff,
H. Seidel

O. Schall, A. Belyaev, H. Seidel

Theobalt, N. Ahmed, H. Lensch,
. Magnor, H. Seidel

. Belyaev, H. Seidel, S. Yoshizawa
. Havran, R. Herzog, H. Seidel

< » z0

de Aguiar, R. Zayer, C. Theobalt,
. Magnor, H. Seidel

. Ziegler, A. Tevs, C. Theobalt,
. Seidel

. Efremov, R. Mantiuk,
. Myszkowski, H. Seidel

Wies, V. Kuncak, K. Zee,
. Podelski, M. Rinard

. Bast, I. Weber, C.W. Mortensen
. Kerber

o 2o

=2 R

==

A. Eigenwillig, L. Kettner, N. Wolpert
. Funke, S. Laue, R. Naujoks, L. Zvi

wn

S. Siersdorfer, G. Weikum

C. Fuchs, M. Goesele, T. Chen,
H. Seidel

G. Krawczyk, M. Goesele, H. Seidel

C. Theobalt, N. Ahmed, E. De Aguiar,
G. Ziegler, H. Lensch, M.A. Magnor,
H. Seidel

T

. Langer, A.G. Belyaev, H. Seidel
O. Schall, A. Belyaev, H. Seidel

M. Fuchs, V. Blanz, H. Lensch,
H. Seidel

Y. Kazakov

H.d. Nivelle
P. Maier, W. Charatonik, L. Georgieva
J. Hoffmann, C. Gomes, B. Selman

C. Gotsman, K. Kaligosi,
K. Mehlhorn, D. Michail, E. Pyrga

I. Katriel, M. Kutz

S. Baswana, K. Telikepalli

10-Top-k: Index-access Optimized Top-k Query
Processing

Overlap-Aware Global df Estimation in Distributed
Information Retrieval Systems

Mean Value Coordinates for Arbitrary Spherical
Polygons and Polyhedra in R3

Interacting and Annealing Particle Filters:
Mathematics and a Recipe for Applications

Gesture Modeling and Animation by Imitation

Feature-preserving Non-local Denoising of Static and
Time-varying Range Data

Enhanced Dynamic Reflectometry for Relightable
Free-Viewpoint Video

Skeleton-driven Laplacian Mesh Deformations

On Fast Construction of Spatial Hierarchies for Ray
Tracing

A Framework for Natural Animation of Digitized
Models

GPU Point List Generation through Histogram
Pyramids

Design and Evaluation of Backward Compatible High
Dynamic Range Video Compression

On Verifying Complex Properties using Symbolic Shape
Analysis

Output-Sensitive Autocompletion Search

Division-Free Computation of Subresultants Using
Bezout Matrices

Snap Rounding of Bézier Curves

Power Assignment Problems in Wireless
Communication

Automated Retraining Methods for Document
Classification and their Parameter Tuning

An Emperical Model for Heterogeneous Translucent
Objects

Photometric Calibration of High Dynamic Range
Cameras

Joint Motion and Reflectance Capture for Creating
Relightable 3D Videos

Analysis and Design of Discrete Normals and
Curvatures

Sparse Meshing of Uncertain and Noisy Surface
Scattered Data

Reflectance from Images: A Model-Based Approach for
Human Faces

A Framework of Refutational Theorem Proving for
Saturation-Based Decision Procedures

Using Resolution as a Decision Procedure
Bounded Model Checking of Pointer Programs
Bottleneck Behavior in CNF Formulas

Cycle Bases of Graphs and Sampled Manifolds

A Faster Algorithm for Computing a Longest Common
Increasing Subsequence

Improved Algorithms for All-Pairs Approximate
Shortest Paths in Weighted Graphs

