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Abstract

We prove exact results on dilations in cycles for important parallel computer intercon-
nection networks as complete trees, hypercubes and 2- and 3-dimensional meshes. Moreover
we show that trees, X-trees, n-dimensional meshes, pyramides and trees of meshes have the
same dilations both in the path and the cycle.

1 Introduction

A lot of work has been done in recent years in the study of the properties of interconnec-
tion networks for parallel computer systems [15]. An important feature of an interconnection
network is its ability to efficiently simulate programs written for other architectures. Such simu-
lation problem can be mathematically formulated as a graph embedding. Informally, the graph
embedding problem is to label the vertices of a "guest” graph (interconnection network) G by
distinct vertices of a "host” graph (network) H. The quality of the embedding corresponding
to the efficiency of the simulation (time delay of the communication among processors) is the
maximum distance in H between adjacent vertices in G. The minimum maximum distance
over all embeddings is called the dilation of G in H and denoted by dil(G, H). To know the
dilation of a graph G in a graph H can also help in such important tasks as the minimization
of wire lengths in VLSI layout [2] or the representation of a data structure by another data
structure [17)].

In this paper we shall investigate embeddings of well-known interconnection networks in
cycles. The importance of this task was pointed out by Chung [4]. We note that to decide
whether for a given graph G and a given number k, dil(G,C,) < k holds is NP-complete
(Cr denotes the cycle of n vertices). To our knowledge the only known exact result for the
dilation of graphs in cycles is dil(C, X Cj, Cp2) = n [14]. We prove several exact results for the
dilation of well-known interconnection networks in cycles, namely: dil(7;,, Cler-1-1)/(r~1)) =
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[t~ — 1)/(2(r — 1)(t — 1))], for complete r-level t-ary trees, dil(Qn, Cze) = Y722 (Lg J)’ for
n-dimensional hypercubes, dil(P, x P, x P,,Cps) = |3n?/4 4+ n/ 2], for 3-dimensional meshes
(where P, is an n-vertex path), dil(P,, X B,, Cpny) = dil(C,, X P,, Cmn) = dil(Cpy X Cp, Cprn) =
min{m,n}, for 2-dimensional ordinary, cylindrical and toroidal meshes, respectively. Thus we
solve three remaining open problems of the type *dil(X x Y, Z ) =?", where X, Y and Z are
paths or cycles. The result on dil(Pn X P,,Cnn) was independently achieved by Fujita and
Hsu [8] and Leighton [13]. The previously known results are: dil(Pn X P,, Pmn) = min{m,n}
[5, 7], dil(Cm X Pn, Prs) = min{m,2n} [6] and dil(Cm X Cn, Pmn) = 2min{m,n}, if m # n,
otherwise dil(C, x C,.)) = 2n — 1 [16].

' The proofs of the above stated results are based on the following technique. One can easily
observe that, for any graph G, dil(G, P,)/2 < dil(G,C,) < dil(G, P,). We find a suficient
condition for a graph G which assures the equality dil(G,C,) = dil(G, P,). We prove that
trees, X-trees, meshes, hypercubes, pyramides and tree of meshes satisfy the condition. Using
known optimal dilations of some of these networks (complete trees [4], hypercubes [10] and 2-
and 3-dimensional meshes [5, 7]) in paths we get the exact results on their dilations in cycles.

Our paper is organized as follows. Section 2 contains some basic definitions. The sufficient
condition assuring dil(G, C,) = dil(G, P,) is formulated and proved in Section 3. In Section
4 we apply the condition to obtain optimal embeddings of above mentioned graphs in cycles.
Finally, in Section 5 we discuss some possibilities for further investigation in this area.

2 Preliminaries

Let G = (Vg, Eg), H = (Va, Eg) be two graphs. An embedding of G into H is an injective
mapping ¢ : Vg — Vg. Let distg(z,y) denote the distance of vertices z, y in H. An important
measure of efficiency of the embedding is the so called dilation of ¢:

dily(G, B) = max {dista(d(u),4(v))}.

(uv)EEg
The dilation of G in H is defined as

dil(G, H) = min{dily(G, H)}.

Let P, (C,) denote an n-vertex path (cycle), respectively. Let Vp, = Vi, = {0,1,...,n — 1}
and EPg = {‘I.j : li_jl . 17 2,] € VP«...}) EC,.. = {lj : (i—j) mod n = 1) 2,] € VC'.}'

Let G1 = (W, E1), Gz = (V2, E;) be graphs. Then G; x G, denotes the graph with the set
of vertices V3 x V; and in which (3, 5), (r, s) are adjacent iff either i = r and js € Ep or j = s
and ir € E;. Further, G, U G; denotes the graph (V; U V;, E; U E,).

Let X and Y be two cycles which intersect in a path P of length at least 1. The sum of the
cycles X,Y is the cycle Z obtained from the graph X UY by deleting edges and inner vertices
of P. For more cycles the sum is defined inductively. For precise definition see e.g. [9] (Chapter
4). A set of cycles in a graph G is called basic if any cycle in G either belongs to the basic set
or can be expressed as a sum of cycles of the basic set. Trivially, the set of all cycles is a basic
set. For completeness assume that trees have emty basic sets.

Shrinking denotes the graph operation that deletes an edge zy in a graph G and identifies =
and y. The set of neighbours of the new vertex is the union of sets of neighbours of = and y in

G.

3 A sufficient condition

First, we mention two obvious but useful facts.



'Lemma 3.1
1. If P and P' are paths then dil(G, P) = dil(G, P').
2. If G is a subgraph of G' and H' is a subgraph of H then dil(G, H) < dil(G', H").

Theorem 3.1 Suppose that the set of all cycles in G of length < n/dil(G, P,) is a basic set.
Then

&il(G, C,) = dil(G, P,).

Proof: Idea of Proof. Assume that the dilations are different. Then there are two possibilities.
Either there exists a cycle in G which is "stretched” around C, or G is "wrapped” around
C,n. The first case implies that there exists a basic cycle which is stretched around C,. This
is impossible due to the assumptions. The second case implies an embedding of G into a path
with dilation not greater than dil(G, C,.).

Lemma 3.1 implies dil(G, C,)) < dil(G, P,). Suppose that dil(G, C,) < dil(G, F,).
Let ¢ : Vg — V¢, be the optimal embedding i.e.

min{|¢(z) — $(y)|,n — |6(z) — $(¥)|} < dil(G, C,)

for arbitrary adjacent vertices z,y € Vg. Let D C Vg X Vg such that (z,y) € D iff zy € Eg.
Define a function a : D — {-1,0,1} as follows:

| 0 if |¢(z) — é(y)| < dil(G,Ca)
a(za y) = 1 if ¢(z) - ¢(y) 2n-— dﬂ(G, Ca)
1 6(s)— dlg) < (G, C) —n.

Note that a(z,y) + a(y,z) = 0.

Lemma 3.2 For any cycle zoz12Z3...21-1 in G it holds

-1

Y oz, zi1) =0, (1)

=0
where z; = zo.

Proof: First, let us suppose that the cycle belongs to the basic set.

Define a mapping 9 : D — {set of directed pathsin C,} such that 9(z,y) is the shortest path
starting in ¢(z) and ending in ¢(y). Let |3(z,y)| be the length of the path. Consider the set
{¥(z;,2zi+1)| 2 =0,1,2,...,1 —1}. We assert that the set of paths does not cover the whole cycle
C,.. Indeed, we have

-1

Z [¥(zs, zi41)| < 1di(G, C,,) < ldil(G, P,) < n.

=0

Hence the set of the paths covers a path in C, with endvertices ¢(u) and ¢(v). Let us proceed
along the directed paths from the set {(z;,z:+1)| 2 = 0,1,2,...,I — 1} starting in ¢(u). Clearly,
the edge between 0 and n — 1 is traversed by the paths the same times in the clockwise and
counterclockwise direction. This implies that the number of 1’s and -1’s in (1) is the same.

If the cycle does not belong to the basic set we express the cycle as a sum of basic cycles
and proceed by induction on the legth m of the expression.



Assume m = 2. Let the cycle 2¢z;...2;-; be a sum of two basic cycles ZoZ3...TiY1.-.Yp, Where
Yp = To, and ZoYp—y...¥1%;..-21—1. Then

-1 -
D oz, zi1) = of20,21) + ... + a(ic1, 2:) + (@i, 31) + ... + a(yp-1, To)+

=0

+a(20,Yp-1) + .- + a(y1, 2:) + (s, Ti1) + ... + @(2i-1,20) = 0+ 0 = 0.

Assume that the claim is true for all cycles which are expressable as a sum of < m — 1 basic
cycles. Consider any cycle formed by adding m basic cycles. Sum up the first m — 1 basic
cycles. The resulting cycle satisfies the inductive assumption. Hence we have two cycles whose
sum gives the original cycle and for which the equation (1) holds. The rest of Proof is the same
asincasem=2. 0O

Let us define a function 8 : Vg — Z as follows: Fix a vertex zo € Vg and set B(zo) = 0.
Set B(z) = a(z,, z1) + a(z1,23) + ... + a(z,, ), where zoz123, ...z, z is an arbitrary path joining
zo and z in G. We prove that the function S is well defined. Let zoy;...y,z be another path
joining zo and z. Assume that the paths have no common inner vertices. If B(z) defined
through the two paths receives two different values, i.e.

a(zo, 1) + ... + a2y, z) # a(zo,41) + ... + a(y,, z)

then
a(zo,21) + ... + a2y, ) + a(z,yg) + ... + a(y1, z0) # O,
which contradicts to Lemma 3.2. Assume that u is the first common inner vertex of the paths,

starting from z,. Using the same argument as above we prove that B(u) is unique. Then we
omit the subpaths between 2, and u and repeat the above procedure.

Note that if zy € Eg then
B(y) = B(z) + o(=z,y).

Finally, define a function ¢* : Vg — Z as follows:
¢*(z) = ¢(z) + nB(z).

We verify that ¢" is injective. Suppose that ¢*(z) = ¢*(y). It implies ¢(z) — ¢(y) = »(B(y) —
B(z))- I B(z) = B(y) then ¢(z) = ¢(y). Hence z = y. If B(z) # B(y) then |¢(z) — é(y)| = n,
which contradicts to the fact that both ¢(z) and #(y) lie in the interval [0, 7 — 1].
Now let zy € Eg.
If a(z,y) = 0 then
|°(y) — ¢*(2)] = 16(¥) — ¢(=) + na(z,y)| = |4(z) — $(¥)| < dil(G, C.,).
If a(z,y) = +1 then :
|8°(¥) — ¢*(2)] = |6(y) — ¢(=) + na(z,y)| = |(y) — ¢(2) £ | < &il(G, C.,).
Thus we have constructed an embedding ¢* of G in a path P such that

dﬂ¢'(G’ P) < dﬂ(G’ Cn)
But Lemma 3.1 implies dil(G, P,) = dil(G, P), a contradiction. O

4 Applications

In this section we show that many graphs corresponding to fundamental parallel architec-
tures (trees, X-trees, hypercubes, meshes, pyramides and tree of meshes) satisfy the condition of



Theorem 3.1, i.e. their embeddings in the path and the cycle have the same dilation. It enables
to obtain exact dilations in cycles for complete trees, hypercubes, and 2- and 3-dimensional
meshes.

We start with three lemmas. As the first two are obvious, we omit proofs.

Lemma 4.1 If Gl, Gz and G3 are graphs then dil(Gl, G3) < dil(Gl,Gz) : dﬂ(Gz, G3).

Lemma 4.2 Let G and G' be two graphs such that G' is obtained from G by shrinking an edge.
If all cycles of length <1 in G form a basic set of G then all cycles of length <1 in G' form a
basic set of G'.

Lemma 4.3 Let all cycles'of length < I (< ;) in a graph Gy (G,) form a basic set of Gy (G2).
Then all cycles of length < max{4,l;,1;} in the graph Gy X G, form a basic set of Gy x Gs.

Proof: Recall the definition of the product of graphs. We say that vertices of G; x G, belong
to a horizontal (vertical) level if the vertices have the same first (second) entry. Note that the
vertices of G1 X G can be divided into |Vg, | (|Vi,]|) horizontal (vertical) levels. Consider any
cyclein Gy X G;. The vertices of the cycle belong to some number of horizontal and vertical
levels. We proceed by induction on the number A of horizontal levels in which the cycle vertices
lie.

The case h = 1 is trivial. Let & > 2 and suppose that all cycles having verticesin < h —1
horizontal levels are expressable as a sum of cycles of length < max{4,l;,1;}. Consider a
horizontal level L that contains a vertex of the original cycle. We proceed by induction on the
number m of the cycle vertices lying in L.

Assume m = 1. Let z; be the cycle vertex lyingin L. Let z; and z3 be its neighbours in the
cycle. Note that z;,z; and z3 lie in the same vertical level. Clearly, in the vertical level there
must exist a path between z; and zs not containig z,. Proceed along the path from z; to zs.
Let z # z; be the first cycle vertex on the path. If z = zq then the path divides the original
cycle into two cycles. One of them contains vertices from < k — 1 horizontal levels, the second
one lies in one vertical level. Otherwise the path between z; and z divides the original cycle
into two cycles. One of them contains vertices from < h — 1 levels. Replace z by z; and repeat
the above step for the second cycle until z = zs.

Let m > 2. Assume that all cycles having < m — 1 vertices in the horizontal level can be
expressed as a sum of cycles having vertices in < A levels. First suppose that there are at
least two adjacent cycle vertices lying in L. Let z;,z,, 23 be a subpath of the cycle such that
3,23 € L and z, ¢ L. Let = be the unique vertex lying in the same level as z; and adjacent
to both z; and z3. By inserting the edges z;z and zsz into the cycle we express the original
cycle as a sum of two or three cycles (depending on whether z is a cycle vertex or not). One of
them is of length 4, the second and third one (if exist) contain < m — 1 vertices from L.

Suppose that there are no edges between the cycle vertices lying in L. Choose two arbitrary
cycle vertices u and v lying in L such that the shortest path between u and v does not contain
cycle vertices, except for u,v. The path divides the original cycle in two cycles, say C and C'.
We show that both C and C' are expressable as a sum of cycles of length 4 and cycles having
< m — 1 vertices in L. W.lo.g. consider the cycle C. Let YU Uz...uY De the shortest path
between u and v. Note that this path liesin L. Let uq # u; be the cycle neighbour of u. Let z
be the unique vertex lying in the same level as ug and adjacent to both up and u;. By inserting
the edges uoz and u;z the cycle C is expressed as a sum of two or three cycles (depending on
whether z is a vertex of C or not). One of them is of length 4, next one (if exists, i.e. z € C)
contains < m — 1 vertices in L. We repeat the above procedure with the remaining cycle and
the subpath uju,...u.v. After a finite number of steps we obtain a resulting cycle which contains
< m —1 vertices in L. ]



Proposition 4.1 For any n-vertez tree T' it holds

dil(T, C,) = dil(T, P,).
Proof: The sufficient condition is satisfied trivially because trees are cycle-free. a
Theorem 4.1 dil(T;,, Cir-1-1)/(r-1)) = [E(t" — 1)/(2(r — 1)(t — 1))].

Proof: The result follows from Proposition 4.1 and the result of [4] on dil(T,, Pyr-1_1)/(r-1))-
m]

The X-tree of height k (see [15]), denoted by X (k), is the graph with the vertex set V() =
{1,2,3,...,2¥*1 — 1} and the edge set
Expy = {(:,20),(5,2 +1): i=1,2,3,...,2* = 1} UUs {(i,i + 1) : 2 <i< 2+ -2},
Proposition 4.2 Ifk > 5 then dil(X(k), Cor+1_;) = dil(X(k), Per+11).
Proof: X (k) can be obtained from the mesh Ppi; X Pu by shrinking edges. According to
Lemmas 4.2 and 4.3 all cycles of length < 4 create a basic set of X(k). The embedding of the
complete binary tree of height k described in [4] implies that dil(X(k), Por+1-;) < 2[2F — 1/k].
The sufficient condition is satisfied because 8[(2* — 1)/k] < 2¥+! — 1 for k > 4. m]

The n-dimensional hypercube graph is usually defined by means of the graph product:
Qi=P, Qn=Qn-1 X Pp,forn > 2.

Theorem 4.2 Ifn > 11 then

k=0
Proof: Using Lemma 4.3 one can easily prove by induction on n that all cycles of length 4 in
Q. form a basic set. For n > 11 it holds

461(Gn, ) =43 (LgJ) 54(@1) o

k=0
The first inequality can be proved by induction. The second one follows from the Stirling ap-
proximation for factorials. The sufficient condition is satisfied. The rest of Proof follows from
the result of Harper [10]. O

Let mjy <my <..<my, 7y <ng < ..<n,and N = H:=1m,-n;=1n,-. Let G =
i=1 Pm; X [1j=; Cr; denote an (r + s)-dimensional cylindrical mesh.

Proposition 4.3 If4 < n, < m, then
dil{ G, Cy) = dil(G, Py).

Proof: By repeated application of Lemma 4.3 we prove that all cycles of length < n, in G
form a basic set. The general result from [3] on the dilation of the product of graphs in paths
implies: dil(G, Py) < N min{1/m,,2/n,}. Hence

n,dil(G, Py) £ n,N min{l/m,,2/n,} < N.
The sufficient condition is satisfied. 0O

Theorem 4.3
1. dii(P, X P,,Cpy) = min{m,n}, for max{m,n} > 3.
2. dil(P, X P, x P,,Cps) = |3n?/4 4+ n/2], forn > 3.

Proof: The results follow from Proposition 4.3 and [5, 7] (see Introduction). o



The first result in Theorem 4.3 implies:

Corollary 4.1 If max{m,n} > 3 then
dil(Cpm X Cy,Crin) = dil(C X Pp, Crmn) = min{m,n}.

Proof: The lower bound follows from Theorem 4.3 and Lemma 3.1. The upper bound can be

easily obtained by placing the "rows” of C,, X C,, consecutively on Cpyn, provided that m > n.
0

The first result in Corollary 4.1 is an extension of the result from [14] for arbitrary toroidal
meshes. The first result in Theorem 4.3 and results in Corollary 4.1 complete the investigation
of problems of the type "dil(X x Y, Z) =?”, where X,Y and Z are paths or cycles.

Let M, = Py» X Pyn. Define P(n) to be the pyramide graph with

Ve =1{(,2,9) : (2,9) € V;,i=0,1,2,...,n},

Epn) = {((3,2,9), (i,%,v)) : (2,9)(,v) € Ep;,i=1,2,3,...,n}U

u{((z,=,%),(: — 1, |2/2}, ly/2])) : (=,¥) € Va1 =1,2,3,...,n}.

Intuitively, P(n) contains M, through M,, with each vertex in M; having four offsprings in
M;11. Vp(n) can be separated into levels; specifically (i,2,y) € Vp(n) is on level i. Note that
Vel = (4" — 1)/3.

Proposition 4.4 For n > 45 it holds
dil(P(n), C(4n+1_1)/3) = dil(P(n), P(4n+1..1)/3).

Proof: All cycles of length < 4 form a basic set as P(n) can be obtained from the mesh
Pnt1 X Pya X Pya by shrinking edges. Put G; = P(n), G = Qn+1 and Gs = Ppan+1 in Lemma
4.1. We obtain :
dll(P(n), Pzzn+1) S dl].(P(‘n), Q2n+1)dil(Q2n+l7 Pzzn+1).

The first term on the right hand side is equal to 2 [11], the second one is bounded from above
by (2":1) according to Theorem 4.2. Hence, for n > 45, we have

<

: n+l __
431(P(n), Pynti—yjs) < A&1(P(n), Pyomss) < 8 (2" M 1) ==

n

The sufficient condition is satisfied. 0

The tree of meshes TM,, is defined as follows [2]: The root of a complete binary tree is
replaced by an n X n mesh, their sons are replaced by n/2 X n meshes, their sons are replaced
by n/2 x n/2 meshes and so on until the leaves are replaced by 1 x 1 meshes. Each right edge
of the binary tree is replaced by edges which connect the rightmost column of vertices of the
mesh corresponding to the father to the topmost row of vertices in the mesh corresponding to
the right son. Similar replacement are made for left edges of the binary tree. The number of
vertices of TM,, is given by |Vra, | = n?(2logn + 1).

Proposition 4.5 For n > 16 it holds
dil(TMn, Cn’(zlogn+1)) = dll(TMna Pn2(2 logn+1))'

Proof: 1t is evident that all cycles of length 4 form a basic set. Now we construct an embedding
¢ : TM, — Pn2(2iogn+1)- Let us divide the path Pp2(ogn+1) into 2logn +1 subpaths of length
n? — 1. Embed somehow the mesh n X n into the first subpath, the meshes of type /2 x n into
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