
Contextual Rewriting
Christoph Weidenba
hPatri
k Wis
hnewski

MPI{I{2009{RG1{002 Mar
h 2009



Authors' AddressesChristoph Weidenba
hMax-Plan
k-Institut f�ur InformatikCampus E1 466123 Saarbr�u
kenGermanyPatri
k Wis
hnewskiMax-Plan
k-Institut f�ur InformatikCampus E1 466123 Saarbr�u
kenGermany

Publi
ation NotesThis report is a preliminary version of an arti
le intended for publi
ationelsewhere.



Abstra
tSophisti
ated redu
tions are of parti
ular importan
e for progress in auto-mated theorem proving. We 
onsider the powerful redu
tion rule ContextualRewriting in 
onne
tion with the superposition 
al
ulus. If 
onsidered inits most general form the appli
ability of 
ontextual rewriting is not de
id-able. We develop an instan
e of 
ontextual rewriting where appli
abilitybe
omes de
idable while preserving a great deal of its simpli�
ation power.A sophisti
ated implementation of the rule in Spass reveals its appli
ationpotential. Our 
ontextual rewriting instan
e is feasible in the sense that it
an be exe
uted on the overall TPTP resulting in a gain of solved problemsand new solutions to a number of problems that 
ould not be solved bytheorem provers so far.
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1 Introdu
tionIn the superposition 
ontext, �rst-order theorem proving with equality dealswith the problem of showing unsatis�ability of a �nite set N of 
lauses. Thisproblem is well-known to be unde
idable, in general. It is semi-de
idable inthe sense that superposition is refutationally 
omplete. The superposition
al
ulus is 
omposed of inferen
e and redu
tion rules. Inferen
e rules gen-erate new 
lauses from N whereas redu
tion rules delete 
lauses from N ortransform them into simpler ones while deleting the an
estors. If, in parti
-ular, powerful redu
tion rules are available, de
idability of 
ertain sub
lassesof �rst-order logi
 
an be shown and explored in pra
ti
e [4, 16, 17, 12, 11℄.Hen
e, sophisti
ated redu
tions are of parti
ular importan
e for progress inautomated theorem proving. In this paper the redu
tion rule ContextualRewriting is 
onsidered in 
ombination with the superposition 
al
ulus [2℄.Contextual rewriting extends rewriting with unit equations to rewriting withfull 
lauses 
ontaining a positive orientable equation. In order to apply su
ha 
lause for rewriting, all other literals of that 
lause have to be entailed bythe 
ontext of the 
lause to be rewritten and potentially further 
lauses froma given 
lause set N . Hen
e, the name 
ontextual rewriting.For a �rst, simple example 
onsider the two 
lausesP (x)! f(x) � x S(g(a)); a � b; P (b)! R(f(a))where we write 
lauses in impli
ation form [29℄. Now in order to rewriteR(f(a)) in the se
ond 
lause to R(a) using the equation f(x) � x of the�rst 
lause with mat
her � = fx 7! ag, we have to show that P (x)� holdsin the 
ontext of the se
ond 
lause S(g(a)); a � b; P (b), i.e., j= S(g(a)); a �b; P (b) ! P (x)�. This obviously holds, so we 
an repla
e S(g(a)); a �b; P (b)! R(f(a)) by S(g(a)); a � b; P (b)! R(a) via a 
ontextual rewritingappli
ation of P (x)! f(x) � x.More general, 
ontextual rewriting is the following rule:2



R D = �1 ! �1; s � t C = (�2 ! �2)[u[s�℄ � v℄�1 ! �1; s � t(�2 ! �2)[u[t�℄ � v℄where (�2 ! �2)[u[s�℄ � v℄ expresses that u[s�℄ � v is an atom o

urring in�2 or �2 and u 
ontains the subterm s�. Contextual rewriting redu
es thesubterm s� of u to t� if, among ordering restri
tions, the following 
onditionsare satis�ed NC j= �2 ! A for all A in �1�NC j= A! �2 for all A in �1�where N is the 
urrent 
lause set, C;D 2 N , and NC denotes the set of
lauses from N smaller than C with respe
t to a redu
tion ordering �, totalon ground terms. Redu
tion rules are labeled with an R and are meant torepla
e the 
lauses above the bar by the 
lauses below the bar. Both side
onditions are unde
idable, in general. Therefore, in order to make the ruleappli
able in pra
ti
e, it must be instantiated su
h that eventually these two
onditions be
ome e�e
tive. This is the topi
 of this paper.For a more sophisti
ated, further motivating example, 
onsider the follow-ing 
lause set. It 
an be �nitely saturated using 
ontextual rewriting but notsolely with less sophisti
ated redu
tion me
hanisms su
h as unit rewriting orsubsumption.Let i, q, r, f be fun
tions, a, b be 
onstants and x1, x2, x3, x4, y1 bevariables and let r � f � q � i � b � a � nil using the KBO with weight 1for all fun
tion symbols and variables.1: ! q(nil) � b2: i(x1) � b; q(y1) � b ! q(r(x1; y1)) � b3: i(x1) � b; q(y1) � b ! q(f(x1; y1)) � a4: i(x1) � b; q(y1) � b; i(x3) � b !r(x3; f(x1; y1)) � f(x1; r(x3; y1))5: i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; b � a !y1 � nil; q(f(x1; f(x2; r(x3; y1)))) � bIf we apply superposition right between 
lause 4 and 
lause 5 on the termq(f(x1; f(x2; r(x3; y1)))) we obtain the 
lause6: i(x1) � b; i(x3) � b; i(x2) � b; i(x4) � b; q(y1) � b; q(f(x4; y1)) � b; b � a !f(x4; y1) � nil; q(f(x1; f(x2; f(x4; r(x3; y1))))) � bwhi
h is larger (both in the ordering and the number of symbols) than
lause 5. Applying superposition between 
lause 4 and 
lause 6 yields an evenlarger 
lause. Repeating the superposition inferen
e between 
lause 4 and3



these 
lauses 
reates larger and larger 
lauses. All those 
lauses 
annot besimpli�ed by unit rewriting and are not redundant with respe
t to subsump-tion [29℄. Hen
e, the exhaustive appli
ation of the superposition 
al
ulusdoes not terminate on this 
lause set. Furthermore, none of the redu
tionswhi
h have been implemented so far in Spass and in any other system weare aware of, 
an redu
e 
lause 5. However, with 
ontextual rewriting we 
anredu
e 
lause 5 using 
lause 3 to7: i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; b � a! y1 � nil; a � b.Clause 7 is a tautology and 
an be redu
ed to true. Then the set issaturated sin
e no further superposition inferen
e is possible. In order toapply 
ontextual rewriting to 
lause 5 using 
lause 3 we have to verify theside 
onditionsNC j= i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; b � a! i(x1) � band NC j= i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; b � a!q(f(x2; r(x3; y1))) � b.The �rst 
ondition holds trivially and the latter follows from 
lause 3and 
lause 2 whi
h are both smaller than 
lause 5. For more details seeSe
tion 4.2. This example already shows that the 
lass of 
lause sets that
an be �nitely saturated with 
ontextual rewriting is stri
tly larger than the
lass of 
lause sets that 
an be �nitely saturated by unit rewriting, non-unitrewriting or lo
al 
ontextual rewriting [29, 30℄.Contextual rewriting was �rst implemented in the SATURATE system [20,13℄ but never matured. It turned out to be very useful for a bun
h of exam-ples, but the rule has to be turned o� in general, be
ause often the proversdoes not return in reasonable time from even a single 
ontextual rewritingappli
ation test. This is partly due to a straight forward naive implementa-tion, 
ompared to the te
hniques presented in our paper, and a more generalsetting where the ordering 
onstraints of the rule are not a priori 
al
ulatedbut inherited through ordering 
onstraints.In this work we present an instan
e of 
ontextual rewriting that is useful,e.g., it redu
es the above 
lause set, its appli
ation is de
idable and it is alsofeasible in pra
ti
e. We tested our implementation on all problems of theTPTP library version 3.2.0 [27℄. Compared to our �rst implementation ofthe rule [32℄ the results of this paper lead to a performan
e where we winsigni�
antly more problems on the overall TPTP than we lose while keeping4



the positive results on hard problems. In parti
ular, we solve 6 problemsfrom the TPTP that no other reported system 
ould solve before. The gainedperforman
e is due to a tight in
orporation of 
ontextual rewriting with unitand non-unit rewriting and a new 
a
hing te
hnique (Chapter 3).The paper is now organized as follows. In Se
tion 2 we develop ourinstan
e of 
ontextual rewriting and present its implementation in Spass inSe
tion 3. The �nal se
tion, Se
tion 4, dis
usses experimental results, bothon the TPTP and on the above example.
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2 Contextual RewritingWe 
onsider �rst-order logi
 with equality using notation from [29℄. We write
lauses in the form �! � where � and � are multi-sets of atoms. The atomsof � denote negative literals while the atoms of � denote the positive literals.A substitution � is a mapping from the set of variables to the set of termssu
h that x� 6= x for only �nitely many variables x. The redu
tion rules, inparti
ular the 
ontextual rewriting rule, are de�ned with respe
t to a well-founded redu
tion ordering � on terms that is total on ground terms. Thisordering is then lifted to literals and 
lauses in the usual way [29℄. A terms is 
alled stri
tly maximal in �! � if there is no di�erent o

urren
e of aterm in �! � that is greater or equal than s with respe
t to �.Contextual rewriting is a sophisti
ated redu
tion rule originally intro-du
ed in [2℄ that generalizes unit rewriting and non-unit rewriting [29℄. It isan instan
e of the standard redundan
y notion of superposition. A 
lause Cis 
alled redundant in a 
lause set N if there exist 
lauses C1; : : : ; Cn 2 Nwith Ci � C for i 2 f1; : : : ; ng, written Ci 2 NC , su
h that C1; : : : ; Cn j= C.The 
lause C is implied by smaller 
lauses from N . This 
ondition 
an a
tu-ally be re�ned to grounding substitutions: C is redundant if for all groundingsubstitutions � for C there are ground instan
es Ci�i of 
lauses Ci 2 N su
hthat Ci�i � C�, written Ci�i 2 NC�, and C1�1; : : : ; Cn�n j= C�. Redu
tionrules are marked with an R and their appli
ation repla
es the 
lauses abovethe bar with the 
lauses below the bar.De�nition 1 (Contextual Rewriting [2℄) Let N be a 
lause set, C;D 2N , � be a substitution then the redu
tionsR D = �1 ! �1; s � t C = �2; u[s�℄ � v ! �2�1 ! �1; s � tC 0 = �2; u[t�℄ � v ! �26



R D = �1 ! �1; s � t C = �2 ! �2; u[s�℄ � v�1 ! �1; s � tC 0 = �2 ! �2; u[t�℄ � vwhere the following 
onditions are satis�ed1. s� � t�2. C � D�3. NC j= �2 ! A for all A in �1�4. NC j= A! �2 for all A in �1�are 
alled 
ontextual rewriting.Due to 
ondition 1-1 and 
ondition 1-2 we have C 0 � C and D� � C.Then from 
ondition 1-3 and 
ondition 1-4 we obtain that there exist 
lausesC1; : : : ; Cn 2 NC and C1; : : : ; Cn; C 0; D� j= C. Therefore, the 
lause C isredundant in N [fC 0g and 
an be eliminated. The rule is an instan
e of theabstra
t superposition redundan
y notion.The side 
onditions 1-3 and 1-4 having both the form NC j= �! � areunde
idable, in general. There are two obsta
les de
iding the side 
onditionsNC j= � ! �. First, there are in�nitely possible grounding substitutions�0 for the 
lauses � ! � and C. Se
ond, even for a given �0 there may bein�nitely many ground substitutions Æ with CiÆ � C�0, Ci 2 N , e.g., if �is the lexi
ographi
 path ordering (LPO). Therefore, in order to e�e
tivelyde
ide the side 
onditions, in the following we will �x one �0 and restri
t thenumber of 
onsidered substitutions Æ to a �nite number yielding a de
idableinstan
e of 
ontextual rewriting.First, NC j= � ! � is equivalent to NC [ f9x1; : : : ; xn::(� ! �)g j= ?where the xi are the variables of � ! �. The existential quanti�er 
an beeliminated by Skolemization yielding a Skolem substitution � that maps anyxi to a new Skolem 
onstant. Consequently, setting �0 to � yields the instan
eNC j= (�! �)� , where (�! �)� is ground. Still there may exist in�nitelymany Æ with CiÆ � C� , Ci 2 N . Furthermore, C� may still 
ontain variablesas the literal u[s�℄ � v of C may 
ontain variables that do not o

ur in �2,�2.Therefore, we restri
t Æ to those grounding substitutions that map vari-ables to terms only o

urring in C� or D�� where we additionally assumethat � is also grounding for C and D�, i.e., it maps any variable o

urringin C or D� to an arbitrary fresh Skolem 
onstant. Let ND��C� be the set of all7



ground instan
es of 
lauses fromN smaller than C� obtained by instantiationwith ground terms from D��; C� . Then ND��C� is �nite and ND��C� � NC� .Consequently, ND��C� j= (� ! �)� is a suÆ
ient ground approximation ofNC j= � ! �. Even though this is a de
idable approximation of the orig-inal problem the set ND��C� is exponentially larger than N , in general. Inparti
ular, the set typi
ally already gets so large that an instantiation basedtheorem proving approa
h does not work out de
iding ND��C� j= (� ! �)� .For example, the rewriting step from the example in the introdu
tion 
on-tains already more than 20 di�erent ground terms out of the 
lausei(
1) � b; i(
3) � b; i(
2) � b; i(
4) � b; q(
5) � b; q(f(
4; 
5)) � b; b � a !f(
4; 
5) � nil; q(f(
1; f(
2; f(
4; r(
3; 
5))))) � bwhere the 
i are the freshly introdu
ed Skolem 
onstants. Re
all that N isnot the input 
lause set but the set of all 
lauses generated in the 
ourseof a saturation and 
an thus 
onsists of several (hundred) thousand 
lauses.The side 
ondition ND��C� is typi
ally tested several 10 thousand times fora problem with potential 
ontextual rewriting appli
ations, even with re-spe
t to the re�nements that we will introdu
e in the sequel. Therefore, werepresent ND��C� impli
itly by approximating ND��C� j= (�! �)� by the appli-
ation of a re
ursively de�ned redundan
y redundan
y 
alled ground subtermredundant. A 
lause is ground subterm redundant, if it 
an be redu
ed totrue by the redu
tion rules tautology redu
tion, forward subsumption, obviousredu
tion and a parti
ular instan
e of 
ontextual rewriting 
alled re
ursive
ontextual ground rewriting de�ned below. Tautology redu
tion redu
es syn-ta
ti
 and semanti
 tautologies to true whereas forward subsumption redu
essubsumed 
lauses to true. Obvious redu
tion eliminates trivial literals [29℄.Ground subterm redundan
y is shown in Algorithm 1 and explained in detailin the next Chapter 3.Ground subterm redundan
y only applies to ground 
lauses. Therefore,the following de�nition introdu
es an instan
e of 
ontextual rewriting onlyworking on ground 
lauses. Further, it adapts 
ontextual rewriting su
hthat it impli
itly only 
onsiders 
lauses from ND��C� . This is in parti
ularguaranteed by 
ondition 2-3 below that limits the 
lauses used for redu
tionsto so 
alled universally redu
tive 
lauses.De�nition 2 (Re
ursive Contextual Ground Rewriting) If N is a 
lauseset, D 2 N , C 0 ground, � a substitution then the redu
tionsR D = �1 ! �1; s � t C 0 = �2; u[s�℄ � v ! �2�1 ! �1; s � t�2; u[t�℄ � v ! �28



R D = �1 ! �1; s � t C 0 = �2 ! �2; u[s�℄ � v�1 ! �1; s � t�2 ! �2; u[t�℄ � vwhere the following 
onditions are satis�ed1. s� is a stri
tly maximal term in D�2. u[s�℄ � v � s� � t�3. vars(s) = vars(D)4. (�2 ! A) is ground subterm redundant for all A in �1�5. (A! �2) is ground subterm redundant for all A in �1�are 
alled re
ursive 
ontextual ground rewriting.Condition 2-1 and 
ondition 2-2 ensure the ordering restri
tions requiredby 
ontextual rewriting. Condition 2-3 implies that D� is ground. A 
lauseD meeting 
ondition 2-1 and 
ondition 2-3 is 
alled strongly universally redu
-tive. Condition 2-4 and 
ondition 2-5 re
ursively apply the ground subtermredundan
y 
riterion.The ground subterm redundan
y 
riterion is terminating sin
e C 0 is re-du
ed to a smaller ground 
lause. As a 
onsequen
e, also the ground sub-term redundan
y pro
edure (Algorithm 1) is terminating. Eventually, ourtop level instan
e of 
ontextual rewriting, the subterm 
ontextual rewritingrule, be
omes the below rule.De�nition 3 (Subterm Contextual Rewriting) Let N be a 
lause set,C;D 2 N , � be a substitution then the redu
tionsR D = �1 ! �1; s � t C = �2; u[s�℄ � v ! �2�1 ! �1; s � t�2; u[t�℄ � v ! �2R D = �1 ! �1; s � t C = �2 ! �2; u[s�℄ � v�1 ! �1; s � t�2 ! �2; u[t�℄ � vwhere the following 
onditions are satis�ed9



1. s� � t�2. C � D�3. � maps all variables from C;D� to fresh Skolem 
onstants4. (�2 ! A)� is ground subterm redundant for all A in �1�5. (A! �2)� is ground subterm redundant for all A in �1�are 
alled subterm 
ontextual rewriting.Note that unit rewriting and non-unit rewriting [29℄ are also instan
es ofthe subterm 
ontextual rewriting rule. Note further that the 
onditions forthe subterm 
ontextual rewriting rule are weaker 
ompared to the re
ursive
ontextual ground rewriting rule: the right premise needs not to be groundand the equation s � t needs not to be maximal in the �rst premise. Subterm
ontextual rewriting uses re
ursive 
ontextual ground rewriting to e�e
tivelyde
ide the side 
onditions.In addition to the rewriting style, where subterms are repla
ed by simplerones, the general idea of 
ontextual rewriting 
an also be used to a
tuallyeliminate literals, resulting in a generalization of mat
hing repla
ement res-olution [29℄. This variant then also uses negative literals for redu
tions.De�nition 4 (Subterm Contextual Literal Elimination) Let N be a
lause set, C;D 2 N , � be a substitution then the redu
tionsR D = �1 ! �1; s � t C = �2; u � v ! �2�1 ! �1; s � t�2 ! �2R D = �1; s � t! �1 C = �2 ! �2; u � v�1 ! �1; s � t�2 ! �2where the following 
onditions are satis�ed1. s� = u and t� = v2. C � D�3. � maps all variables from C;D� to fresh Skolem 
onstants10



4. (�2 ! A)� is ground subterm redundant for all A in �1�5. (A! �2)� is ground subterm redundant for all A in �1�are 
alled subterm 
ontextual rewriting.
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3 ImplementationThe implementation of Spass [29℄ fo
uses on a sophisti
ated redu
tion ma-
hinery. The Spass main loop operates on two 
lause sets: WorkedO� andUsable. The WorkedO� set 
ontains the 
lauses whi
h have been pro
essedand the Usable set 
ontains the 
lauses whi
h have to be 
onsidered forfurther inferen
es. When Spass is started WorkedO� is empty and Usable
ontains all input 
lauses. Then in ea
h iteration of the main loop Spass
hooses one 
lause C from Usable and moves it to WorkedO�. Then it 
om-putes all inferen
es of C with 
lauses of WorkedO�. Ea
h inferen
ed 
lauseC 0 is then fully interredu
ed using 
lauses of WorkedO� [Usable. This pro-
ess is 
alled forward redu
tion. After that it redu
es all 
lauses of WorkedO�and Usable by using C 0 whi
h is 
alled ba
kward redu
tion. After having per-formed forward redu
tion and ba
kward redu
tion, the 
lause sets WorkedO�and Usable are fully interredu
ed with respe
t to C. This is the well-knownOtter loop that 
onsiders all 
lauses for redu
tion in 
ontrast to a more lazyapproa
h only 
onsidering WorkedO� 
lauses, 
alled Dis
ount loop.The integration of 
ontextual rewriting into the Spass main loop 
onsistsof two steps. First, the sear
h for appropriate 
ontextual rewrite appli
ation
andidates. This is analogous to the 
ase of unit rewriting and non-unitrewriting. Finding appropriate rewrite 
andidates is realized in Spass viasubstitution trees [29, 15℄. The following shows the non-unit rewriting rule.Non-Unit RewritingR D = �1 ! �1; s � t C = �2; u[s�℄ � v ! �2�1 ! �1; s � tC 00 = �2; u[t�℄ � v ! �2R D = �1 ! �1; s � t C = �2 ! �2; u[s�℄ � v�1 ! �1; s � tC 00 = �2 ! �2; u[t�℄ � v12



where (i) s � t and (ii) �1� � �2;�1� � �2In order to rewrite a 
lause C the implementation of unit and non-unitrewriting tries to redu
e ea
h subterm s� of C. Therefore, for ea
h subterms� the pro
edure queries the substitution tree whether there exist a 
andidateterm s. If there exists su
h a term then the substitution tree returns stogether with the mat
her �. After retrieving the 
lause D of whi
h term sis a subterm, the requirements (i) and (ii) are veri�ed. If they are ful�lledthen C is rewritten else the implementation queries the substitution tree forthe next 
andidate term. The retrieval is realized in an iterative way be
ausethe �rst hit is a
tually already used for redu
tion.The se
ond step for integrating 
ontextual rewriting into Spass is to 
he
kthe side 
onditions that require an e�e
tive implementation of the groundsubterm redundan
y 
he
k. First of all, it is too 
ostly to expli
itly 
omputethe Skolem substitution � for ea
h 
lause (� ! �)� subje
t to the groundsubterm redundan
y 
riterion. Applying � expli
itly requires to allo
atememory for the new 
onstants, the resulting terms and the new 
lause and itrequires additional 
omputations to build the 
lause. Be
ause of the re
ursivestru
ture of the redundan
y 
riterion this is not feasible. Therefore, oursolution is to simply treat variables as 
onstants in the implementation ofthe redundan
y 
riterion.In Spass 
onstants are fun
tion obje
ts of arity zero. If the implemen-tation of subterm 
ontextual rewriting repla
ed the variables of the 
lause� ! � expli
itly by fresh 
onstants, then it would 
reate for ea
h variablea fun
tion obje
t and insert it into the pre
eden
e with lowest pre
eden
e.Therefore, the term symbols of the new 
onstants are ordered to ea
h otheras well as to the other term symbols. On the other hand variables are repre-sented as integers in Spass whi
h impli
itly orders them. Whenever we 
on-sider variables to be 
onstants we assume them to have a lower pre
eden
ethan any other non-variable symbol of the signature. As a 
onsequen
e, ifwe adapt the ordering modules (KBO, RPOS) su
h that they treat variablesin the above way, then our approa
h has the same properties with respe
t toordering 
omputation as 
reating 
onstants expli
itly.If variables are interpreted as 
onstants the standard pro
edure of Spassfor �nding appropriate rewrite 
andidates remains un
hanged. Let t be aterm, u a 
onstant, x a variable and I the term index 
ontaining all termso

urring in the 
lause set N . A generalization for the term t[u℄ is a tuple(t0; �0), su
h that t[t0�0℄ = t[u℄ where t0 is a term and �0 is a substitution.The lookup fun
tion for the retrieval of generalizations in the index I willreturn the same terms for t[x℄ as for t[u℄. In more detail, this means thatfor all generalizations (t1; �1) of t[u℄ in I there is a generalization (t2; �2) of13



GroundSubtermRedundant(CLAUSE C, CLAUSE SET N);1 Rewritten=True;2 while Rewritten do3 Rewritten=False;4 if IsEmpty(C) then return False;5 if IsTautology(C) then return True ;6 if ForwardSubsumption(C, N) then return True;7 if ObviousRedu
tion(C) then Rewritten=True;8 if Re
ursiveContextualGroundRewriting(C, N) then9 Rewritten=True ;end10 return False11 Algorithm 1: GroundSubtermRedundantt[x℄ in I with t1 = t2 and �1 is equal to �2 where all o

urren
es of u in the
o-domain of �1 are repla
ed by x. Consequently, the lookup for appropriaterewrite 
andidates is independent of the interpretation of the variables.In the following we present the implementation of the ground subtermredundan
y 
he
k and verify that it works exa
tly like an implementationthat 
reates Skolem 
onstants expli
itly.The implementation is depi
ted in Algorithm 1 and uses tautology 
he
k,forward subsumption and obvious redu
tions from the redu
tion pro
edureof Spass. These are the pro
edures implemented in Spass ex
ept that theywork with respe
t to the modi�ed ordering pro
edures that interpret variablesas 
onstants. As explained above the retrieval of 
andidate terms of forwardsubsumption remains un
hanged.Algorithm 1 expe
ts as input a 
lause C and a 
lause set N and redu
esC with respe
t to N in the main loop. The redu
tions performed on 
lauseC in Algorithm 2 
hange C destru
tively. IsEmpty(C) 
he
ks whether thegiven 
lause is the empty 
lause. IsTautology(C) 
he
ks if j= C. This isrealized via a 
ongruen
e 
losure algorithm testing whether a positive literalis implied by the negative literals.ForwardSubsumption(C, N) 
he
ks whether C is already subsumed by
lauses from N . R �1 ! �1 �2 ! �2�1 ! �1where �1 � �2 and �1 � �2. 14



Re
ursiveContextualGroundRewriting(CLAUSE C[u[u0℄ � v℄,1 CLAUSE SET N);G = generalSDT (N; u0);2 forea
h (s; �) 2 G do3 Lits = LiteralsContainingTerm(s);4 forea
h (s � t) 2 Lits s.t. s� � t� do5 D = LiteralOwningClause(s � t);6 if (vars(s) � vars(D) ^7 u[s�℄ � v � s� � t� ^8 s� stri
tly maximal term in D� ^9 8A 2 Ante(D�) GroundSubtermRedundant(�! A) ^10 8A 2 Su

(D�) GroundSubtermRedundant(A! �))11 thenreturn C[u[t�℄ � v℄;12 end13 end14 end15 Algorithm 2: Re
ursiveContextualGroundRewritingObviousRedu
tion(C) implements the following rulesR �! �; s � t; s � t�! �; s � tand R�; s � t; s � t! ��; s � t! �and R�! �; t � t�! �and R�; t � t! ��! �and R�; x � t! ��! � if x 62 (� [�)Further details 
an be found in the Spass Handbook [31℄.15



Re
ursiveContextualGroundRewriting(C, N), depi
ted in Al-gorithm 2, implements re
ursive 
ontextual ground rewriting. The variableso

urring in C are interpreted as 
onstants in the sense explained above.The 
all to generalSDT (N; u0) (line 2) returns the set of generalizations Gfrom N of u0 and the respe
tive mat
her �. Then the pro
edure 
omputesfor ea
h of the generalizations the literals and the 
lauses where they o

ur.The 
andidate 
lauses are then 
he
ked for the non-re
ursive side 
ondi-tions of 
ontextual rewriting. Be
ause of the 
onditions vars(s) = vars(D)(line 7) and s� is stri
tly maximal term in D� (line 8) the rewrite 
lause D isstrongly universally redu
tive. This means that � has all variables of D in itsdomain. The substitution � repla
es all variables of D by terms o

urring inC. Therefore, D� 
ontains only variables o

urring in C whi
h we assume tobe 
onstants. As a 
onsequen
e, this pro
edure neither introdu
es any newSkolem 
onstants nor does it 
hange the pre
eden
e of them. Therefore, theordering 
he
k (line 8) is implemented using the above-explained, modi�edordering modules treating variables as 
onstants. Additionally, building thesubproblems (line 10 { line 11) does also not 
hange the Skolem 
onstants norintrodu
e new ones. For ea
h of these subproblems Re
ursiveContextu-alGroundRewriting re
ursively 
alls GroundSubtermRedundant.Interpreting variables as Skolem 
onstants during the re
ursive appli
a-tion of GroundSubtermRedundant results exa
tly in the same behaviorwhere expli
itly new 
onstant obje
ts are introdu
ed, but saves time andmemory.The implementation of subterm 
ontextual rewriting and subterm 
on-textual literal elimination is analogous to the implementation of re
ursive
ontextual ground rewriting. The di�eren
e is that the input 
lause C is notinterpreted to be ground and the lo
al side 
onditions (line 7 - line 9) are
hanged with respe
t to the de�nition of subterm 
ontextual rewriting andsubterm 
ontextual literal elimination, respe
tively.Algorithm 3 depi
ts the forward redu
tion pro
edure of Spass wheresubterm 
ontextual rewriting is integrated. Note that the input 
lause C isdestru
tively 
hanged during the redu
tions.3.1 Integration of Unit and Non-Unit Rewrit-ingOur �rst major improvement over [32℄ is the integration of unit and non-unit rewriting into subterm 
ontextual rewriting. Considering the old Al-gorithm 3 standard rewriting (line 8), namely unit and non-unit rewriting,16



ForwardRedu
tion(CLAUSE C, CLAUSE SET N);1 Rewritten=True;2 while Rewritten do3 Rewritten=False;4 if IsTautology(C) then return True;5 if ObviousRedu
tion(C) then Rewritten=True;6 if ForwardSubsumption(C;N) then return True;7 if Rewriting(C;N) then Rewritten = True;8 if SubtermContextualRewrting(C;N) then9 Rewritten=True;end10 return (C)11 Algorithm 3: ForwardRedu
tionwas implemented independently from 
ontextual rewriting (line 9) in the �rstimplementation [32℄. As a result our previous implementation sear
hes theindex stru
ture for �nding appropriate standard rewriting 
andidates andthen sear
hes the index again for �nding 
andidates for 
ontextual rewriting.In order to save queries to the index and side 
ondition 
he
ks we nested stan-dard rewriting into 
ontextual rewriting resulting in the pro
edure depi
tedin Algorithm 4.The pro
edure IsUnit (line 7) 
he
ks if the 
lause given as argumentis a unit. If both C and D� are unit 
lauses then C 
an be rewritten.SubsumesBasi
 
he
kes if the literals of C ex
ept literal u[u0℄ � v subsumeall literals of D� ex
ept literal s� � t�. Analogously, we extended re
ursive
ontextual ground rewriting by unit and non-unit rewriting.The integration of unit and non-unit rewriting into 
ontextual rewritingpotentially 
hanges the proof sear
h strategy be
ause 
lauses are redu
ed indi�erent order. Con
erning Algorithm 3 rewriting (line 8) is performed onan input 
lause C before subterm 
ontextual rewriting. The pro
edure im-plementing rewriting redu
es the 
lause C using all 
lauses of N . When nofurther redu
tion with rewriting is possible then subterm 
ontextual rewrit-ing redu
es C using N . After integrating standard rewriting into subterm
ontextual rewriting this is done in parallel. The 
lause set N is pro
essedonly on
e. Ea
h time a 
andidate 
lause is retrieved the pro
edure 
he
ks ifstandard rewriting is possible. If it is not possible then it immediately 
he
kswhether 
ontextual rewriting is possible. This potentially 
hanges the proofsear
h strategy, be
ause the 
lauses are redu
ed in a di�erent order.17



SubtermContextualRewriting(CLAUSE C[u[u0℄ � v℄,1 CLAUSE SET N);G = generalSDT (N; u0);2 forea
h (s; �) 2 G do3 Lits = LiteralsContainingTerm(s);4 forea
h (s � t) 2 Lits s.t. s� � t� do5 D = LiteralOwningClause(s � t);6 if (IsUnit(C) ^ IsUnit(D�)) then return C[u[t�℄ � v℄;7 else if SubsumesBasi
(C;D�) then return C[u[t�℄ � v℄;8 else if (u[s�℄ � v � s� � t� ^9 s� stri
tly maximal term in D� ^10 8A 2 Ante(D�)11 GroundSubtermRedundant(�! A) ^8A 2 Su

(D�)12 GroundSubtermRedundant(A! �))thenreturn C[u[t�℄ � v℄;13 end14 end15 end16 Algorithm 4: SubtermContextualRewriting3.2 Fault Ca
hingTesting a term whether it 
an be rewritten using 
ontextual rewriting might
ause to perform many pro
edure 
alls be
ause of the mutual re
ursive stru
-ture of the side 
onditions. Memorizing terms that have been identi�ed notto be redu
ible saves a lot of 
omputation.The 
a
he itself is realized via a term indexing stru
ture be
ause thisprovides all the fun
tionality for storing and querying terms that we need.Furthermore, Spass already provides this data stru
ture via substitutiontrees as explained above. Substitution trees return for a query term a gen-eralization together with the respe
tive substitution. Let t be a term wewant to 
he
k whether it is already in the fault 
a
he. If the substitutiontree returns a term t0 and a substitution � then t0� = t. If � only substi-tutes variables of t by variables then t is not subterm ground redundant ifwe 
onsider the same 
ontext.We modi�ed the implementation of re
ursive 
ontextual ground rewritingsu
h that ea
h time a term is 
onsidered for rewriting the algorithm �rst18



queries the 
a
he. If the term is in the 
a
he then this term is not 
onsideredfor rewriting. If it is not in the 
a
he and neither standard rewriting norsubterm 
ontextual rewriting was possible then the algorithm inserts it intothe 
a
he. On
e a term was in
luded in the 
a
he it remains there. We use aglobal 
a
he for the implementation in order to avoid as mu
h 
omputationas possible.This is an approximation be
ause a term that is not redu
ible in the 
on-text of one 
lause might be redu
ible in the 
ontext of another 
lause. Fur-ther, for 
he
king whether a term is in the fault 
a
he, the implementation
onsiders terms that are generalizations with respe
t to variable mappings.Be
ause variables are interpreted as 
onstants the 
a
he might reje
t termsthat are redu
ible with another ordering of the variables. Remember thatvariables are interpreted as Skolem 
onstants. The fault 
a
he is also 
om-patible with splitting. If a term is inserted into the 
a
he in a split bran
hthat is not valid anymore, it does not produ
e wrong results be
ause we havea purely negative 
a
he whi
h only ex
ludes terms that 
ould be possiblyrewritten. As a 
onsequen
e, we lose possible appli
ations of a 
ontextualrewriting step. If we also stored terms that 
an be redu
ed, this approa
hwould not work be
ause if a term 
ould be identi�ed to be redu
ible in a splitbran
h then this term does not have to be redu
ible in another bran
h. Inthis 
ase we need to 
a
he 
lauses and have to 
onsider ba
ktra
king updatesby the splitting. Similarly, if a term is redu
ible in the 
ontext of one 
lausewith 
ontextual rewriting, this does not have to be the 
ase in the 
ontext ofanother 
lause. However, the below results show that this heuristi
 performswell on pra
ti
al instan
es.

19



4 Results4.1 Results on the TPTPIn this 
hapter we evaluate the implementations of 
ontextual rewriting inSpass, presented in the last 
hapter, by 
omparing it to the 
urrent standard
on�guration of Spass.As test samples we used the TPTP 3.2.0 [27℄ whi
h is a library 
onsistingof 8984 problems for testing automated theorem proving systems. As refer-en
e we run Spass version 3.1 that is version 3.0 extended by some bug �xeswith default 
on�guration. For the sample runs we integrated 
ontextualrewriting and the respe
tive improvements in this version of Spass. All sam-ple runs were performed with Spass options set to -RFRew=4 -RBRew=3-RTaut=2 . This means that both subterm 
ontextual rewriting and subterm
ontextual literal elimination are a
tivated for forward rewriting, subterm
ontextual rewriting is a
tivated for ba
kward redu
tions and semanti
 tau-tology 
he
ks are a
tivated. The hardware setup 
onsisted of Opteron nodesrunning at speed of 2.4 GHz equipped with 4 GB RAM for ea
h node. Forthe sample run as well as for the referen
e run we set a time limit of 300se
onds for ea
h problem.The problems of the TPTP are ranked from 0:00 to 1:00 indi
ating theirdiÆ
ulty. Basi
ally, the value expresses how many of the 
urrent existingprovers were able to solve a parti
ular problem. This means that problemswith rating 1:00 have not been solved by any prover so far. For further detailswe refer to [28℄. We 
ompare Spass 
ontaining our new improvements to theoriginal Spass with respe
t to the di�erent rankings of problems. All proofsthat Spass with 
ontextual rewriting 
ould �nd additionally were 
he
kedby the Spass proof 
he
ker.The results of running Spass 
ontaining our �rst implementation of 
on-textual rewriting are depi
ted in Table 4.1. This version found 85 additionalproofs and lost 143 proofs 
ompared to the run without 
ontextual rewritingif we 
onsider all problems. If we 
onsider problems with rank greater then20



0.65 then Table 4.1 shows that 
ontextual rewriting solves more problemsthan it loses. The higher the rank the better are the results of 
ontextualrewriting 
ompared to the referen
e version. If we 
onsider problems withthreshold greater than 0.9, Spass with 
ontextual rewriting found 21 addi-tional proofs and lost none. It even 
ould solve �ve additional problems.threshold lost won0.00 143 850.50 80 690.65 48 610.80 3 420.90 0 211.00 0 5Table 4.1: Contextual rewriting, 300 se
onds time limitFirst we did not understand why 
ontextual rewriting lost so many easyproblems. Then by inspe
ting some of the lost problems we 
ould identify tworeasons. First, the a
tual proof found by the standard version of Spass gotlost through a 
ontextual rewriting appli
ation. Se
ond, a 
all to a 
ontextualrewriting pro
edure took so long that Spass did not �nish within the timelimit although the referen
e run terminated within millise
onds. Therefore,we improved our implementation of 
ontextual rewriting a

ording to thelines of Chapter 3.4.1.1 Integrated Unit and Non-Unit RewritingThe integration of unit and non-unit rewriting into the implementation of
ontextual rewriting improved the results signi�
antly. Although more prob-lems were lost than before more 
ould be additionally solved. This improve-ment narrowed the gap between solved and lost problems. Table 4.2 depi
tsthe results.Considering all problems the version with integrated unit and non-unitrewriting found 152 additional proofs and lost 119. It still solves hard prob-lems whereas it is able to solve more easy on
e.4.1.2 Fault Ca
hingAfter additionally integrating the fault 
a
he in the 
ontextual rewritingpro
edure the results further improved as Table 4.3 depi
ts. Spass found 13221



threshold lost won0.0 152 1190.5 88 710.65 51 620.8 4 360.9 0 201.0 0 5Table 4.2: Integrated Unit and Non-Unit Rewriting, 300 se
onds time limitadditional problems whereas it only lost 67. This implementation improvedmu
h on the easy problems but 
ould solve new diÆ
ult problems, too. Evenone additional problem that has not been solved before.threshold lost won0.0 67 1320.5 43 810.65 23 710.8 3 400.9 0 221.0 0 6Table 4.3: Contextual Rewriting with Ca
hing, 300 se
onds time limitThe following table 
ompares Spass with 
ontextual rewriting and allimprovements with a time limit of 900 se
onds to the referen
e run. We seethat almost half of the 67 lost problems 
ould be regained by in
reasing thetime limit.The six new problems that we 
ould solve are all from the software model
he
king 
ategory of the TPTP. The problems are: SWC308+1, SWC329+1,SWC345+1, SWC342+1, SWC261+1, SWC335+1. This is not a surpriseas 
ontextual rewriting 
an for example employ 
onditional a

ess fun
tionde�nitions for redu
tion. For example, a list element a

ess fun
tion that�rst 
he
ks for emptiness is perfe
tly mat
hed by our subterm 
ontextualrewriting rule.It was a surprise to us that the implementation of 
ontextual rewritingdid not improve on satis�able problems. In the �rst implementation we evenlost seven problems and did not terminate on problems where the referen
eversion did. After the integration of unit and non-unit rewriting we even22



threshold lost won0.0 38 1900.5 23 990.65 7 830.8 3 400.9 0 221.0 0 6Table 4.4: Contextual Rewriting with Ca
hing, 900 se
 run timelost eight problems. But also for satis�ability problems it turned out thatthe fault 
a
he is useful be
ause the version 
ontaining the fault 
a
he onlylost one problem. Running the version with 
a
hing and a time limit of 900se
onds still lost this parti
ular problem but additionally terminated on threeproblems. We are wondering about that phenomenon be
ause 
ontextualrewriting is 
apable to in
rease the number of problems where Spass 
anterminate on. An example for su
h a problem is the introdu
tory examplewhi
h is shown in more detail in the next se
tion. The TPTP version 3.2.0does not 
ontain su
h problems.4.2 Appli
ation to the Example from the In-trodu
tionIn this part we depi
t the appli
ation of approximated re
ursive 
ontextualrewriting on the introdu
tory example in detail. Therewith, we show thatsuperposition together with our instan
e of 
ontextual rewriting terminateson this example. Spass with 
ontextual rewriting is able to saturate the
lause set from se
tion 1 whereas Spass without 
ontextual rewriting is not.Re
all that we 
an redu
e 
lause 5 with 
lause 3 using 
ontextual rewritingif the side 
onditions are ful�lled. The ground 
lauses8 : i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; b � a! i(x1) � b9 : i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; b � a! q(f(x2; r(x3; y1))) � bmust be entailed by 
lauses fromNC . Clause 8 is a tautology whereas 
lause 9
an be rewritten with 
lause 3 to10: i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; a � b! a � busing 
ontextual rewriting if in addition the 
lauses11: i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; a � b! i(x2) � b12: i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; a � b! q(r(x3; y1)))) � bare also entailed by 
lauses from NC . Clause 11 is a synta
ti
 tautology and23




lause 12 is subsumed by 
lause 2.
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5 SummaryIn summary, 
ontextual rewriting is 
ostly but it helps solving diÆ
ult prob-lems. Our 
urrent implementation improves signi�
antly over our �rst sug-gestion [32℄. It a
tually gains more problems than it loses and is able tosolve many diÆ
ult problems. The Spass version des
ribed in this paperand used for the experiments 
an be obtained from the Spass homepage(http://spass-prover.org/) following the prototype link.

25



Bibliography[1℄ L. Ba
hmair and H. Ganzinger. On restri
tions of ordered paramodula-tion with simpli�
ation. In 10th International Conferen
e on AutomatedDedu
tion, CADE-10, volume 449 of LNCS, pages 427{441. Springer,1990.[2℄ L. Ba
hmair and H. Ganzinger. Rewrite-based equational theorem prov-ing with sele
tion and simpli�
ation. Journal of Logi
 and Computation,4(3):217{247, 1994.[3℄ L. Ba
hmair and H. Ganzinger. Resolution theorem proving. InA. Robinson and A. Voronkov, editors, Handbook of Automated Rea-soning, volume 1, 
hapter 2, pages 19{100. North Holland, 2001.[4℄ L. Ba
hmair, H. Ganzinger, and U. Waldmann. Superposition withsimpli�
ation as a de
ision pro
edure for the monadi
 
lass with equality.In Computational Logi
 and Proof Theory, volume 713 of LNCS, pages83{96, 1993.[5℄ P. Balbiani. Equation solving in geometri
al theories. In Dershowitzand Lindenstrauss [9℄, pages 31{50.[6℄ P. Bernays and M. S
h�on�nkel. Zum ents
heidungsproblem der mathe-matis
hen logik. Mathematis
he Annalen, 99:342{372, 1928.[7℄ C. Brinker. Geometris
hes s
hliessen mit spass. Diplomarbeit,Universit�at des Saarlandes and Max-Plan
k-Institut f�ur Informatik,Saarbr�u
ken, Germany, 2000. Supervisors: H. Ganzinger, C. Weiden-ba
h.[8℄ C.-L. Chang and R. C.-T. Lee. Symboli
 Logi
 and Me
hani
al TheoremProving. Computer S
ien
e and Applied Mathemati
s. A
ademi
 Press,1973. 26



[9℄ N. Dershowitz and N. Lindenstrauss, editors. Conditional and TypedRewriting Systems, 4th International Workshop, CTRS-94, Jerusalem,Israel, July 13-15, 1994, Pro
eedings, volume 968 of Le
ture Notes inComputer S
ien
e. Springer, 1995.[10℄ P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the 
ommonsubexpression problem. J. ACM, 27(4):758{771, 1980.[11℄ C. G. Ferm�uller, A. Leits
h, U. Hustadt, and T. Tamet. Resolution de
i-sion pro
edures. In A. Robinson and A. Voronkov, editors, Handbook ofAutomated Reasoning, volume II, 
hapter 25, pages 1791{1849. Elsevier,2001.[12℄ H. Ganzinger and H. de Nivelle. A superposition de
ision pro
edure forthe guarded fragment with equality. In LICS, pages 295{304, 1999.[13℄ H. Ganzinger and R. Nieuwenhuis. The saturate system 1994.http://www.mpi-sb.mpg.de/SATURATE/Saturate.html, 1994.[14℄ H. Ganzinger, R. Nieuwenhuis, and P. Nivela. Fast term indexing with
oded 
ontext trees. J. Autom. Reasoning, 32(2):103{120, 2004.[15℄ P. Graf. Term Indexing, volume 1053 of LNAI. Springer-Verlag, 1995.[16℄ U. Hustadt, R. A. S
hmidt, and L. Georgieva. A survey of de
idable �rst-order fragments and des
ription logi
s. Journal of Relational Methodsin Computer S
ien
e, 1:251{276, 2004.[17℄ F. Ja
quemard, C. Meyer, and C. Weidenba
h. Uni�
ation in extensionsof shallow equational theories. In Pro
eedings of RTA-98, volume 1379of LNCS, pages 76{90. Springer, 1998.[18℄ B. Konev, R. A. S
hmidt, and S. S
hulz, editors. Pro
eedings of the FirstInternational Workshop on Pra
ti
al Aspe
ts of Automated Reasoning,Sydney, Australia, August 10-11, 2008, volume 373 of CEUR WorkshopPro
eedings. CEUR-WS.org, 2008.[19℄ R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem prov-ing. In A. Robinson and A. Voronkov, editors, Handbook of AutomatedReasoning, volume I, 
hapter 7, pages 371{443. Elsevier, 2001.[20℄ P. Nivela and R. Nieuwenhuis. Saturation of �rst-order (
onstrained)
lauses with the Saturate system. In C. Kir
hner, editor, Rewriting Te
h-niques and Appli
ations, 5th International Conferen
e, RTA-93, volume27



690 of Le
ture Notes in Computer S
ien
e, LNCS, pages 436{440, Mon-treal, Canada, June 16{18, 1993. Springer.[21℄ G. E. Peterson. A te
hnique for establishing 
ompleteness results intheorem proving with equality. SIAM Journal of Computation, 12(1):82{100, February 1983.[22℄ I. V. Ramakrishnan, R. C. Sekar, and A. Voronkov. Term indexing. InRobinson and Voronkov [26℄, pages 1853{1964.[23℄ A. Riazanov and A. Voronkov. EÆ
ient instan
e retrieval with standardand relational path indexing. Inf. Comput., 199(1-2):228{252, 2005.[24℄ G. Robinson and L. Wos. Paramodulation and theorem-proving in �rst-order theories with equality. In B. Meltzer and D. Mi
hie, editors, Ma-
hine Intelligen
e 4, pages 135{150, 1969.[25℄ J. A. Robinson. A ma
hine-oriented logi
 based on the resolution prin-
iple. Journal of the ACM, 12(1):23{41, January 1965.[26℄ J. A. Robinson and A. Voronkov, editors. Handbook of Automated Rea-soning (in 2 volumes). Elsevier and MIT Press, 2001.[27℄ G. Sut
li�e and C. Suttner. The TPTP Problem Library: CNF Releasev1.2.1. Journal of Automated Reasoning, 21(2):177{203, 1998.[28℄ G. Sut
li�e and C. Suttner. Evaluating General Purpose AutomatedTheorem Proving Systems. Arti�
ial Intelligen
e, 131(1-2):39{54, 2001.[29℄ C. Weidenba
h. Combining superposition, sorts and splitting. InA. Robinson and A. Voronkov, editors, Handbook of Automated Rea-soning, volume 2, 
hapter 27, pages 1965{2012. Elsevier, 2001.[30℄ C. Weidenba
h, U. Brahm, T. Hillenbrand, E. Keen, C. Theobald, andD. Topi
. SPASS version 2.0. In A. Voronkov, editor, Pro
eedings ofthe 18th International Conferen
e on Automated Dedu
tion (CADE-18),volume 2392 of Le
ture Notes in Arti�
ial Intelligen
e, pages 275{279,Kopenhagen, Denmark, 2002. Springer.[31℄ C. Weidenba
h, R. S
hmidt, and E. Keen. Spass handbook version 3.0.Contained in the do
umentation of SPASS Version 3.0, 2007.[32℄ C. Weidenba
h and P. Wis
hnewski. Contextual rewriting in spass. InKonev et al. [18℄. 28



Below you �nd a list of the most re
ent te
hni
al reports of the Max-Plan
k-Institut f�ur Informatik. Theyare available via WWW using the URL http://www.mpi-inf.mpg.de. If you have any questions 
on
ern-ing WWW a

ess, please 
onta
t reports�mpi-inf.mpg.de. Paper 
opies (whi
h are not ne
essarily freeof 
harge) 
an be ordered either by regular mail or by e-mail at the address below.Max-Plan
k-Institut f�ur InformatikLibraryattn. Anja Be
kerStuhlsatzenhausweg 8566123 Saarbr�u
kenGERMANYe-mail: library�mpi-inf.mpg.de .MPI-I-2008-5-003 F.M. Su
hanek, G. de Melo, A. Pease Integrating Yago into the Suggested Upper MergedOntologyMPI-I-2008-5-002 T. Neumann, G. Moerkotte Single Phase Constru
tion of Optimal DAG-stru
turedQEPsMPI-I-2008-5-001 F. Su
hanek, G. Kasne
i,M. Ramanath, M. Sozio, G. Weikum STAR: Steiner Tree Approximation inRelationship-GraphsMPI-I-2008-1-001 D. Ajwani Chara
terizing the performan
e of Flash memorystorage devi
es and its impa
t on algorithm designMPI-I-2007-RG1-002 T. Hillenbrand, C. Weidenba
h Superposition for Finite DomainsMPI-I-2007-5-003 F.M. Su
hanek, G. Kasne
i,G. Weikum Yago : A Large Ontology from Wikipedia and WordNetMPI-I-2007-5-002 K. Berberi
h, S. Bedathur,T. Neumann, G. Weikum A Time Ma
hine for Text Sear
hMPI-I-2007-5-001 G. Kasne
i, F.M. Su
hanek, G. Ifrim,M. Ramanath, G. Weikum NAGA: Sear
hing and Ranking KnowledgeMPI-I-2007-4-008 J. Gall, T. Brox, B. Rosenhahn,H. Seidel Global Sto
hasti
 Optimization for Robust andA

urate Human Motion CaptureMPI-I-2007-4-007 R. Herzog, V. Havran, K. Myszkowski,H. Seidel Global Illumination using Photon Ray SplattingMPI-I-2007-4-006 C. Dyken, G. Ziegler, C. Theobalt,H. Seidel GPU Mar
hing Cubes on Shader Model 3.0 and 4.0MPI-I-2007-4-005 T. S
hultz, J. Wei
kert, H. Seidel A Higher-Order Stru
ture TensorMPI-I-2007-4-004 C. Stoll A Volumetri
 Approa
h to Intera
tive Shape EditingMPI-I-2007-4-003 R. Bargmann, V. Blanz, H. Seidel A Nonlinear Viseme Model for Triphone-Based Spee
hSynthesisMPI-I-2007-4-002 T. Langer, H. Seidel Constru
tion of Smooth Maps with Mean ValueCoordinatesMPI-I-2007-4-001 J. Gall, B. Rosenhahn, H. Seidel Clustered Sto
hasti
 Optimization for Obje
tRe
ognition and Pose EstimationMPI-I-2007-2-001 A. Podelski, S. Wagner A Method and a Tool for Automati
 Verii
ation ofRegion Stability for Hybrid SystemsMPI-I-2007-1-002 E. Althaus, S. Canzar A Lagrangian relaxation approa
h for the multiplesequen
e alignment problemMPI-I-2007-1-001 E. Berberi
h, L. Kettner Linear-Time Reordering in a Sweep-line Algorithm forAlgebrai
 Curves Interse
ting in a Common PointMPI-I-2006-5-006 G. Kasne
, F.M. Su
hanek,G. Weikum Yago - A Core of Semanti
 KnowledgeMPI-I-2006-5-005 R. Angelova, S. Siersdorfer A Neighborhood-Based Approa
h for Clustering ofLinked Do
ument Colle
tionsMPI-I-2006-5-004 F. Su
hanek, G. Ifrim, G. Weikum Combining Linguisti
 and Statisti
al Analysis toExtra
t Relations from Web Do
umentsMPI-I-2006-5-003 V. S
holz, M. Magnor Garment Texture Editing in Mono
ular VideoSequen
es based on Color-Coded Printing Patterns



MPI-I-2006-5-002 H. Bast, D. Majumdar, R. S
henkel,M. Theobald, G. Weikum IO-Top-k: Index-a

ess Optimized Top-k QueryPro
essingMPI-I-2006-5-001 M. Bender, S. Mi
hel, G. Weikum,P. Trianta�lou Overlap-Aware Global df Estimation in DistributedInformation Retrieval SystemsMPI-I-2006-4-010 A. Belyaev, T. Langer, H. Seidel Mean Value Coordinates for Arbitrary Spheri
alPolygons and Polyhedra in R3MPI-I-2006-4-009 J. Gall, J. Pottho�, B. Rosenhahn,C. S
hnoerr, H. Seidel Intera
ting and Annealing Parti
le Filters:Mathemati
s and a Re
ipe for Appli
ationsMPI-I-2006-4-008 I. Albre
ht, M. Kipp, M. Ne�,H. Seidel Gesture Modeling and Animation by ImitationMPI-I-2006-4-007 O. S
hall, A. Belyaev, H. Seidel Feature-preserving Non-lo
al Denoising of Stati
 andTime-varying Range DataMPI-I-2006-4-006 C. Theobalt, N. Ahmed, H. Lens
h,M. Magnor, H. Seidel Enhan
ed Dynami
 Re
e
tometry for RelightableFree-Viewpoint VideoMPI-I-2006-4-005 A. Belyaev, H. Seidel, S. Yoshizawa Skeleton-driven Lapla
ian Mesh DeformationsMPI-I-2006-4-004 V. Havran, R. Herzog, H. Seidel On Fast Constru
tion of Spatial Hierar
hies for RayTra
ingMPI-I-2006-4-003 E. de Aguiar, R. Zayer, C. Theobalt,M. Magnor, H. Seidel A Framework for Natural Animation of DigitizedModelsMPI-I-2006-4-002 G. Ziegler, A. Tevs, C. Theobalt,H. Seidel GPU Point List Generation through HistogramPyramidsMPI-I-2006-4-001 A. Efremov, R. Mantiuk,K. Myszkowski, H. Seidel Design and Evaluation of Ba
kward Compatible HighDynami
 Range Video CompressionMPI-I-2006-2-001 T. Wies, V. Kun
ak, K. Zee,A. Podelski, M. Rinard On Verifying Complex Properties using Symboli
 ShapeAnalysisMPI-I-2006-1-007 H. Bast, I. Weber, C.W. Mortensen Output-Sensitive Auto
ompletion Sear
hMPI-I-2006-1-006 M. Kerber Division-Free Computation of Subresultants UsingBezout Matri
esMPI-I-2006-1-005 A. Eigenwillig, L. Kettner, N. Wolpert Snap Rounding of B�ezier CurvesMPI-I-2006-1-004 S. Funke, S. Laue, R. Naujoks, L. Zvi Power Assignment Problems in WirelessCommuni
ationMPI-I-2005-5-002 S. Siersdorfer, G. Weikum Automated Retraining Methods for Do
umentClassi�
ation and their Parameter TuningMPI-I-2005-4-006 C. Fu
hs, M. Goesele, T. Chen,H. Seidel An Emperi
al Model for Heterogeneous Translu
entObje
tsMPI-I-2005-4-005 G. Kraw
zyk, M. Goesele, H. Seidel Photometri
 Calibration of High Dynami
 RangeCamerasMPI-I-2005-4-004 C. Theobalt, N. Ahmed, E. De Aguiar,G. Ziegler, H. Lens
h, M.A. Magnor,H. Seidel Joint Motion and Re
e
tan
e Capture for CreatingRelightable 3D VideosMPI-I-2005-4-003 T. Langer, A.G. Belyaev, H. Seidel Analysis and Design of Dis
rete Normals andCurvaturesMPI-I-2005-4-002 O. S
hall, A. Belyaev, H. Seidel Sparse Meshing of Un
ertain and Noisy Surfa
eS
attered DataMPI-I-2005-4-001 M. Fu
hs, V. Blanz, H. Lens
h,H. Seidel Re
e
tan
e from Images: A Model-Based Approa
h forHuman Fa
esMPI-I-2005-2-004 Y. Kazakov A Framework of Refutational Theorem Proving forSaturation-Based De
ision Pro
eduresMPI-I-2005-2-003 H.d. Nivelle Using Resolution as a De
ision Pro
edureMPI-I-2005-2-002 P. Maier, W. Charatonik, L. Georgieva Bounded Model Che
king of Pointer ProgramsMPI-I-2005-2-001 J. Ho�mann, C. Gomes, B. Selman Bottlene
k Behavior in CNF FormulasMPI-I-2005-1-008 C. Gotsman, K. Kaligosi,K. Mehlhorn, D. Mi
hail, E. Pyrga Cy
le Bases of Graphs and Sampled ManifoldsMPI-I-2005-1-007 I. Katriel, M. Kutz A Faster Algorithm for Computing a Longest CommonIn
reasing Subsequen
eMPI-I-2005-1-003 S. Baswana, K. Telikepalli Improved Algorithms for All-Pairs ApproximateShortest Paths in Weighted Graphs


