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Abstract 

We study the short term behavior of random walles on graphs, in particular, 
the rate at which a randomwalle discovers new vertices and edges. We prove a 
conjecture by Linial that the expected time to find N distinct vertices is O(N3). 
We also prove an upper bound of O(M2

) on the expected time to traverse M 
edges, and O(MN) on the expected time to either visit N vertices or traverse 
M edges (whichever comes first). 

1 Introduction 

Consider a simple random walle on G, an undirected graph with n vertices and m edges. 
At each time step, if the walle is at vertex v, it moves to a vertex chosen uniformly at 
random from the neighbors of v. Random walles have been studied extensive1y, and have 
numerous applications in theoretical computer science, including space-efficient algorithms 
for undirected connectivity (4, 8], derandomization (1.], recycling of random bits (10, 15], 
approximation algorithms (6, 12, 17], efficient constructions in cryptography (14], and self­
stabilizing distributed computing [11, 16]. 

Frequently (see, for example, Karger et al. [19] and Nisan et al. [20]), we are interested 
in E[T(N)], the expected time before a simple random walle on an undirected connected 
graph, G, visits its Nth distinct vertex, N ~ n. The corresponding question for edges is 
also interesting, and arises in the work of Broder et al. (8]: how large is E(T(M)], the 
expected time before a simple random walk on an undirected connected graph, G, traverses 
its M th distinct edge, M ~ m? This paper gives upper bounds on E[T(N)] and E[T(M)] 
for arbitrary graphs. While a great deal was previously known ab out how quickly a random 
walk covers the entire graph (see, for example, [2, 4, 7, 9, 18, 22, 23]), little was known 
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about the behavior of a random walk before the vertices are covered. These bounds help fill 
the gaps in our knowledge of random walks, giving a picture of the rate at which a random 
walle explores a finite or an infinite graph. 

Aleliunas et al. [4] show that the expected time to visit all vertices of an arbitrary 
graph (called the cover time) is O(mn) ~ O(n3

). Using this bound, Linial derives abound 
for general N of E[T(N)] = O(N4) [19, Lemma 4.1]. Linial [personal communication] 
conjectures that the cover time bound generalizes to all N, that is, VN ~ n, E[T(N)] = 
O(.N3). We prove Linial's conjecture. 

Theorem 1 For any connected graph on n vertices, and for any N ~ n, 

E[T(N)] = O(.N3). 

Zuckerman [23] proves an upper bound of O(mn) on the time to traverse all edges in a 
general graph. We are unaware of any previous nontrivial bounds for M < m. We prove: 

Theorem 2 For any connected graph with m edges, and for any M ~ m, 

E[T(M)] = O(M2
). 

Theorem 2 holds even if G is not a simple graph (i.e., if we allow self-Ioops and parallel 
edges). 

Let E[T(M,N)] be the expected time for a simple random walle to either traverse 
M distinct edges or visit N distinct vertices (whichever comes first). Then the following 
theorem implies both the above theorems, by considering E[T(.N2,N)] and E[T(M,M)], 
respectively. 

Theorem 3 For any connected graph with m edges and n vertices, and for any M and N 
such that M ~ m orN ~ n, 

E[T(M,N)] = O(MN). 

In the above three theorems, the graph G need not be finite. If G is a graph with 
infinitely many vertices (each vertex of finite degree), then we can consider only the finite 
portion of G that is within distance N (or M) from the starting vertex of the random 
walle, and the proofs remain unchanged. For finite graphs, the following theorem serves 
to complete the picture of the rate at which vertices (or edges) are discovered. It provides 
better bounds than Theorems 1 and 2 when the number of vertices to be discovered is larger 
than rm or the number of edges to be discovered is larger than n. 
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Theorem 4 For any simple connected graph on n vertices and m edges, for any .Af ~ n, 

E[T(.Af)] = O(m.Af), 

and for any M ~ m, 

E[T(M)] = O(nM). 

Our theorems are the best possible in the sense that there exist graphs for which the 
bounds are tight up to constant factors (e.g., the n-cycle for Theorem 2). However, these 
bounds can be refined if additional information regarding the structure of G is given. The 
work of Kahn et al. [18] indicates that dmim the minimum degree of the vertices in the 
graph G, is a useful parameter to consider. They show that the expected cover time of 
any connected graph is O(mn/dmin), implying a cover time of O(n2

) for regular graphs. 
This inverse dependency on dmin applies also to short random walks. Preliminary results in 
this direction (tight up to a logarithmic factor) were presented in an earlier version of this 
paper [5]. The superfiuous logarithmic factor in these results was subsequently removed by 
Feige [13], building upon proof techniques that were developed by Aldous [3]. Aldous is 
writing a textbook giving a systematic account of random walks on graphs and reversible 
Markov chains. The current draft [3] contains results similar to ours in the regular graph 
setting. 

While the short term behavior ofrandom walks is worth studying in its own right, short 
random walks also have immediate applications in many areas of computer science. Our 
results, of course, cannot be applied to all such areas. For example, much stronger results 
are already known about the properties of short random walks on the special class of graphs 
known as expanders (see, for example, Ajtai et al. [1], and Jerrum and Sinclair [17]). One 
might hope our results would dramatically improve the algorithms of Karger et al. [19] and 
Nisan et al. [20] for undirected connectivity. As mentioned above, both require an estimate 
of E[T(.Af)] (and both used the estimate E[T(.Af)] = O(n4 )). Unfortunately, substituting 
our bound only improves the constants for the algorithms, since the running times of both 
depend on the logarithm of E[T(.Af)], not E[T(.Af)]. 

Our results may yield significant improvements for other randomized algorithms. In 
particular, consider randomized time-space tradeoffs for undirected S-T connectivity (UST­

CON), as studied by Broder et al. [8]. One key property ofBroder et al.'s algorithmis that a 
short random walk from a given edge traverses many edges. Improved bounds on E[T(M)], 
then, would seem to provide an improvement to their tradeoff. Partial results in this di­
rection were presented in an earlier version of our paper [5], and furt her improvements are 
presented by Feige [13]. 
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2 Short random walks - proofs of theorems 

The proofs of the theorems are best read in order. The proof of Theorem 1 introduces the 
proof techniques that are used in all subsequent proofs. The proof of Theorem 2 is a simple 
modification of this proof technique. The proof of Theorem 3 intro duces additional sub­
tleties. For this reason, we have stated Theorems 1 and 2 explicitly, rat her than presenting 
them as corollaries of Theorem 3. The proof of Theorem 4 is a slight modification of the 
proofs of Theorems 1 and 3. 

Proof:( of Theorem 1) 
Assume that n > 2.N. Otherwise the proof follows from Aleliunas et al. 's bound of 

E[T(n)] = O(mn) [4]. We view the random walk as proceeding.in phases. For any i, 
1 :S i :S 2.N, at the beginning of Phase i, we identify a set of vertices Vi C V and a starting 
vertex Si E Vi, the last vertex visited in Phase i - 1. Phase i starts with the random walk at 
Si and ends when the random walk exits Vi. We show that for any i, the expected number 
of steps taken in Phase i is O(i2 ), and that up to Phase i at least i/2 distinct vertices 
are visited. Thus, at most 2.N phases are needed to visit .N distinct vertices, proving (by 
linearity of the expectation) that E[T(.N)] = O(JI3). 

To simplify the presentation, assume that G contains a Hamiltonian cycle. The case 
where G does not have a Hamiltonian cycle is only slightly more complicated, and will 
be addressed later. Let VI! V2, .•• , Vn be an arrangement of the vertices of G along the 
Hamiltonian cycle. 

At the beginning of Phase i, we identify the following vertices and sets of vertices. 

starting vertex The vertex Si at which the walk of Phase i - 1 ended (if i > 1). Sl is the 
starting vertex of the whole random walk. 

right vertex The vertex Ti following Si in the cyclic order imposed by the Hamiltonian 
cycle. 

visited vertices The set Yi c V of vertices visited in previous steps by the walk. Note 
that Si E Yi. 

good vertices The set of vertices Ui ~ V \ Yi (for tw:o sets A and B, A \ B denotes the set 
of elements in A but not in B) with the following property: let Ruj,l, for 1 :S l :S n, 
be the set of l consecutive vertices {Vj, Vj+l, ... , Vj+l-l} on the Hamiltonian cycle. 
(By convention, if k > n, then Vle is interpreted as VIe-n.) Vj E Ui if and only if 
'r/l :S n, I Rui,l n Yi I :S l/2. Thus, a vertex Vj is good in Phase i if, starting at Vj and 
walking along the Hamiltonian cycle, at least half of the vertices discovered are new. 
This holds for any number of steps that a walk might make before walking completely 
around the cycle. 
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bad vertices All other vertices. Let Bi denote this set. 

The foIlowing lemma gives abound on IBil. 

Lemma 5 For every i, if IYiI < 2n, then IBil < IYiI. 
Proof: The proofis by induction on IYiI. H IYiI = 1 (and n > 2), then IBil = 0, as there 

is no consecutive set of vertices starting from an unvisited vertex such that the majority of 
vertices in the set are not vi si ted. 

Assume the lemma is true for IYiI = k and any n > 2k, and prove for IYiI = k + 1 and 
any n > 2k + 2. Consider a ring with n vertices and k + 1 visited vertices (n > 2k + 2). 
Then there exists a visited vertex y that is to the right of an unvisited vertex v. Remove y 

and v from the ring, linking the left neighbor of v to the right neighbor of y in the obvious 
way. Thus, n is decre'\sed by 2 and IYiI is decreased by 1. Now the induction hypothesis 
holds, and there are at most k - 1 bad vertices. Put y and v back in the ring, and restore 
the values of IYiI and n. No previously good vertex can become bad, as any consecutive set 
of vertices that starts at an unvisited vertex and includes y must contain v as weil. Thus, 
the only bad vertex that could possibly have been added is v, resulting in the desired bound 
of at most k bad vertices. 0 

Let Vi = (Yi U Bi) \ {ri}. At the beginning of Phase i the random walk is at the vertex 
Si E Vi. Phase i ends when the random walk exits Vi. Let Ti denote the number of steps 
taken in Phase i. 

Lemma 6 E[Til < (2IYiI? 

Proof: By Lemma 5, and since lVii ~ IYiI + IBil, it foIlows that lVii< 21YiI. Phase i 
ends when an edge leading out of Vi is taken. One such edge is the edge connecting Si to 
ri on the Hamiltonian cycle. We claim that if we remove all other edges leading out of Vi, 
the expected time to leave Vi remains at least E[Ti]. 

Suppose we wish to remove a single edge e between u E Vi and v rt Vi. Instead of 
actually removing e, create a new auxiliary vertex w rt Vi and make e connect u with w. 
This does not change E[Ti]. Let T' denote the number of steps taken to exit Vi U{ w}, not 
counting steps that traverse the edge e (in either direction). Then E[T1 ~ E[Ti]. Finally, 
remove e completely, and observe that the expected time to leave Vi remains E[T']. 

After removing all edges but e = {Si, ri} leading out of Vi, we are left with only the 
subgraph induced by Vi and the edge e. Let mi denote the number of edges in this subgraph. 
Observe that if i > 1, mi < IViI2 /2. (H i = 1, Ti = 1 and the lemma trivially holds.) Since 
the walk of Phase i starts at Si, and since there is an edge connecting Si to ri, the expected 
time to reach ri is at most 2mi. (This is weil known. See, for example, Aleliunas et al. [4].) 
o 

We have bounded the duration of each phase. It remains to bound the number of phases. 
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Lemma 7 For any k, in the first k phases at least k/2 distinct vertices are visited. 

Proof: Observe that each phase ends by either walking to the next vertex along the 
Hamiltonian cycle, or "jumping" to a good vertex. Let S be the sequence of starting 
vertices visited by the walle, SI, S2, .•• , Sk. Partition Sinto subsequences as follows: the 
first subsequence begins with SI, and Sj begins a new subsequence if and only if Phase j - 1 
did not end at rj-l. Then each subsequence begins with a good vertex, and at least half 
the vertices visited in it are new. 0 

If G has a Hamiltonian cycle, this completes the proof, as 

2JI 2N 

E[T(Af)] ~ L E[Ti] < L(21YiI)2 < sAf3. 
i=l i=l 

If G does not have a Hamiltonian cycle, we can use the following well-known lemma: 

Lemma 8 For any connected graph, G, there is a cyclic ordering 0/ its vertices, Wl, W2, 

... , W n , such that the distance (the length 0/ the shortest path in G) between any vertez 
and its successor is at most 3. 

Proof: Let G'PCn be a spanning tree of G. Traverse G'PCn in depth-first search fashion, 
using vertices of even distance from the root to advance towards the leaves, and vertices of 
odd distance from the root to backtrack. Let Wl, W2, •.. ,Wn be the vertex ordering derived 
from this traversal, where Wi is the i th vertex visited by the traversal. Then W n is a neighbor 
of Wb the root of G'PCn , and for all 1 ~ i < n, Wi is at most distance 3 from Wi+1' 0 

U sing the ring obtained by Lemma S in place of a Hamiltonian cycle makes the expected 
time to leave Vi at most three times as large, thus only affecting the constants involved. 
o 

Proof: (of Theorem 2) 
In Lemma S we show a way to arrange the vertices of a connected graph in a cyclic 

order. Arranging the edges in a cyclic order is even simpler. View each undirected edge as 
two anti-parallel directed edges (two directed edges are anti-parallel if they have the same 
endpoints, u and v, but one is directed from u to v, and the other directed from v to u). 
The number of directed edges entering any vertex is equal to the number of directed edges 
leaving it. Hence the directed graph is Eulerian, and has an Eulerian cycle. This Eulerian 
cycle induces a cyclic ordering on the directed edges, and can replace the Hamiltonian cycle 
used in the proof of Theorem 1. 

N ow the proof technique of Theorem 1 can be applied to prove Theorem 2, with "directed 
edges" replacing "vertices" in a straightforward manner. For edges, however, Lemma 6 can 
be strengthened - in Phase i, the set Vi is now a set of edges, and not a set of vertices, so the 
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expected time to leave Vi is lVii instead of IViI 2 • This yields abound of E[T(M)] = O(M2). 
o 

Proof:(of Theorem 3) 
Assume that m ~ 2M. The proof for the case m < 2M is much simpler. See, for 

example, the first part of the proof of Theorem 4, below. 
As in the proof of Theorem 1, view the random walk as proceeding in phases. For any 

i ~ 1, at the beginning of Phase i, we identify a set of vertices Vi C V, a set of edges Ei C E 
and a starting vertex Si E Vi, the last vertex visited in Phase i - 1. Phase i starts with the 
random walk at Si. Phase i ends when the random walk exits the sub graph Gi = (Vi, Ei). 
Phases where Si has many yet unvisited outgoing edges will also end if the walk returns to 
Si. The whole walk ends when either N vertices or M edges are visited. This does not 
necessarily correspond to any fixed number of phases, making the analysis of the expected 
number of steps taken by the walk more subtle than the analysis in the proof of Theorem 1, 
where the completion of 2N phases guaranteed the end of the walk. 

View each undirected edge as two anti-parallel directed edges. Observe that traversing 
2M - 1 distinct directed edges guarantees at least M distinct original (undirected) edges 
are traversed. The set of outgoing edges from vertex v is denoted by Out( v). Let d( v) = 
IOut(v)l· 

Let VI, V2, ..• , vn be an arrangement of the vertices of G along the ring obtained by 
Lemma 8. At the beginning of Phase i, we identify the following vertices and sets of vertices. 

starting vertex The vertex Si at which the walk of Phase i - 1 ended (if i > 1). SI is the 
starting vertex of the whole random walk. 

right vertex The vertex ri following Si in the ring of vertices. 

traversed edges The set Fi C E of edges traversed in previous steps by the walk. 

visited vertices The set Yi C V of vertices visited in previous steps by the walk. Note 
that Si E Yi. 

exhausted vertices The set Xi ~ Yi of vertices, z, such that at least half of the out-edges 
from z have been traversed in previous steps by the walk. 

good vertices The set of vertices Ui with the following property: as in the proof of Theo­
rem 1, let Rvj,l, for 1 ::; i ::; n, be the set of i consecutive vertices {Vj,Vj+b . .. , vj+l-d 
on the ring of vertices. Define 9i(V) to be maz(O, fd(v)j21 - !Fin Out(v)I), that 
is, the number of untraversed out-edges of v that would have to be traversed for 
v to become exhausted. For a vertex Vj, Vj E Ui if and only if Vi, 1 ::; i ::; n, 
LVII ER" ",l 9i(Vk) ~ (2MjN) I Rvj,l n Xii· 

J 
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Note that a visited vertex can be good, but an exhausted vertex cannot. Note also 
that S1 is a good vertex in Phase 1. 

bad vertices The set of vertices Bi that are not good. 

good edges The set of untraversed edges Di ~ E \ Ei that exit from good vertices. 

bad edges The set of edges Ci that are neither good nor traversed. 

Informally, the definition of good vertices above is similar to the definition of good 
vertices in the proof of Theorem 1. In that proof, each subsequence (see the proof of 
Lemma 7) begins at a good vertex, and progresses along the ring. The definition of a 
good vertex insures that the number of previously unvisited vertices visited during the 
subsequence is at least a constant fraction of the number of phases in the subsequence. In 
this proof, a subsequence again starts at a good vertex, but the walk does not progress 
along the ring until the current vertex is exhausted. This definition of good verlices ensures 
that the number of previously untraversed edges that are traversed during a subsequence 
is at least 2M/N times the number of exhausted vertices that are starting vertices in the 
phases in the subsequence. This property is used in Lemma 13 below to bound the number 
of phases that begin at exhausted vertices. 

The following lemma gives abound on ICil. 

Lemma 9 For every i, ICil S; IEiI + 4M(1 + IXil/N). In particular, for IEiI < 2M, 
ICil < 10M. 

Proof: Consider the ring of vertices at the beginning of Phase i. For any vertex v, let 
gHv) = maz(O,d(v) - 21Ein Out(v)I), and mark gHv) of v's untraversed out-edges. Since 
21 Fi I + 'Eu g:( v) ~ 2m, the number of untraversed edges in G that are not marked is at most 
IEiI. We will show by induction on lXii that the number of marked edges that are bad is 
no more than 4M(1 + IXil/N). Hence the total number of bad edges is as claimed in the 
lemma. 

To bound the number of marked edges that are bad, we prove the following lemma. 
The lemma is more general than is necessary, since it considers not only configurations of 
marked edges and emausted vertices that could be a result of random walks on graphs, but 
also configurations that could not. 

Lemma 10 Consider a ring of n vertices, and let k < N S; n. Choose k of the vertices in 
an arbitrary way and mark them as exhausted. Distribute an arbitrary number of tokens 
on the unexhausted vertices of the ring in an arbitrary way. Avertex v is bad if for some 
l S; n, the number of tokens encountered by taking l steps to the right (including the tokens 
on v itself) is less than 4M/N tim es the number of exhausted vertices encountered by such 
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a walk. A token is bad if it is placed on a bad vertex. Then for any n,N, M, k, the number 
of bad tokens is at most 4M (1 + k / N). 

Proof: By induction on k. H k = 0, then for all values of n, N and M, there are no 
bad tokens, and the lemma holds. 

Assume the lemma is true for k = j, for all values of n, N and M, where k < N ::; n. 
Prove for k = j + 1 and arbitrary n, N and M, where k < N ::; n. 

Consider a walk backwards along the ring from some exhausted vertex, v. Mter a certain 
number of steps along the ring, the walk will have encountered 4M/N tokens. Let Yv be 
the vertex where this walk from v first reaches its (4M / N)th token. Because there are at 
least 4M tokens (otherwise, the lemma trivially holds) and at most N exhausted vertices, 
there must be some exhausted vertex v such that the walk from v to Yv visits no exhausted 
vertex besides v. 

Let v be such a vertex, and Tv be the first 4M / N tokens encountered by this walk (this 
may include only some of the tokens placed on Yv). Remove from the ring the tokens Tv, 
and make v not exhausted. Thus, k is decreased by 1. Now the induction hypothesis holds, 
so there are at most 4M(1 + (k - l)/N) bad tokens. 

Add the tokens in Tv back to the ring, mark v as exhausted, and restore the value of k. 
The tokens in Tv may be bad, but no token t that is not in 7;, and was not previously bad 
can become bad, as any :walk from t that includes v must include all the tokens between 
Yv and v as weil. So the number of bad tokens increases by at most 4M/N, proving the 
lemma. 0 

Observe that for any subset V" of the vertices, L:vEV. gi(V) 2: (L:vEV. gHv))/2. By 
considering marked edges as the tokens of Lemma 10 and bad marked edges as the bad 
tokens, the proof of Lemma 9 foilows. 0 

The definition of the subgraph Gi = (Vi, Ei) and the stopping condition for Phase i 
depends on whether Si is exhausted or not. At the beginning of Phase i, the random walk 
is at the vertex Si E Vi. 

H Si is not exhausted, Vi = Bi U{ Si}, Ei is all edges with both endpoints in Vi, along 
with the edges out of si and the edges into Si> and Phase i ends when the random walk 
returns to Si or exits Gi by visiting a vertex in Ui. 

H Si is exhausted, Vi = Bi \ {ri}, Ei is all edges with both endpoints in Vi, along with 
the edges along a shortest path from Si to ri and the edges anti-parallel to the edges in this 
path, and Phase i ends when the random walk exits Gi by visiting a vertex in Ui U{rd. 

Let Ti denote the number of steps taken in Phase i. 

Lemma 11 1f Phase i begins at an unexhausted vertex, v, E[Ti] < 12M/d(v) + 2. 

Proof: The number of edges in Gi is no more than the number of out-edges from vertices 
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in Vi, plus the edges into Si. An out-edge from a bad vertex is either bad or traversed, so 
lEii::; !Pi I + IGil + 2d(v). Therefore, by Lemma 9, if !Pi I < 2M, IEil < 12M + 2d(v). 

It is weil known that on an undirected graph with 7ni edges the expected time for a 
random walk that starts at vertex v to return to v is 2md d( v). Gi is equivalent to an 
undirected graph with IEil/2 edges, since if a directed edge eis in Ei, the edge anti-parallel 
to e is in Ei as weil. The degree of v in Gi is the same as its degree in G, therefore 
the expected length of a phase that begins at an unexhausted vertex, v, is no more than 
12M/d(v) + 2. 0 

Lemma 12 1/ Phase i begins at an ezhausted vertez, E[TiJ < 36M + 15. 

Proof: The only edges in Ei that may not out-edges from bad or exhausted vertices 
are the edges in the path from Si to ri and the edges anti-parallel to these edges. By the 
construction of the ring of vertices, this path is of length 3 or less, and the first out-edge 
in the path from Si is from an exhausted vertex, so there are at most five such edges, and 
lEii::; !Pi I + IGil + 5 < 12M + 5. Using a proof similar to the proof of Lemma 6, the 
expected length of such aphase is less than the distance from Si to ri times IEil. 0 

The expected number of steps in Phase i depends on whether Si is exhausted or not. Call 
phases that start at unexhausted vertices short phases and phases that start at exhausted 
vertices long phases. 

The walk ends when IYiI ~.N or !Pi I ~ 2M -1. Since we are considering directed edges, 
this will ensuxe that either .N vertices were visited or M undirected edges were traversed. 
To analyze the expected number of steps of the walk, we consider the following two stopping 
conditions: 

1. At least .N distinct vertices were the starting vertices of phases. Clearly, this implies 
that .N vertices were visited. 

2. There were at least 2.N long phases. This implies that at least 2M edges have been 
vi si ted, by the following lemma. 

Lemma 13 1/ m ~ 2M, 2.N long phases occur, and no more than.N distinct vertices are 
the starting vertices 0/ these long phases, then at least 2M edges are traversed. 

Proof: Similar to the proof ofLemma 7, observe that each phase ends by either walking 
to the next vertex in the ring, returning to the starting vertex, or "jumping" to a good 
vertex. Let S be the sequence of starting vertices visited by the walk, SI, S2,' •• , Sie. Partition 
Sinto subsequences as follows: the first subsequence begins with sI, and Sj begins a new 
subsequence if and only if Phase j - 1 was long and did not end at rj-ll or Phase j - 1 
was short and did not end at Sj-l. Then each subsequence begins with a good vertex (and 
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a short phase), and continually exhausts its current vertex and steps to the next vertex in 
the ring. Because m ~ 2M, a subsequence that begins at Sj cannot step completely around 
the ring and return to Sj' We use the following property: For a subsequence Sj beginning 
with Phase k, at least 2q(M/N) edges are traversed for the first time in the phases of Sj 

before the qth vertex in X /c appears as a starting vertex in S j. This must be true by the 
definition of a good vertex. With each vertex v of X/c we can therefore associate 2M/N 
untraversed edges that must be traversed if v is to start a phase within the subsequence, 
associating each untraversed edge with at most one vertex of X/c. 

Now consider the 2N long phases. They start at no more than N distinct vertices, 
so at least N of them start at a vertex that was the starting vertex of a previous long 
phase. Let Phase i be such a phase, and assume that it is part of a subsequence that begins 
with Phase k. Then Si must already have been exhausted when Phase k begun, implying 
that we can identify 2M / N edges that were first traversed between Phases k and i, and 
associate them with Phase i. Altogether, from alliong phases, we can identify at least 
N . 2M / N = 2M distinct traversed edges. 0 

We are now ready to compute the expected number of steps of the walk. There are at 
most 2N long phases, and each long phase takes expected time no more than 36M + 15, so 
the long phases contribute a total of O(N M) to the expected number of steps in the walk. 
To analyze the contribution of the short phases, let Vi denote the i th distinct vertex that 
was discovered by the walk, and let E [Vi] denote the expected number of short phases that 
start at Vi. For each such phase, the probability that the first step of the walk traverses 
a yet untraversed out-edge from Vi is at least 1/2, since the majority of edges leading 
out of Vi are untraversed. Therefore E[Vi] is no more than d(Vi). If d(Vi) > 2M, similar 
reasoning shows that E [Vi] is no more than 2M, since the walk can stop after M distinct 
out-edges of Vi are traversed. The expected number of steps in a short phase is no more 
than 12M/d(Vi) + 2, so it follows by Wald's Equation (see Ross [21, page 38], for example) 
that the expected number of steps spent on short phases that begin at Vi is no more than 
(12M/ d(Vi) + 2)· min(d(Vi) , 2M) :::; 16M. The short phases therefore contribute a total of 
O(N M) to the expected number of steps in the walk. 0 

Proof: (of Theorem 4) 
To show that E[T(N)] = O(mN), we distinguish between two cases. The case N ~ n/2 

is handled by Aleliunas et al. [4], who show that E[T(n)] = O(mn). For the case N < n/2, 
consider the proof of Theorem 1. The expected time of each phase is at most 6m, and the 
proof follows. 

To show that E[T(M)] = O(nM), we again distinguish between two cases. The case 
M > m/2 is handled by Zuckerman [23], who shows that E[T(m)] = O(mn). For the case 
M :::; m/2, consider the proof of Theorem 3 with N = n. Observe that by Lemma 13, 
in order to visit M distinct edges, it suffices to have 2n phases that start at exhausted 
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vertices. Hence the expected number 9f steps spent on phases that start at exhausted 
vertices is O(Mn). Likewise, since the graph has only n vertices, the expected number of 
steps spent on phases that start at vertices that are not exhausted is also O(Mn) (the fact 
that the random walk may not stop at the time that all vertices of G are visited does not 
affect this argument). The proof follows. 0 
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